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Load Characterization and Anomaly Detection
for Voice Over IP Traffic

Michel Mandjes, Iraj Saniee, Member, IEEE, and Alexander L. Stolyar

Abstract—We consider the problem of traffic anomaly detection
in IP networks. Traffic anomalies typically arise when there is fo-
cused overload or when a network element fails and it is desired to
infer these purely from the measured traffic. We derive new gen-
eral formulae for the variance of the cumulative traffic over a fixed
time interval and show how the derived analytical expression sim-
plifies for the case of voice over IP traffic, the focus of this paper.
To detect load anomalies, we show it is sufficient to consider cu-
mulative traffic over relatively long intervals such as 5 min. We
also propose simple anomaly detection tests including detection of
over/underload. This approach substantially extends the current
practice in IP network management where only the first-order sta-
tistics and fixed thresholds are used to identify abnormal behavior.
We conclude with the application of the scheme to field data from
an operational network.

Index Terms—Anomaly detection, heavy-tailed holding times,
load characterization, network management, second-order
statistic, traffic measurements, voice-over IP.

I. INTRODUCTION

I P NETWORKS carrying voice traffic are beginning to
emerge due to the cost efficiency of IP platforms and their

extensibility to other applications and media. However, before
this transition becomes widespread, key problems in network
management and operation need to be addressed. In this paper
we focus on load characterization, overload detection and
more generally load anomaly detection in segments of IP
networks that carry (almost) exclusively voice traffic, e.g., an
egress port of an IP router or switch connected to the trunking
voice gateway. As it turns out, many other segments of an IP
infrastructure carrying large amounts of voice traffic may be
dedicated to carry mostly voice traffic. This emerges from the
architectures of many IP-based networks carrying voice, as
shown in Fig. 1.

The need for detection of load anomalies arises, for example,
when an atypical load change (increase or decrease) is expe-
rienced by a portion of the network. In focused overload a
large number of callers try to reach the same destination phone
number(s) and the network admits too many calls. More gener-
ally, overload or indeed underload occurs when a segment of
the network fails and the traffic either overflows into a normal
segment of the network or migrates away from it. In any one of
these scenarios, it is desirable to detect the ongoing overload or
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Fig. 1. Typical architecture of an IP network that carries a significant amount
of VoIP traffic, with VoIP-only network segments highlighted in dashed line.

underload as fast as possible, thus, helping the network operator
to take remedial action or to invoke programmed response.
This goal has, unfortunately, turned out to be elusive for the
IP networks for a variety of reasons and typically the network
operator hears about performance problems from customers
before the (large amounts of) information available to it has
been adequately analyzed. We show that at least in the voice
over IP (VoIP) segments of an IP network, this need not be the
case.

In an IP-based network, the traffic information available is
the cumulative amounts of traffic (“byte counts”) over 5-min
time intervals [the ifInOctets and ifOutOctets management in-
formation base (MIB) in simple network management protocol
(SNMP)]. For data traffic 5 min is indeed a long time. Can such
“crude” information as 5-min byte counts be efficiently used for
load anomaly detection? We show in this paper that for the VoIP
traffic the answer is “yes,” under a mild set of assumptions on
the coding rate(s) of the packetized voice traffic and the mean
call duration.

Our approach is based the analysis of the variance of the
byte counts (i.e., second-order statistics.) Let denote
the cumulative amount of traffic sent on a link in the time
interval . Expressions for the mean and variance of

can be derived for a very general model of IP traffic,
with data sessions arriving as a Poisson process. (We do that
in Section III-A). In the special case of a link with VoIP-only
traffic, which is the focus of this paper, the mean and variance
of have very simple closed-form expressions, that
are described in the Section III-B. As it turns out, simple tests

1045-9227/$20.00 © 2005 IEEE



1020 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 5, SEPTEMBER 2005

based on these formulae allow us to discriminate between VoIP
and non-VoIP traffic, and detect anomalies in the former.

There is a relatively large literature on anomaly detection in
communication networks. For a recent summary, see [1]. For
use of sample variance in conjunction with MIB variables, see
[12]. For other approaches, e.g., Bayesian belief networks in
conjunction with MIB variables, see [2]. Our approach differs
from these approaches due to the derivation and validation of
analytical formulae for the detection parameter (variance).

In summary, the contribution of the paper is the following:

• we argue that second-order statistics are useful in traffic
anomaly detection and obtain expressions for the variance
of a byte count for a quite general IP traffic model;

• we show that, in the case of VoIP traffic, byte counts over
relatively long intervals can indeed be used for anomaly
detection;

• we develop a set of detection procedures, for different
types of anomalies;

• we assess the efficacy of the procedures with real traffic
traces.

The paper is organized as follows. In Section II, we briefly
discuss and contrast byte count traces for VoIP and general IP
traffic from an operational network. This provides motivation
for Section III in which we first derive a formula for the vari-
ance of byte count measurements for general IP traffic, and then
present explicit formulae for the VoIP traffic with Pareto and ex-
ponential call duration distributions. In Section IV, we discuss
usefulness of the measured sample byte count variance for de-
tection of anomolous behavior. In Section V, we describe three
principal types of alarms that can be generated with the collected
traffic data, using both the theoretical and measured variances.
In Section VI, we apply the technique presented to data collected
from an operational network. Finally, in Section VII we provide
a summary of the methodology proposed in this paper.

II. MEASUREMENTS FROM AN OPERATIONAL NETWORK

Before we describe a model for VoIP traffic, it is instructive
to look at traces of VoIP and general IP traffic both measured
in the same operational IP-based network. Figs. 2 and 3 show
the 5-min byte counts on two distinct ports of a service provider
network collected over one week. The first trace is taken from a
port that carries VoIP traffic only, including IP signaling traffic
and possibly other marginal non-VoIP load, and the second trace
is taken from a port that carries general IP traffic such as WWW,
TCP/IP, etc.

Both data sets were obtained via standard SNMP MIB agents
with 5-min aggregation collected over a period of roughly one
week. One outstanding feature of both data sets is the daily regu-
larity of the load for both IP and VoIP as observed, for example,
by Thomson et al. [11]. Also, simple visual inspection of the two
profiles in Figs. 2 and 3 shows that the VoIP traffic is “smoother”
and has less variability than the corresponding IP traffic trace.
We show that this apparent regularity of the VoIP traffic can be
more formally defined and exploited for detection of uncharac-
teristic (anomalous) load variation. In particular, we show that
the observed variability in Fig. 2 is completely within the range

Fig. 2. Voice over IP traffic volume measured in 5-min intervals at an egress
port of a T3 (45 Mb/s) trunk over a period of one week.

Fig. 3. Data-only IP traffic volume measured in 5-min intervals at an egress
port of a T3 (45 Mb/s) trunk over a period of one week.

predicted by the proposed theoretical model, while that of Fig. 3
exceeds it.

III. VARIANCE OF AN INTERVAL MEASUREMENT

A. General Expression

Suppose data sessions (which in particular may be voice
calls) arrive in time according to a (possibly nonhomogeneous)
Poisson point process on the real axis . See
[10] for the precise definition of a Poisson point process. Let

denote the intensity measure of this process, defined on
Borel subsets of . We assume that is finite on bounded sets.
This in particular means that the (random) number of arrivals
(points) within any finite interval has Poisson distribu-
tion with mean . (When is absolutely continuous
with respect to Lebesgue measure, with the constant density

, then this a homogeneous process with intensity .)
Assume that the (random) amount of traffic generated by a

session arrived at time is described by a random nondecreasing
nonnegative right-continuous function

where is the amount of traffic generated in the closed in-
terval . (Let 0 by convention.) We assume
that the distribution of depends on as a parameter, and that
the functions corresponding to different sessions are inde-
pendent (even if arrival times of some of them coincide).

Remark: Formally, the process we described is a marked
Poisson point process [10], with the random functions being
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marks of the points. This means that the dependence of the dis-
tribution of on must be such that the marked point process
can be well defined as a (measurable) random element. This con-
dition is not restrictive for any conceivable application.

Let us denote for

Now, let denote the total amount of traffic generated
by all sessions in the (closed) interval .

Theorem: For the mean total amount traffic we have

(1)

where .
If , then

(2)

Proof Sketch: Suppose , is a sequence of
independent identically distributed (i.i.d.) random variables, and

is random variable with Poisson distribution, independent of
the ’s. It is well known that

(3)

and

(4)

It follows directly from the definition of a marked Poisson
point process, that in our case the total contributions into

of the sessions originating in nonoverlapping inter-
vals and are independent. Therefore, it is sufficient
to prove the (1) and (2) for the case when the intensity measure
is concentrated on a finite interval .

In this case, our marked point process can be constructed as
follows. A Poisson random variable with mean is
defined. Also, a sequence of i.i.d. random “extended” marks is
defined, where each mark is a random function

of two variables and . A realization of our
process is constructed by first taking a realization of , then
placing points into the interval independently according
to the distribution , and finally “attaching” first

extended marks (from the i.i.d. sequence) to the points. The
mark of a point located at is simply the pro-
jection of its extended mark at time .

Then, formulas (1) and (2) follow directly from (3) and (4),
respectively.

B. VoIP Formulas

Suppose now that the data sessions are voice calls with i.i.d.
durations, having the distribution function , with
the density , and finite mean . Assume that
calls arrive according to a homogeneous Poisson process with
intensity 0, and that each call in progress generates data at
the constant rate 1.

In this case the distribution of the amount of traffic
depends only on , so we will write , and
obviously . Although the general formula (2)
can be applied directly to obtain , in our special case the
derivation can be somewhat simplified by using the well known
fact that (in a queueing system) the random number

of calls in progress at time 0 has Poisson distribution with
mean , and the residual call durations are i.i.d. with the
density and the distribution function

. Also, the number of calls which origi-
nate in is Poisson with mean .

If we denote traffic generated in by flows that
were already present at time 0, and traffic generated
in by flows that entered during the interval, then

where [applying (4)]

and

Consider two special cases.

• In the first, the call duration is exponential, i.e.,
. Straightforward calculations yield

(5)

If we denote by the (random) average
number of calls in an interval of length , by the
mean number of calls, and by the measurement
interval length normalized by the mean call duration, then
we can rewrite (5) in a “normalized” form:

(6)

This is the formula found by Riordan [9]. (The extension
to the case when there is only a finite number of “trunks”
available for calls was obtained by Benes̆ [4].)

• Now assume that a call duration has a Pareto distribution.
More precisely, for

With similar calculations

Related calculations for Gaussian sources were done in [3].
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Fig. 4. VoIP traffic volume (top figure) and its normalized variance (measured
in units of calls) calculated using a window size of six 5-min intervals (30 min).

IV. RELEVANCE OF VARIANCE IN SETTING ALARMS

IP network management systems typically use no more than
static thresholds to detect overload. While a first-order statistic,
such as the average load, can provide useful information for non-
peaked data, higher order statistics can provide much more re-
fined information for even a richer variety of time series. For
example, the peaks of the variance of counts in a fixed-sized
moving window within a time series provides an indication of
anomalous behavior in the underlying process, both for atypi-
cally high as well as low byte counts. To illustrate this with our
data, we plot the variance (of the rescaled) byte counts with a
6-data-points window (30 min) of the VoIP traffic and compare
it with the profile of the time series itself, that has some obvious
anomalies, as shown in Fig. 4.

As it can be seen, the trivial anomalous behavior corre-
sponding to call-count-drops-to-zero are (extremely) well
detected by the peaks in the (moving) variance. The same holds
true for the IP traffic (Fig. 5) although the spectrum here is
fuller than that of VoIP.

The utility of second-order statistics for further detection of
anomalies, both peaks and troughs, is therefore clear. However,
second and higher order statistics provide a useful measure as
long as their range of variability is known or at least can be pre-
dicted. This is what the variance formulas derived in the pre-
vious section and in particular Riordan’s formula (6) provide.

V. ALARMS FOR VoIP LOAD ANOMALIES

Consider a VoIP link, and assume call durations do have expo-
nential distribution. Assume also that each call generates traffic
at a constant rate , and that the mean call holding time is
known. The length of a time interval over which byte counts are

Fig. 5. Data-only IP traffic volume (top figure) and its normalized variance
(measured in units of calls) calculated in a window size of six 5-min intervals
(30 min) Profile of the IP traffic (top figure) and its normalized variances (to call
count) calculated with a window of size 6 (30 min).

collected is . (For all the examples in this paper, 5 min.)
Then, Riordan formula provides an analytical expression for the
variance of the byte counts, which is useful in detecting high
load and abnormal traffic behavior. Based on this formula, we
construct a set of traffic anomaly tests. (For more modern uses
of the sample variance for detection of anomalies and abrupt
changes in network traffic, see [6], [8], [12].)

Typically, three conditions need to be checked when one ap-
plies a model to (traffic) data. First, the applicability of the
model to measurements needs to be tested. This is to check
that the data meet the assumptions made in the model. Second,
a test needs to determine if and when measurements indicate
normal or abnormal load behavior, given that the data pass the
first test. Third, a final test checks for over/underload. These
tests, or alarms, are detailed in the following.

A. Traffic Model Alarm (Type I)

This alarm is issued when the empirical variances taken over a
sliding window of the sequence of byte-counts
(where indexes the consecutive 5-min intervals), differ sub-
stantially from the theoretical variance predicted by the Riordan
formula. Such an alarm indicates consistency or “conformance”
of the traffic statistics with those of VoIP traffic. Possible reasons
for traffic “nonconformance” are the following.

• A significant fraction of the traffic is not VoIP. Evidently,
if user data sessions do not generate a constant rate traffic
(as voice calls do), Riordan formula does not apply.

• Even if traffic is VoIP, Riordan formula may predict a
“wrong” variance, if the call holding time is not exponen-
tial or the actual mean call duration is different from what
we assume it is.
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• The test might fail due to the inherent nonstationarity of
data. This problem could be circumvented by removing
the trends in the data. This can be done in a straightfor-
ward way.

• Evidently, nonconsistency can be caused by continual
misleading or false measurements.

If this alarm is indeed issued, the Type II and Type III alarms de-
scribed in the subsections in the following, which assume mea-
surements are VoIP, should be ignored because the current test
indicates lack of agreement between observed measurements
and the model.

To be precise, we propose the following procedure.

• Consider the sequence of byte-counts
(where, as before, indexes the consecutive 5-min inter-
vals), over a long observation interval , typically many
hours or days. This is the training or learning interval for
characterization of data at hand.

• For each , consider a sliding window consisting of
(typically 6–12) byte counts . Let

be their average. Compute the (nor-
malized) empirical variance

where is the data rate generated by one call in progress.
The empirical variance should be close to the theoret-
ical value , given by the Riordan formula (6), where
we set to its estimate . (Note that it may be
necessary to remove obvious linear trends, normalize the
“noise” term in the regression model and generally clean
the data within each sliding window before calculating the
variance. This was done, for example, to obtain Figs. 6 and
7. These are standard statistical techniques which we will
not elaborate here.)

• For each , compare the empirical variance to ,
where is a fixed parameter, typically . An
event we will call a violation. Obviously,
frequent violations indicate that the VoIP traffic assump-
tions do not hold. Therefore, we issue the alarm if the fre-
quency of violations is too high or times intervals without
violation are too short. (“Too high” and “too short” is
specified by additional parameters.)

Fig. 8 illustrates the procedure. Notice also that if is chosen
too small, the empirical variance will not be a reliable estimator
of actual variance, whereas if is chosen too large, the estimator
may be bad due to nonstationarity of the data, i.e., because the
individual observations are not likely to stem from the same
distribution.

Figs. 6 and 7 show the result of the previous procedure for the
VoIP and IP traffic, respectively, with the sliding window size of
6 data points (30 min) and 1. For the ease of comparison,
the empirical variances are rescaled so that the corresponding
theoretical variance is always . To eliminate the natural
trends present during various periods of the day, linear regres-
sion was used to “normalize” the data.

As it can be observed from these figures, the number of vio-
lations for the VoIP traffic is substantially smaller (5.3%) than

Fig. 6. Comparison of the sample variance with a window size 6 to the
theoretical (Riordan) variance for the normalized VoIP traffic.

Fig. 7. Comparison of the sample variance with a window size 6 to the
theoretical (Riordan) variance for the normalized IP traffic.

Fig. 8. Complementary cumulative distributions of the time intervals, in 5-min
units, between consecutive violations for VoIP (top) and IP (bottom), see Figs. 6
and 7.

that of IP traffic (14.3%). This is in agreement with the fit of
the theoretical model to VoIP and its lack of conformance to IP
traffic (that is more bursty). This would result in setting of the
Type I alarm for IP traffic and not for VoIP, as expected.

B. Fast Load Change Alarm (Type II)

This alarm is issued when the current byte count either
above or below, the (say) 95% confidence interval predicted by
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Riordan formula with the mean load set to the short-term em-
pirical mean load taken over 2–4 last measurements. As noted
before, this procedure has to be executed only if Type I alarm is
not issued, in other words, there is no suspicion that the traffic
is not VoIP.

This alarm may be caused by a number of events. A first pos-
sible cause is a link failure somewhere in the network. This
failure triggers rerouting of calls, thus, leading to an effective
load increase or decrease. Another reason may be a sudden
traffic increase due to an “external” event, i.e., an event unre-
lated to the network. Also a measurement failure might lead to
an alarm.

From extensive measurements of telephone traffic, we ob-
serve that the load in 15 min intervals can be treated as a sta-
tionary process. Taking this as an assumption, the procedure for
issuing the alarm is as follows.

• Similarly to Type I test, compute averages of byte
counts over a sliding window of size . Typical value
for is from 2 to 4.

• Again as in Type I test, we assume that , so
the theoretical variance of a byte count is .

• Construct a confidence interval
. If the new measurement is outside this

interval, issue the alarm.

C. Link Overload Alarm (Type III)

This alarm indicates that the link load is too high. It is issued
when the current byte count (or the derived number of calls) ex-
ceeds a calculated threshold value, , where is a
predefined threshold, and the first alarm is not set. The value of

is static, it is a fixed function of the link speed and we
show in the following how it is computed. Typically, this alarm
requires some immediate action as link overload would result
in packet losses and consequent voice quality deterioration. We
note that static threshold alarms, such as this, are the most com-
monly used in network management. The main difference being
that the threshold in this case is derived from the model and its
estimated parameters and not empirically set. In other words,
the model gives a threshold that can be used as a guide for set-
ting an empirical overload threshold.

Suppose that the link speed is large enough, say at least the
speed of a T3 port, which corresponds to about 672 calls at 64
kbit/s. This guarantees that at the loads of the order of the link
speed, the distributions of and the instantaneous data rate
are approximately normal. Suppose, we are given a constant

0 which is the maximum acceptable probability of the
instantaneous data rate exceeding the link speed . (Typically,

is 0.01 or 0.05.) Then the maximal acceptable link load
(i.e., the mean number of calls in progress) is computed from

where is the -quantile of the standard normal distribu-
tion. Then the threshold can be chosen, for example, from

VI. CORROBORATION VIA FIELD MEASUREMENTS

To test the methods proposed in the previous sections, we ob-
tained data from an operational IP-based network that carries
both IP and VoIP traffic. The general architecture of the net-
work is similar to that shown Fig. 1 with segments that carry pri-
marily VoIP traffic. The data contains 5-min input–output byte
measurements per interface (ifInOctets and ifOutOctets SNMP
MIBs) collected over a period of one week. The resulting byte
counts from the two typical interfaces, one for each of IP and
VoIP loads, were shown in Figs. 2 and 3.

A few observations are in order here. First both data sets show
a fair amount of time-of-day dependence and therefore nonneg-
ligible trends at various times during each day. To avoid the
problems associated with nonstationary data, and the applica-
bility of the model presented in Section III, we use 15 min—or
three consecutive measurements—as the maximum time during
which data will be assumed stationary and for larger windows
we will determine trends and remove them for further analysis.
Second, based on the information from the VoIP type of ser-
vice provided in this network, we assume the coding of voice is
at 64 kb/s without silence suppression or header compression,
which together with real time protocol (RTP), user data protocol
(UDP), and IP overheads results in average bandwidth per VoIP
call 128 kb/s. Third, we assume the average holding time of a
call is 2.5 min.1 Exploiting this fact, the byte count time series
shown in Fig. 3 can be converted to a “5-min average call count”
processes. Third, we will treat the data as if it were collected on-
line and apply the techniques as such, without assuming that the
whole set is available upfront.

We apply the tests proposed in Section V to the available
traces. First, for the applicability of the method developed in
Section III to these data (Type I Test), 30-min sample variances
are normalized by removing any trends and rescaled to match

1 Erlang load. Fig. 6 shows the plot of the normalized
sample variances of the VoIP process versus the normalized
variance from Riordan formula (6), that is, value of this for-
mula for a unit load 1. As it may be seen from this graph,
there are 25 violations within the week, i.e., the events when
the variance exceeds the predefined threshold. Also notice that
the average time between the violations is 400 min (80 time
units) units. Further, these intervals are spread to the right with a
longer tail. In contrast, the IP traffic has 90 violations, with the
average time between them 90 min (18 time units), with inter-
vals closely clustered around the mean. These data are shown in
detailed in Fig. 8, from which we conclude that VoIP traffic fits
the variance estimate from (6) much better than IP traffic does.

Having passed Test of Type I for VoIP traffic, we proceed to
set the over/underload band using Type II Test for VoIP trace.
Fig. 9 shows the profile of the data together with a confidence
band for this alarm. The confidence band is valid under the as-
sumption of 2.5-min call holding time with averaging interval of
15–30 min. We observe that with an expectation of 5% of data
falling outside this adaptive band, 6% of the VoIP measured

1Similar computations for coding rates of 32 kb/s through 64 kb/s and average
holding times up to 5 min show similar results. For example, with these values
the corresponding plots to Figs. 6–10, not shown, establish exactly the same
results described here.
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Fig. 9. 95% confidence band for VoIP traffic showing 6% of the data falls
outside the band.

Fig. 10. 95% confidence band for the IP traffic, treating the IP traffic as if it
were Voice over IP. A large fraction of the data points fall outside the confidence
band.

data fall outside the window, again confirming the reasonable-
ness of the fit of model to VoIP trace. (The confidence band for
IP is shown in Fig. 10 for completeness.)

VII. SUMMARY

We derived formulae for the variance of the cumulative traffic
over fixed intervals for a very general model of data traffic. For
voice over IP traffic, this formula is very simple and is known
as the Riordan formula. It provides an (analytical) estimate for
the variance of the VoIP load that passes through a switch or
router interface. Standard router measurements (such as SNMP
MIBS) also provide adequate data to estimate the variance of
the traffic directly. These two estimates can then be used to de-
termine if there is agreement between the model and data, and if
so, provide an indication of load anomalies within the network
segment where traffic is measured. The resulting method is also
used to detect overload.

We examined the applicability of this scheme to a data set of
field measurements of VoIP traffic and showed a good match
between the analytical model and the measurements. To further
test the usability of this scheme we also applied it to measure-
ments from an IP interface that was shown to be much less con-
sistent with the model. We classified the procedure into three
tests or alarms. Type I alarm indicates that the traffic is unlikely
to be VoIP. Type II alarm indicates anomalous load change and
is applied only when alarm of Type I is not set. Finally, alarm
of Type III is set only when there is overload. This alarm is also
set only when alarm of Type I is not set.

Fig. 11. Estimate of the standard deviation of the offered load of 1 erlangs
as a function of the normalized aggregation interval T = �t, see formula (6).
(For example, to read off the standard deviation for load of 500 erlangs, for the
average holding time 1=� = 3 min, and total load measured in bytes every t = 5
min, the value T = 5=3 = 1.666 is read on the x axis, and the corresponding
y axis value of �0.8 is multiplied by 500 = 22.36, giving the standard
deviation of 18 calls.

We expect that the general variance formulae would be useful
in detection of anomalies for the more general IP traffic. This is
the subject of future research.

APPENDIX

TRADEOFF BETWEEN STANDARD DEVIATION AND

MEASUREMENT INTERVAL

Fig. 11 shows the plot of standard deviation of the offered
load as a function of the normalized aggregation interval
for a load of 1 erlangs in the Riordan formula. As it can be seen,
the larger the aggregation interval, the better the estimate of the
load,

We see that with very short measurements the variance is just
(which is logical, as the number of calls has a Poisson

distribution with mean and variance ). We also find that the
variance decays to zero, essentially like .

However, the need for a large interval for an accurate esti-
mate of the variance needs to be balanced against the need to set
alarms quickly when an anomaly is detected. For the latter, the
shorter the aggregation interval, the better. The optimal tradeoff
between these two tendencies depends on some quantification of
the urgency of alarm sets versus accuracy of the alarms, given
the Type I and Type II errors discussed earlier.
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