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Abstract— We give a model for the performance impact on
wireless systems of the limitations of certain resources, namely,
the base-station power amplifier and the available OVSF codes.
These limitations are readily modeled in the loss model for-
mulation as a stochastic knapsack. A simple and well-known
recurrence of Kaufman and Roberts allows the predictions of the
model to be efficiently calculated. We discuss the assumptions and
approximations we have made that allow the use of the model.
We have included the model in Ocelot, a Alcatel-Lucent tool
for modeling and optimizing cellular phone systems. The model
is fast to compute, differentiable with respect to the relevant
parameters, and able to model broad ranges of capacity and
resource use. These conditions are critical to our application of
optimization.

I. I NTRODUCTION

There are many conditions that reduce the performance
of cellular phone systems. Several of these conditions are
limitations of shared resources. The theory ofloss model
systemsstudies the properties of multiple services contending
dynamically for a common resource. This note describes
the assumptions and approximations the authors have made
to apply the loss model formulation to two such common
resources: the base-station power amplifier (orPA), and the
set of OVSF codes used in the forward radio link (from base-
station to mobile phone). These resources limit bothcircuit
and packetservices; here we will be mainly concerned with
circuit services, with some discussion of how their modeling
interacts with the modeling of packet services.

Although the loss model setting is natural and appropriate
for this modeling task, it is not a perfect fit. Section II-A
below gives some assumptions and approximations that we
must make to use loss model results to capture the performance
effects of the power amplifier and the OVSF codes. For
example, the power needs of a call can vary continuously, but
the simplest loss model results assume resources are measured
in discrete units. Some discretization is therefore needed; our
approach to that task is outlined in Section II-B. Next, after
giving a more formal description of the loss model calculations
for each resource separately, in Section II-C, we describe
the assumptions and approximations that are needed to allow
the combined effects of the limitations of these resources, in
Section II-D. Finally, Section II-E discusses packet data and
gives the relevant assumptions.

Section III discusses our overall performance estimate.
Section IV discusses a simple way to model a system having
circuit services with two particular priority types. While not

used in Ocelot, such a scheme shows the flexibility of the
modeling scheme used. Then Section V tests our assumptions
and evaluates the accuracy of the performance estimates.

II. L OSSMODEL SYSTEMS

Loss model results apply to the following situation. (See,
for example, [1], [2].)

There is a collection of “jobs,” or “calls,” contending for a
resource; there areM units of the resource, for someM , and
there areK distinct kinds of jobs, where job typek requiresbk
units of the resource. Onceadmitted, a job uses the resource
until the job is done. If admission of a job would raise the
total number of units of the resource aboveM , the job is
not admitted: it isblocked. It is assumed that jobs arrive at
random, and take a random amount of time to be done. We are
interested in estimating theblocking probabilityunder these
conditions, the probability that when a job arrives, too few
units of the resource remain unused.

We next review the assumptions needed to apply this frame-
work to the power amplifier, and to OVSF codes (hereafter
referred to colloquially asWalshcodes, although we mean the
more general class of codes).

A. Preliminary Assumptions

While a call (that is, job) of a circuit service uses a constant
number of Walsh codes over the time the job is in the system,
this is only true approximately for PA usage under power
control: fading, both slow and fast, results in random variation
in the power demands of the call. It is possible to model this
variation, but for now we assume that power remains at a fixed
level for the duration of a call. Although there are “continuous
stochastic knapsack” models, we simply use a finiteK and
discretize power demand.

Approximation 2.1:Power discretization. Power will be
discretized so thatMA units of power, calledbins, will be
available from the PA. The power demands of the calls will
be further discretized to use units ofbAi = 1, 2, 4 . . . bins.

Since calls far away from the base-station (that is, at high
pathloss) use more power, we cannot assume that the power
is fixed for each service; even for voice, some calls may take
1 bin, others 2, others 4, and so on. That is, the appropriate
“job type” for analyzing power is not service but what we will
call thepower demand class. Section II-B has more details on
the way this discretization is done



The coarse rounding we do is partly justified by a study
[3] showing that blocking results are relatively insensitive to
whether we model calls by different job sizes, or simply by
the mean of those sizes; on the other hand, the range of power
demands we will consider is quite high, so it seems inadvisable
to ignore per-call variations in power demand.

Approximation 2.2:Walsh code additivity. If the total
number of Walsh codes requested is below a given limit, then
the requests can be satisfied.
This is an approximation, because a service needing2j Walsh
codes will be allocated a set of codes of the form(k −
1)2j , (k − 1)2j + 1, . . . , k2j − 1, for somek; it cannot be
allocated an arbitrary set of2j codes. Moreover, the allocation
decision must be done “on-line,” as calls arrive.

As our experimental results of Section V show, this assump-
tion has a substantial effect, but an empirical adjustments to
the admission threshold help a great deal.

Assumption 2.3:Poisson arrival. Jobs arrive as a Poisson
process, and their completion time is a random process. If a
job is blocked, it goes away (iscleared).

A Poisson process has an associated parameter, its meanλ,
and we assume that the completion time has mean1/µ; the
key parameter for us isρ ≡ λ/µ, the load, and the load of
expected jobs of typek is ρk, whereρk = λk/µk.

B. Continuous versus Discrete Power Demands

In practice, loads are not naturally divided into discrete
power demand classes. Instead, we have a series of incre-
mental load contributions with some way of computing power
requirements for each. For example, a load contributionρ̄ may
require some non-integer number of power binsb̄. We cope
with this by defining a weighting functionwi for each power
demand classi, and contributingwi(b̄)ρ̄ to each power demand
classi whose weighting function is nonzero atb̄.

There are many ways to define the functionswi. For
brevity, we shall just list their main properties: they should be
smooth and continuous; they should add up to 1; few of them
should be nonzero simultaneously; and wherever possible.
b̄ =

∑
i b
A
i wi(b̄).

C. Loss Models

Up to the approximations we have discussed, the loss
model systems we have are two instances of astochastic
knapsack. The blocking probabilities, and other properties, of
the stochastic knapsack can be computed provably and exactly
using an efficient calculation, which we next review. This
model, and calculation, has seen many applications in network
modeling. It has also been applied to model the limitations of
wireless systems with respect to reverse-link interference,[4]
an area in which we have not applied it.

We have a collection ofK kinds of jobs contending for a
resource ofM units, and job typek needsbk units. Jobs arrive
Poisson, with loadρk. For the Walsh codes, the job type is the
type of service; for the PA, the job type is the power demand
class.

The stochastic knapsack calculation (Kaufman-Roberts re-
currence) allows us to find the steady-state probability distri-
bution of the number of resources in use, and the blocking
probabilities per job type.[5], [6], [2]

Let g(c) satisfyg(c) = 0 for c < 0 or c > M , andg(0) = 1,
and let

g(c) =
1
c

∑
k

ρkbkg(c− bk) (1)

for c = 1 . . .M . Then the steady-state probability thatc
resource units are used isĝ(c) ≡ g(c)/G, whereG ≡

∑
c g(c).

The blocking probability for a circuit service needingbk units
is then

Rk ≡
∑
c<bk

ĝ(M − c),

or

Rk = 1−G(M − bk)/G(M). (2)

whereG(c) ≡
∑
c′≤c g(c′). We will use the recurrence to

compute the “passing probability”

Pk ≡ 1−Rk = G(M − bk)/G(M).

D. Assumptions for Integrated Analysis

So far, discussion has been about analyzing the PA block-
ing probability in isolation, and similarly the Walsh code
blocking probability, in isolation. Moreover, discussion has not
addressed packet data QoS analysis. This subsection discusses
the approximations and assumptions we make to analyze the
joint effect of the Walsh code and PA blocking.

Approximation 2.4:Cascade model.We will first compute
the blocking per service due to Walsh code limitations, and
then compute the blocking due to the PA of the resulting
reduced load, on a service-by-service basis.
That is, high blocking of a given service by Walsh code
limitations implies a reduced load when considering that
service with respect to PA limitations. The reduction in PA
load for that service is assumed to be uniform across different
power demand classes for that service. (This is expressed
symbolically as (3) below.)

This is an approximation, because even when the PA is
highly loaded, and a service might be blocked as a result, we
will still consider the service at full load for the Walsh code
calculation.

The reduced-load approximation(also known as theErlang
fixed-point approximation) would avoid this approximation,
but it generally requires a fixed point iteration that is much
slower than our simple cascade. Although there is always a
unique solution in theK = 1 case, [7], [8]; the general result
is that it has at least one solution. [9] Another difficult is that
our need for a smooth function with derivatives would prob-
ably require continuing the fixed point iteration to machine
accuracy.

Assumption 2.5:Equal priority circuit service. All circuit
services (including voice and data) have equal priority.



That is, we don’t model a policy where circuit data services
are thrown off in overload. This assumption can be avoided if
there is no packet data as sketched out in Section IV.

Approximation 2.6:Activity factors. In addition to loads,
we also haveactivity factors that specify another form of
variation in the use of resources.
The activity factor models the use of the resource during a
job, giving an indication of theaverageuse of the resource.
The role of activity factors is different for different services
and for the two resources. While an inactive voice or circuit
call uses less (or no) power, it does use its allocated Walsh
codes, so the “activity factor” for circuit Walsh code usage is
one, even if the general activity factor for PA usage is less
than one.

E. Packet Data

Packet data services do not satisfy, even approximately, the
assumptions of the stochastic knapsack calculation. From our
assumptions, however, the results of the stochastic knapsack
calculation for the circuit services can be used to more
accurately predict the system performance for packet data
services.

Assumption 2.7:Packet doesn’t affect circuit.The circuit
services affect the resources available to the packet services,
but not the other way around.

Approximation 2.8:Packet service quality function. For
given power available from the PA, all users of a packet data
service will see the same performance, which is a function of
the available power and of the average power needed per call
by the users of that packet service.

From this assumption, we model the expected QoS for
a packet-data service as follows: we use a quality function
Pp(X,Z), taking values in0 . . . 1, whereX is the expected
number of packet users, andZ is the ratio of available units
of the resource to the average need of that resource by a user.
(So Z is the “number of channels”.) The functionPp() is
analogous toPk for circuit services: we wantPp() as large
as possible. The expected quality of service for packet-data
services is then estimated as

P̄p ≡
∑
c

ĝ(c)Pp(ρ̂p, ρ̂p(M − c)/Dp),

where ρ̂p is the expected number of packet users andDp is
the expected total demand for the resource by the packet user.
If we define ρ̃k as the expected number of packet data users
for the job typek, then

ρ̂p =
∑
k

ρ̃k =
∑
i,j /∈C

ρij and Dp ≡
∑
k

bkρ̃k

So Dp/ρ̂p is an estimate of the average resource need per
packet-data user and thec resource units used by circuit
services leaveM − c are available for packet data.

III. PERFORMANCEESTIMATE

First we describe the loss model calculations, and then the
overall performance estimate.

A. Per-service Performance

As described above, we will do a loss model calculation
for the Walsh codes, and then use the resulting reduced load
to do a loss model calculation for the PA, and use the results
of those calculations to compute performance estimates for
packet data services.

Each servicej, such as voice, circuit data, packet data, etc.,
will be modeled as having offered loadρij for power demand
bAi and Walsh code usagebWj ; that is,ρij expected users using
servicej will need bAi bins of the PA andbWj Walsh codes.

The loadρWj of circuit servicej for the Walsh-code loss-
model calculation isρWj ≡

∑
i ρij , and we can takeρWj to

be zero forj /∈ C, whereC is the set of indices of circuit
services (that is, voice or circuit data). Having done the loss
model calculation for the Walsh codes, we have Walsh code
usage probabilitieŝgW (c) and passing probabilitiesPWj . As

discussed above, we use theĝW (c) values to computēPp
W

,
the normalized relative throughput of packet data services due
to Walsh code limitations. Here, for packet data servicej, the
load for servicej (job type j) is ρ̃Wj =

∑
i ρij , and ρ̃Wj = 0

if j ∈ C. This implies

ρ̂Wp =
∑
j

ρ̃Wj =
∑
i,j /∈C

ρij

and

DW
p ≡

∑
j /∈C

bWj ρ̃j =
∑
i,j /∈C

bWj ρij

For the PA loss-model calculation, the load valuesρAi are

ρAi ≡
∑
j∈C

PWj ρij . (3)

Together with the bin requirementsbAi , these yield PA bin
usage probabilitieŝgA(c) and passing probabilitiesPAj . The

usage probabilities are used to computeP̄p
A

, the normalized
relative throughput of packet data services due to PA limita-
tions. Here packet data load for power demand class (PA job
type) i is ρ̃Ai =

∑
j /∈C ρij .

Note that since our model of QoS for packet data is based
on delay, there is no modeled reduction of PA demand by
packet calls due to Walsh code limitations. We have

ρ̂Ap =
∑
i

ρ̃Ai =
∑
i,j /∈C

ρij ,

so indeedρ̂Ap = ρ̂Wp = ρ̂p, and

DA
p ≡

∑
i

bAi ρ̃i =
∑
i,j /∈C

bAi ρij

B. Overall Performance

We can now join together the blocking probabilities and
performance estimates to obtain an overall performance esti-
mate.



We merge together the packet data estimatesP̄p
W

andP̄p
A

using a “smooth min” functionM(., .) to obtain a packet
performance estimate

P̄p
O ≡M(P̄p

W
, P̄p

A).

If we used the usual min instead of the smooth min, the esti-
mate would not be differentiable everywhere, and a derivative
discontinuity would interfere with optimization.

Let Ij be a weighting factor indicating the “importance”
of service j. We will combine the estimates together by
weighting usingIj and using the appropriate loads. LetLp ≡∑
j /∈C

∑
i Ijρij . Our measure of overall performance isT/L,

where

T ≡
∑
j /∈C

∑
i

IjρijP̄p
O +

∑
j∈C

∑
i

IjρijPWj PAi

= LpP̄p +
∑
j∈C

∑
i

IjρijPWj PAi

and

L ≡
∑
j

∑
i

Ijρij .

IV. T WO-PRIORITY SYSTEMS

As given above as Assumption 2.5, we assume that all
circuit services have the same priority. It is not unusual,
however, to have circuit data services at lower priority than
voice services, where the data services are thrown off in
overload. If there is no packet data, we can model this by
solving (1) twice: once without the circuit data services, and
once for just those services. This gives a functionRDk (c) like
(2), but for data services only. Then the servicek blocking is
a weighted average ofRDk (M − c) based on the voice service
steady state probabilitieŝgV (c).

V. EXPERIMENTAL STUDIES

Since it is hard to compare our model directly with the real
world, we built a Monte Carlo simulator that models call ar-
rivals and departures, Walsh code allocation and deallocation,
and blocking due to Walsh and power limitations. It does not
operate in discrete time steps, but rather uses exponentially-
distributed random variables to decide when the next event
happens. Each simulation ran for at least 30,000 events with
one half or one third of that reserved for “warm-up time” not
used in gathering statistics. Furthermore, each statistic reported
below is averaged over at least 10 such simulation runs.

A. Walsh Code Additivity

Running the Monte Carlo simulator with the available power
MA set very high allows us to compare Approximation 2.2
(Walsh code additivity) to the popularcrowded-firstallocation
scheme [10], [11], also calledcrowded-first-code[12]. One
would naturally expect the additivity assumption to be opti-
mistic with respect to the overall blocking probability, because
it amounts to assuming that there is never anycode blocking
(blocking calls due to otherwise sufficient free Walsh codes not
forming a large enough contiguous block). However, Figure 1

shows that the assumption actually becomespessimisticat high
loads. Here code blocking affects more calls that demand many
Walsh codes. For a lower overall blocking, it is good strategy
to block such “large jobs” unnecessarily if this is likely to
prevent many small jobs from being blocked.

additive
crowded 1st
code blk.

200 300 400

0

0.1

0.2
additive
crowded 1st

code blk.

150 200 250 300 350

0.4
0.6
0.8

1
1.2

Fig. 1. (a) Blocking versus average Walsh code demand` under the additivity
assumption and crowded-first allocation, with the code blocking component
graphed separately; (b) the ratio of each type of blocking to crowded-first
blocking. Each call is equally likely to demand 1, 2, 4 or 8 Walsh codes.

When the distribution of Walsh code demands is skewed so
there are fewer large jobs and more small jobs, the additivity
assumption is more pessimistic at high loads. (Figure omitted
for brevity.)

To get a better idea of what Walsh code demand qualifies a
call as “large,” note that each value for the total free spaceσ in
the Walsh tree leads to a probability distribution for how often
the maximum contiguous block of available Walsh codes is 1,
2, 4, 8, 16, etc. Figure 2 showsγ := 2E[lg β|σ] as a function of
σ, whereβ is the maximum contiguous available Walsh size.
HereE[lg β | σ] is the conditional expectation oflg β given
σ, for some specificρ andbW values, andlg n := log2 n.
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Fig. 2. Graphs of maximum Walsh codes per callγ versus total Walsh tree
free spaceσ for z = 4.61 and various total Walsh loads̀. (a) shows onlyσ
values with≥ 1000 occurrences in the simulator runs; (b) uses a lower limit
of 10 occurrences for̀ = 40, 80 and a limit of 100 for larger̀ values.

Figure 2 suggests thatγ is roughly linear inσ, but depends
on the Walsh code demands of incoming calls, and is bounded
by the largest power of 2 not exceedingσ. Thus an empirical
estimate forγ can be of the form,

γ ≈ min(3 + f(z, `) · σ, 2blg σc), (4)

where ` :=
∑
j ρ

W
j b

W
j and z :=

√∑
j ρ

W
j (bWj )2/

∑
j ρ

W
j ,

the RMS mean of the Walsh demandsbWj weighted by the
associated trafficρWj . Since it can be useful to be able to
compute estimatedγ values, we shall use the rather arbitrary



empirical formula

f(z, `) =
7.5 + 8.53z + 0.157z2

`+ max(0, 24z − 100)
. (5)

It is not hard to base call blocking on (4) and (5) instead
of just using the additivity assumption, and simulator runs
showed that this significantly reduces the error relative to
crowded first blocking (e.g., from 18% to 4.1% for` = 360
and equal Walsh demands). The crossover from optimism to
pessimism tends to make these errors smaller at the 1% or
2% blocking rates typical of a loaded cell phone system.
Note that it is impractical to seek further improvements by
incorporatingf(z, `) into (1), because this requires a much
more complicated notion of resource consumption.

B. The cascade model

One would expect the cascade model (Approximation 2.4)
to perform well when Walsh limitations are much more impor-
tant, and this is demonstrated by the scatter plots in Figure 3.
These show the model’s prediction for overall performance,
versus corresponding simulator results. Here there were two
services and two power demand classes withMA = 100,

MW = 64, I1, I2 = 1, 2, bW1 , bW2 = 16, 1, bA1 , b
A
2 = 1, 4,

and 81 different problem instances were obtained by trying all
possible load matrices where

ρ1,1, ρ2,1 ∈ {2, 8, 32}, ρ1,2, ρ2,2 ∈ {1, 4, 16}. (6)

Since Figure 3b shows such a close match between the cascade
model and the simulator results, almost all the disagreement
in Figure 3a must be due to the Walsh additivity assumption.
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Fig. 3. (a) Overall performance predicted by the Monte Carlo simulator
for various Walsh-limited scenarios versus the correspondingT/L from the
cascade model; (b) the same except with the simulator using Walsh additivity
assumption for admission control.

Now consider 81 power-limited scenarios where the 2
services and 2 power demand classes haveMA = 100,

MW = 256, I1, I2 = 1, 2, bW1 , bW2 = 8, 1, bA1 , b
A
2 = 11, 4,

and (6) gives 81 sets ofρi,j values. In this case the Walsh-
additivity assumption does not matter and we get good agree-
ment between simulator results and the cascade model as
shown in Figure 4.

Tweaking the scenarios so thatMA = 100,

MW = 64, cI1, I2 = 1, 2, bW1 , bW2 = 8, 1, bA1 , b
A
2 = 8, 3,
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Fig. 4. Overall performance predicted by the Monte Carlo simulator for
various power-limited scenarios versus the correspondingT/L from the
cascade model.

while still using the 81 sets ofρi,j values from (6) gives
Figure 5. Many of these are scenarios where Walsh and power
limitations both matter, yet there isn’t a lot of scatter in
the figure, and the small circles for scenarios where both
limitations matter do not appear particularly problematical. In
fact, comparing 5a to 5b shows more scatter due to the Walsh
additivity assumption than due to the cascade model.
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Fig. 5. (a) Overall performance predicted by the Monte Carlo simulator
for various scenarios versus the correspondingT/L from the cascade model
without the empirical correction; (b) the same except with the simulator using
Walsh additivity assumption. Dots like those in Figure 3 denote Walsh-limited
scenarios; circles like those in Figure 4 denote power-limited scenarios; and
anything in-between denotes a scenario where both limitations matter.
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