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Abstract—We give a model for the performance impact on used in Ocelot, such a scheme shows the flexibility of the
wireless systems of the limitations of certain resources, namely, modeling scheme used. Then Sectign V tests our assumptions

the base-station power amplifier and the available OVSF codes. and evaluates the accuracy of the performance estimates
These limitations are readily modeled in theloss modelfor- )

mulation as a stochastic knapsackA simple and well-known
recurrence of Kaufman and Roberts allows the predictions of the Il. LOSSMODEL SYSTEMS

model to be efficiently calculated. We discuss the assumptions and . . .
approximations we have made that allow the use of the model. Loss model results apply to the following situation. (See,

We have included the model in Ocelot, a Alcatel-Lucent tool for example, [1], [2].)
for modeling and optimizing cellular phone systems. The model ~ There is a collection of “jobs,” or “calls,” contending for a

is fast to compute, differentiable with respect to the relevant resource; there ar&/ units of the resource, for somé, and

parameters, and able to model broad ranges of capacity and yhare are distinct kinds of jobs, where job typerequiresh,

resource use. These conditions are critical to our application of =~ = ) - ’
optimization. units of the resource. Onamitted a job uses the resource
until the job is done. If admission of a job would raise the

|. INTRODUCTION total number of units of the resource abo¥é, the job is

There are many conditions that reduce the performan@gt admitted: it isblocked It is assumed that jobs arrive at

of cellular phone systems. Several of these conditions a{%pdom, and takg ar?‘”dom amount of time to be done. We are
limitations of shared resources. The theory los model Interested in estimating thielocking probabilityunder these

systemstudies the properties of multiple services contendirft T‘d'“ons' the probability _that when a job arrives, too few
its of the resource remain unused.

dynamically for a common resource. This note describ

the assumptions and approximations the authors have mad}-[)ve next review the assy_mpﬂons needed to apply this frame-
to apply the loss model formulation to two such ComrnoWork to the power amplifier, and to OVSF codes (hereafter

resources: the base-station power amplifier B8y, and the referred to colloquially a$Valshcodes, although we mean the

set of OVSF codes used in the forward radio link (from bas81°0r€ general class of codes).
station to mobile phone). These resources limit boitiouit
and packetservices; here we will be mainly concerned wit
circuit services, with some discussion of how their modeling While a call (that is, job) of a circuit service uses a constant
interacts with the modeling of packet services. number of Walsh codes over the time the job is in the system,
Although the loss model setting is natural and appropriateis is only true approximately for PA usage under power
for this modeling task, it is not a perfect fit. Sectipn_]I-Acontrol: fading, both slow and fast, results in random variation
below gives some assumptions and approximations that ethe power demands of the call. It is possible to model this
must make to use loss model results to capture the performawagation, but for now we assume that power remains at a fixed
effects of the power amplifier and the OVSF codes. Fdgvel for the duration of a call. Although there are “continuous
example, the power needs of a call can vary continuously, giochastic knapsack” models, we simply use a fiditeand
the simplest loss model results assume resources are measgiggietize power demand.
in discrete units. Some discretization is therefore needed; ouApproximation 2.1:Power discretization. Power will be
approach to that task is outlined in Sectipn JI-B. Next, aftatiscretized so thaf/4 units of power, callecbins will be
giving a more formal description of the loss model calculatioravailable from the PA. The power demands of the calls will
for each resource separately, in Section]ll-C, we describe further discretized to use units gf = 1,2,4... bins.
the assumptions and approximations that are needed to allovgince calls far away from the base-station (that is, at high
the combined effects of the limitations of these resources, pathloss) use more power, we cannot assume that the power
Section[I-D. Finally, Sectioif THE discusses packet data arislfixed for each service; even for voice, some calls may take
gives the relevant assumptions. 1 bin, others 2, others 4, and so on. That is, the appropriate
Section [ discusses our overall performance estimatgob type” for analyzing power is not service but what we will
Section[TY discusses a simple way to model a system haviogll the power demand clas&ectionTI-B has more details on
circuit services with two particular priority types. While nothe way this discretization is done

ﬁA. Preliminary Assumptions



The coarse rounding we do is partly justified by a study The stochastic knapsack calculation (Kaufman-Roberts re-
[3] showing that blocking results are relatively insensitive tourrence) allows us to find the steady-state probability distri-
whether we model calls by different job sizes, or simply bipution of the number of resources in use, and the blocking
the mean of those sizes; on the other hand, the range of powerbabilities per job type.[5], [6], [2]
demands we will consider is quite high, so it seems inadvisableLet g(c) satisfyg(c) = 0 for ¢ < 0 orc¢ > M, andg(0) = 1,

to ignore per-call variations in power demand. and let
Approximation 2.2:Walsh code additivity. If the total 1
number of Walsh codes requested is below a given limit, then g(e) = - > prbrglc — br) 1)
k

the requests can be satisfied.

This is an approximation, because a service neegling/alsh for ¢ = 1...M. Then the steady-state probability that
codes will be allocated a set of codes of the fofli— resource units are usedj&) = g(c)/G, whereG = Y _ g(c).

)27, (k —1)2) +1,... ,k2’ — 1, for somek; it cannot be The blocking probability for a circuit service needibg units
allocated an arbitrary set @f codes. Moreover, the allocationjs then
decision must be done “on-line,” as calls arrive. Ry, = Z (M — o),
As our experimental results of Sectiph V show, this assump- by
tion has a substantial effect, but an empirical adjustments otP
the admission threshold help a great deal.
Assumption 2.3Poisson arrival. Jobs arrive as a Poisson Ry =1—G(M —by)/G(M). )
process, and their completion time is a random process. If a
job is blocked, it goes away (isleared. where G(c) = > . ..9(c'). We will use the recurrence to

A Poisson process has an associated parameter, its eafompute the “passing probability”
and we assume that the completion time has meaqn the . _
key parameter for us ip = A/, the load, and the load of P =1 =Ry, = G(M = b)/G(M).

expected jobs of typé is py, wherep, = A /gy D. Assumptions for Integrated Analysis

B. Continuous versus Discrete Power Demands . So far, di.s_cus.sio_n ha§ been abo.ut_analyzing the PA block-
. . . ) ing probability in isolation, and similarly the Walsh code

In practice, loads are not naturally divided into discretg|ocking probability, in isolation. Moreover, discussion has not
power demand classes. Instead, we have a series of ing§qressed packet data QoS analysis. This subsection discusses
mental load contributions with some way of computing powghe approximations and assumptions we make to analyze the
requirements for ee}ch. For example, a load contribytiomay joint effect of the Walsh code and PA blocking.
require some non-integer number of power binaVe cope  Approximation 2.4:Cascade modelWe will first compute
with this by defining a weighting functiom; for each power he piocking per service due to Walsh code limitations, and
demand clasg and contributingv; (b)p to each power demandhe compute the blocking due to the PA of the resulting
classi whose weighting function is nonzero &t reduced load, on a service-by-service basis.

There are many ways to define the functions. FOr That s high blocking of a given service by Walsh code
brevity, we shall j_ust list their main properties: they should bgnitations implies a reduced load when considering that
smooth and continuous; they should add up to 1; few of thegayice with respect to PA limitations. The reduction in PA
should t34e nonzero simultaneously; and wherever possiQigaq for that service is assumed to be uniform across different
b=2%; b wi(b). power demand classes for that service. (This is expressed

symbolically as [([3) below.)
C. Loss Models This is an approximation, because even when the PA is

Up to the approximations we have discussed, the loBighly loaded, and a service might be blocked as a result, we
model systems we have are two instances oftechastic will still consider the service at full load for the Walsh code
knapsack The blocking probabilities, and other properties, ofalculation.
the stochastic knapsack can be computed provably and exactlfhe reduced-load approximatiotalso known as th&rlang
using an efficient calculation, which we next review. Thifixed-point approximatignwould avoid this approximation,
model, and calculation, has seen many applications in netwdmkt it generally requires a fixed point iteration that is much
modeling. It has also been applied to model the limitations efower than our simple cascade. Although there is always a
wireless systems with respect to reverse-link interference,jdijique solution in the< = 1 case, [7], [8]; the general result
an area in which we have not applied it. is that it has at least one solution. [9] Another difficult is that

We have a collection of< kinds of jobs contending for a our need for a smooth function with derivatives would prob-
resource of\/ units, and job typé needs; units. Jobs arrive ably require continuing the fixed point iteration to machine
Poisson, with loag. For the Walsh codes, the job type is theccuracy.
type of service; for the PA, the job type is the power demand Assumption 2.5Equal priority circuit service. All circuit
class. services (including voice and data) have equal priority.



That is, we don’t model a policy where circuit data services. Per-service Performance
are thrown off in overload. This assumption can be avoided if

there is no packet data as sketched out in Se¢lipn IV. for the Walsh codes, and then use the resulting reduced load

:‘;?Srgxgagggt?f:ﬁgggé I?;O;S'e? ai?:g?r?e:ofg?;dsc;f to do a loss model calculation for the PA, and use the results
w veactivity pecify of those calculations to compute performance estimates for

varlatlor! in the use of resources. __packet data services.
The activity factor models the use of the resource during'a - . oo
Each serviceg, such as voice, circuit data, packet data, etc.,

job, giving an indication of theverageuse of the resource. will be modeled as having offered load, for power demand

The role of activity factors is different for different service%A and Walsh code usa@é‘" that is, pr; expected users using
) 7 1MPig

nd for the two r rces. While an inactive voi r circuit . . .
and for the two resources € an inactive voice or circu lLcﬁrwcej will need b! bins of the PA ancb}"’ Walsh codes.

call uses less (or no) power, it does use its allocated Wal% Lo .
( )P The Ioad,ojW of circuit servicej for the Walsh-code loss-

codes, so the “activity factor” for circuit Walsh code usage is T W
odel calculation isp;” = >, pi;, and we can take;" to

one, even if the general activity factor for PA usage is led8 ) ‘ L L
than one. be zero forj ¢ C, whereC is the set of indices of circuit

services (that is, voice or circuit data). Having done the loss
E. Packet Data model calculation for the Walsh codes, we have Walsh code

Packet data services do not satisfy, even approximately, {#29¢ probabilitieg"” (c) and passing probab|I|t|e§]W_. As
assumptions of the stochastic knapsack calculation. From @liscussed above, we use th¥ (c) values to compute’,”
assumptions, however, the results of the stochastic knapstg normalized relative throughput of packet data services due
calculation for the circuit services can be used to mote Walsh code limitations. Here, for packet data seryicthe

accurately predict the system performance for packet dégad for servicej (job typej) is 5} = >, pij, andp}’ =0

As described above, we will do a loss model calculation

services. if j € C. This implies
Assumption 2.7Packet doesn’t affect circuit. The circuit W W
services affect the resources available to the packet services, Pp = ij = Z Pij
but not the other way around. J i,j¢C
Approximation 2.8:Packet service quality function. For .4
gglr(\a/?cg?/\\//\i/ﬁ:; :\éa#‘aeb!sea;r]c;m the PA, all users of a packeF data DV — Z W5 - Z .
performance, which is a function of P J J P
the available power and of the average power needed per call iec LIgC

by the users of that packet service.

From this assumption, we model the expected QoS for
a packet-data service as follows: we use a quality function pt = ZPW%. ©)
P,(X, Z), taking values in0...1, whereX is the expected !
number of packet users, arffl is the ratio of available units
of the resource to the average need of that resource by a uSegether with the bin requirements’, these yield PA bin
(So Z is the “number of channels”.) The functioR,() is usage probabilitieg”(c) and passing probabilitiegf‘. The
analogous taP;, for circuit services: we wanP,() as large ysage probabilities are used to compiitg', the normalized
as possible. The expected quality of service for packet-dataative throughput of packet data services due to PA limita-

For the PA loss-model calculation, the load valyésare

jec

services is then estimated as tions. Here packet data load for power demand class (PA job
5 _\" s A type)i is i =3¢ pij-
P, = c)P,(p,, pp(M —c)/D,), A A .
P zcjg( VP (p o )/ Dp) Note that since our model of QoS for packet data is based

here 5. is th q b ¢ K . on delay, there is no modeled reduction of PA demand by
where j, is the expected number of packet users dhgis acket calls due to Walsh code limitations. We have
the expected total demand for the resource by the packet user.

If we define g, as the expected number of packet data users AA A iy
. Pp = pi - Pijs
for the job typek, then b 21: ij%:C !
pp=_ k=Y pij and D, = biji so indeedp? = 5 = p,, and
k i,j¢C k
So D, /p, is an estimate of the average resource need per D,‘f = bel pi = Z b pij
packet-data user and the resource units used by circuit i i,j¢C

services leavell — ¢ are available for packet data.
B. Overall Performance

lll. PERFORMANCEESTIMATE We can now join together the blocking probabilities and

First we describe the loss model calculations, and then therformance estimates to obtain an overall performance esti-
overall performance estimate. mate.



We merge together the packet data estimﬁevsv and P,,A shows that the assumption actually becopessimistiat high
using a “smooth min” functionM(.,.) to obtain a packet loads. Here code blocking affects more calls that demand many
performance estimate Walsh codes. For a lower overall blocking, it is good strategy
to block such “large jobs” unnecessarily if this is likely to
prevent many small jobs from being blocked.

If we used the usual min instead of the smooth min, the esti-

5O 5W 5 A
B, =M(B," ,P").

mate would not be differentiable everywhere, and a derivative additive 1.2 — “dditivl‘i -
discontinuity would interfere with optimization. 0.2 — gowded tst 1 4 od Lst
Let 7; be a weighting factor indicating the “importance”. . | 0.8 — —de Bl
of service j. We will combine the estimates together by" 0.6 —
weighting usingZ; and using the appropriate loads. L&t = 0— 0.4 —
. T ps;. Our measure of overall performancelig ., ' ' ' LT T 1 1
Zﬁc 2iLipiy P ? 200 300 400 150 200 250 300 350
where
= ..p O .. PW pA Fig. 1. (a) Blocking versus average Walsh code denfamtler the additivity
= Z szp”Pp + Z ZIJP’JP] P assumption and crowded-first allocation, with the code blocking component
JgC i jec i graphed separately; (b) the ratio of each type of blocking to crowded-first
_ Eppp + Z ZIjPijPJWPiA blocking. Each call is equally likely to demand 1, 2, 4 or 8 Walsh codes.
jec i

When the distribution of Walsh code demands is skewed so
there are fewer large jobs and more small jobs, the additivity
L= Z ZIjmj- assumption is more pessimistic at high loads. (Figure omitted
F for brevity.)
To get a better idea of what Walsh code demand qualifies a
. , call as “large,” note that each value for the total free spaoe
_As given above as Assumptidn 2.5, we assume that gl \waish tree leads to a probability distribution for how often
circuit services haye t.he same prlorlty. It is not' u_nusuq]he maximum contiguous block of available Walsh codes is 1,
however, to have circuit data services at lower priority tha@' 4, 8, 16, etc. Figurg 2 shows:= 220¢41°] as a function of
voice services, where the data services are thrown off in \yhere 3 is the maximum contiguous available Walsh size.

0verIoad. If tI_]ere iS no packet data., we can modc_al this t?—YereE[lgﬁ | o] is the conditional expectation df 3 given
solving (1) twice: once without the circuit data services, an(g for some specifip andb" values, andg n := log, n.
once for just those services. This gives a functiofi(c) like ' 2

(8), but for data services only. Then the servicblocking is 160 0
a weighted average d®2 (M — ¢) based on the voice service 1 Y ‘

and

IV. TWO-PRIORITY SYSTEMS

steady state probabilitie” (c). 100 —
V. EXPERIMENTAL STUDIES

Since it is hard to compare our model directly with the real | %ggo 50 660
world, we built a Monte Carlo simulator that models call ar- 3 %%0
rivals and departures, Walsh code allocation and deallocatiqn, 0 —|

and blocking due to Walsh and power limitations. It does not | I I I I I I
operate in discrete time steps, but rather uses exponentially- 0 50 100 150 0 100 200
distributed rando.m varl_ables to decide when the next evqf—rilt. 2. Graphs of maximum Walsh codes per ealersus total Walsh tree
happens. Each simulation ran for at least 30,000 events spacer for z = 4.61 and various total Walsh loads (a) shows onlyr
one half or one third of that reserved for “warm-up time” notalues with> 1000 occurrences in the simulator runs; (b) uses a lower limit
used in gathering statistics. Furthermore, each statistic reportd eccurrences fof = 40,80 and a limit of 100 for large¥ values.

below is averaged over at least 10 such simulation runs.

Figure[2 suggests thatis roughly linear ino, but depends

A. Walsh Code Additivity on the Walsh code demands of incoming calls, and is bounded

Running the Monte Carlo simulator with the available powdy the largest power of 2 not exceediag Thus an empirical
M# set very high allows us to compare Approximatipn] 2.2stimate fory can be of the form,
(Walsh code additivity) to the popularowded-firstallocation ) o
scheme [10], [11], also calledrowded-first-codg12]. One v A minE + f(z,6) - 0, 2067, (4)
would naturally expect the additivity assumption to be opti-
mistic with respect to the overall blocking probability, becaushere £ := - py b} andz = \/Ej Py (0F)2) 325 PY
it amounts to assuming that there is never aoge blocking the RMS mean of the Walsh demand,é/ weighted by the
(blocking calls due to otherwise sufficient free Walsh codes nassociated traffi(;o}’". Since it can be useful to be able to
forming a large enough contiguous block). However, Figurecompute estimated values, we shall use the rather arbitrary




empirical formula

7.5+ 8.532 + 0.15722
f(z,0) = )
£ + max(0, 24z — 100)

It is not hard to base call blocking o] (4) arfd (5) instead
of just using the additivity assumption, and simulator runs
showed that this significantly reduces the error relative to
crowded first blocking (e.g., from 18% to 4.1% fér= 360 Fig. 4. Overall performance predicted by the Monte Carlo simulator for
and equal Walsh demands). The crossover from optimismVﬁSious power-limited scenarios versus the correspondig from the

. cascade model.

pessimism tends to make these errors smaller at the 1% or

2% blocking rates typical of a loaded cell phone system.

Note that it is impractical to seek further improvements bwhile still using the 81 sets op; ; values from ) gives

incorporating f(z,¢) into (@), because this requires a muclrigure[b. Many of these are scenarios where Walsh and power

more complicated notion of resource consumption. limitations both matter, yet there isn't a lot of scatter in
the figure, and the small circles for scenarios where both

B. The cascade model limitations matter do not appear particularly problematical. In

One would expect the cascade model (Approximafioh 2.fgct, comparind]5a tfl 5b shows more scatter due to the Walsh
to perform well when Walsh limitations are much more impor@dditivity assumption than due to the cascade model.
tant, and this is demonstrated by the scatter plots in Figure 3.

®)

| | |
0.2 04 06 08 1

These show the model's prediction for overall performance, 14 o 1 g
. . ] —| e 0.8 - 0O

versus corresponding simulator results. Here there were twd & ‘ &

services and two power demand classes Wittt = 100, 82 ] fﬁ 82 ] &ﬁf

0.2—,-" 0.2—,“’

I I I I I I I I I I
02 04 06 08 1 02 04 06 08 1

MY =64, T,,T, = 1,2, b}V b =16,1, b, 0 = 1,4,

and 81 different problem instances were obtained by trying all

possible load matrices where
P1.1,P21 € {27 8, 32}7 p1,2,P2,2 € {1’ 4, 16}. (6) for various scenarios versus the correspondih@ from the cascade model
without the empirical correction; (b) the same except with the simulator using
Since Figurd]3b shows such a close match between the cascig! additivity assumption. Dots like those in Figiire 3 denote Walsh-limited
. . scenarios; circles like those in Figufie 4 denote power-limited scenarios; and
model and the simulator results, almost all the disagreemeR§itning in-between denotes a scenario where both limitations matter.

in Figure[Ba must be due to the Walsh additivity assumption.

Fig. 5. (a) Overall performance predicted by the Monte Carlo simulator
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