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With multiple air-interface support capabilities and higher cell densities,
future cellular networks will offer a diverse spectrum of user services. The
resulting dynamics in traffic load and resource demand will challenge
present control loop algorithms. In addition, frequent upgrades in the
network infrastructure will substantially increase the network operation
costs if done using current optimization methodology. This motivates the
development of dynamic control algorithms that can automatically adjust
the network to changes in both traffic and network conditions and
autonomously adapt when new cells are added to the system. Bell Labs is
pursuing efforts to realize such algorithms with research on near-term
approaches that benefit present third-generation (3G) systems and the
development of control features for future networks that perform dynamic
parameter adjustment across protocol layers. In this paper, we describe the
development of conceptual approaches, algorithms, modeling, simulation,
and real-time measurements that provide the foundation for future dynamic
network optimization techniques. © 2005 Lucent Technologies Inc.

Introduction

Cellular network optimization has traditionally
been associated with a process that aims to adjust the
network air interface to market-specific traffic and
propagation conditions [11, 12]. The tuning opera-
tions in this process focus on a small set of hardware
parameters such as cell-site locations and antenna
configurations. The cells themselves are grouped more
densely around traffic nucleation points to provide
capacity, and the antennas are pointed in compliance
with the local terrain and clutter to reduce signal

shadows and interference. Occasionally, software
parameters such as handoff thresholds and cell-power
budgets are also adjusted. While hardware parameters
are easily set during network installation, they are
hard to change afterward. As a result, the optimiza-
tion with respect to hardware parameters occurs dur-
ing network planning and deployment, and it is only
repeated in areas where performance problems or
infrastructure upgrades are required. Since it is per-
formed as a singular event, the optimization process is
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fundamentally based upon time-averaged worst-case
traffic and propagation conditions. Originally, these
optimizations were performed through a manual, it-
erative process relying on network planning tools and
drive testing. Bell Labs subsequently introduced the
concept of predictive optimization in the Ocelot® op-
timization tool, which computes optimum network
parameters directly according to well-defined per-
formance metrics [5, 7, 8]. Its introduction has trans-
lated into faster network rollouts, improved network
performance, and higher capacity.

Notwithstanding its widespread use, the static op-
timization approach is increasingly approaching its lim-
its. The growth of the wireless customer base and the
introduction of various new data services mandate the
consideration of new objectives such as throughput,
delay, latency, and quality of service (QoS). Indeed,
the migration to IP Multimedia Subsystems (IMS) will
promote the continuous development of new services
with different resource requirements, QoS demands,
and traffic characteristics. Furthermore, data services
introduce demand fluctuations that are intrinsically
larger than they are for voice services. The multidi-
mensional nature of demand, its temporal dependence,
and its increased dynamic range render optimization
strategies based on a peak (albeit composite) loading
progressively less effective at efficiently allocating and
managing network resources. Additionally, the de-
mand for increasing data rates and the falling costs for
network hardware will drive network architectures
toward micro-cellular structures. This development
will create frequent infrastructure upgrades with the
demand for fast, autonomous, and inexpensive cell
integration.

Demand fluctuations have widely different
origins, correlations, and characteristic times, with
important implications for how best to address them.
Channel fluctuations (i.e., fast and shadow fading)
for individual users typically range from milliseconds
to tens of seconds. Arrival, departure, and handoff/
swap times for individual voice and data users typi-
cally inhabit the range between a few seconds to tens
of minutes. When looking at aggregate demand vari-
ations, one observes that they typically occur on an
interval from intermediate to long-time scales (i.e.,

100 Bell Labs Technical Journal

Panel 1. Abbreviations, Acronyms, and Terms

1XEV-DO—CDMA2000* evolution—data
optimized

2G—Second generation

3G—Third generation

3G1X—3G CDMA air-interface specification;
CDMAZ2000 first evolution

CDMA—Code division multiple access

HSDPA—High-speed downlink packet access

IFHO—Inter-frequency handoff

IMS—IP Multimedia Subsystem

IP—Internet Protocol

LAN—Local area network

LP—Linear program

PA—Power amplifier

QoS—Quiality of service

SINR—Signal-to-interference-plus-noise ratio

UMTS*—Universal Mobile
Telecommunications System; 3G wideband-
CDMA air-interface specification

seconds and above). One further observes the coexis-
tence of both predictable (periodic) and unpredictable
(random) variations in aggregate demand. Predictable
variations possess characteristic times of order hours,
days, and weeks, and they can possess intercell cor-
relations. Random fluctuations occur on practically
all time scales, but because of intrinsic averaging, they
tend to be most pronounced at shorter time scales.
They are typically uncorrelated between cells. Similar
characterization occurs when one looks at spatial
variations of the users within and between cells,
which also contribute to demand fluctuations. (See
Figure 1, which displays characteristic time scales
for network changes and fluctuations on a logarithmic
time axis spanning 12 decades. Individual per-mobile
changes [upper left] occur on faster time scales.
Predictable aggregate demand variations [upper
right] typically dominate on longer time scales.
Existing per-mobile cell controls [lower left] naturally
have time scales comparable to per-mobile variations.
Present manual optimization efforts to adapt the
network [lower right] clearly cannot address fluctua-
tions occurring on shorter time scales. Hourly service
measurements occur in the middle and thus are hand-
icapped in observing behavior at shorter times.)
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Figure 1.

Characteristic time scales for network changes and fluctuations displayed on a logarithmic time axis spanning

12 decades.

Cellular networks have always been supported
by a set of fast control algorithms that aim to account
for the dynamics introduced by variations in channel
conditions and traffic loading through adjustment of
cell-, service-, or protocol-layer-specific parameters.
Examples are power control, handover, scheduling,
and congestion control algorithms. With the evolu-
tion of wireless standards, the response times of these
control algorithms have continuously been improved.
One key point is that the existing controls can have
intrinsic limitations that limit their overall network
response options to certain types of demand
variations. At a high level, one can group most
second-generation (2G)/third-generation (3G) con-
trol mechanisms as autonomous control algorithms
of two types: autonomous per-call controls, such as
power control and soft-handoff, and autonomous ag-
gregate controls, typically on a per-cell-sector basis
(e.g., overload and congestion controls). By compar-
ison, few existing control mechanisms work in a
coordinated manner across neighboring cell sectors
or the network.

As a consequence, we see a growing need for ad-
ditional dynamic optimization mechanisms with the
following capabilities:

e State- and time-dependent control parameters to
help the network adapt the coverage and capacity
tradeoff for multiple services in response to
spatio-temporal demand variations;

e Coordinated (and potentially additional au-
tonomous) load-balancing mechanisms that can
address demand and traffic fluctuations by opti-
mally “smoothing out” uncorrelated demand
peaks between neighboring cells and even be-
tween differing wireless technologies; and

e Active measures to address rare but undesirable
events, such as reducing dropped and blocked
calls.

For these controls to safely coexist with the existing

per-user network control mechanisms (e.g., power

control) while not overburdening call processing ca-
pabilities, we anticipate that many of these new

mechanisms will act at intermediate time scales (i.e.,

time scales of seconds and up).
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These features will fill the gap between present con-
trol algorithms and the current network optimization
process (potentially overlapping at either end) regard-
ing operation space, time scale, adjustment-parameter
space, and performance objectives. This will translate
into benefits for service providers and mobile users such
as improved coverage, fewer dropped calls, better QoS,
and higher throughput. Service providers will also ben-
efit from reduced maintenance and operation costs, the
ability to capitalize from higher network capacity, and
quicker launch of new services.

From the research perspective, the development
of these dynamic optimization features follows a
roadmap that combines short-term aspects that im-
prove the performance of present markets and longer-
term strategies. This allows the experiences gained
from early market trials to refine algorithms planned
for later releases. This incremental development also
permits sequential rollout of these techniques into the
marketplace for more immediate benefits to both
service providers and mobile users.

In this paper, we introduce several facets of Bell
Labs’ current research efforts in the area of dynamic
network optimization. These illustrate the complexity
and multidisciplinary nature of the underlying re-
search. In the section immediately below, we describe
the near-term research effort to establish dynamic op-
timization capabilities in current networks. The ap-
proach capitalizes on automated algorithms for the
traditional network optimization process developed
specifically to operate within the constraints of current
network-measurement reporting capabilities. A sub-
sequent section examines the necessity and signifi-
cance of real-time network measurements in the
development of dynamic optimization strategies and
algorithms. Such measurements provide detailed data
and invaluable insights on traffic fluctuations, user
mobility, data traffic models, and network response
and performance characteristics under actual user
conditions. The succeeding section presents an exam-
ple of a dynamic optimization algorithm for future
cellular networks as well as comparative performance
results based on dynamic simulations. The last sec-
tion concludes with a summary of our current efforts
in this area.
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Dynamic Optimization in Current Networks

Historically, network optimization efforts have
been highly static, and hence a “worst-case” design
view has been dominant. The time constants of the
individual network changes have been on the order of
years because subsequent antenna changes are ex-
pensive. Further, to simplify network operations, pa-
rameter uniformity (e.g., pilot fractions and hand-off
parameters) has been emphasized throughout the
entire network.

The above ideology is still acceptable to a service
provider in the earliest days of the network launch; it
is also currently acceptable if there is sufficient capital
and spectrum for carrier additions and sufficient cap-
ital and site availability for cell additions. With the in-
creasing maturity of networks, however, limited
spectrum, site scarcity, and limited available capital
for network expansion make it necessary to employ
more sophisticated network optimization techniques.

As discussed in the introduction, automation of
the current static optimization process is the first
step in this direction. This approach has already
proven indispensable in network rollout and for re-
optimization efforts of 2G and 3G technologies. It has
created the fundamental understanding on how to
realize algorithm-guided adjustment of large network
clusters capturing the complex interdependence be-
tween network performance and the large number of
tuning parameters through the specific traffic distri-
bution and propagation conditions. Such automation
has also shown the possibility of better performance
faster. Although this approach still has to be consid-
ered “static,” it sets the basis for the near-term real-
ization of dynamic optimization [1][2].

The dynamic optimization effort described in this
section involves changes to a relatively small number
of existing control parameters in time scales on
the order of hours (as set by current performance
reporting mechanisms) that can be realized as a near-
term network product feature.

Hourly time-scale variations in a customer market
are shown in Figure 2 (where the x-axis shows the
measurement of time in a 24-hour format and the
y-axis shows the resulting time-averaged tratfic). This
motivates the need for a “many-case” design approach
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Figure 2.
Call volume of a time-varying network.

instead of the present worst-case design approach.
The many-case design scenarios are in part differenti-
ated by varying aggregate call volumes and in part
by changes in traffic distributions (e.g., users at
home between 8:00 p.m. and 8:00 a.m., at work be-
tween 8:00 a.m. and 5:00 p.m., commuting between
5:00 p.m. and 8:00 p.m.).

Since coverage is one of the major drivers of
churn in a market, the objective of near-term dynamic
optimization is to load a network configuration for
each hour of the day (or each collection of hours) that
both maximizes coverage and satisfies the estimated
traffic demand (based on the analysis of recent service
measurement data).

High-Level Architecture and Implementation Details

This subsection addresses the high-level architec-
ture and the changes that need to occur in order to
realize the dynamic optimization feature. The ex-
pected impacts on architecture and implementation
are discussed in detail. A high-level view of the near-
term dynamic optimization can be viewed as having
two parts: open loop and closed loop.

Figure 3 shows the typical setup of the current
network monitoring architecture with an external
user interface to the network (to control, e.g., cell-
power budget and other radio resource management

External user SM interface
(WatchMark, Prospect
software, SPAT3G)

Service
measurements

Old external user
control interface

SM—Service measurement
SPAT3G—System Performance Analysis Tool

T Trademark or registered trademark of WatchMark Corp. in the
U.S. and other countries.

Figure 3.
Current network monitoring architecture.

[RRM] parameters). These control parameters can
be viewed to define a particular network configura-
tion where all other network aspects (e.g., base sta-
tion locations and antenna orientations) remain
constant.
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In response to the specified network configura-
tion, offered traffic and other network aspects (e.g.,
propagation conditions), the network generates
service measurement data that is then filtered using
the external user service measurement interface. A
more detailed description of the network perform-
ance and conditions can be obtained locally using
other tools and techniques as described in the “Real-
Time Measurements” section of this paper. In this cur-
rent mode of operation, an operator monitors the
external user service-measurement interface and
makes changes via the external user control interface.
In practice, any single control parameter is rarely
changed. Because of this, the specified network
configuration is effectively “one size fits all” and is
expected to serve the network 24 hours a day in spite
of the well-known variations in offered traffic across
this time scale.

Open-Loop Dynamic Optimization
The open-loop mode of operation is a natural step
between the current operator control and the more
aggressive closed-loop control (which greatly reduces
operator involvement). This mode of operation specif-
ically addresses variations in network conditions and
permits “many-case” network design. The operation
of the open loop element can be best described using
a pre-programmed approach: the ability to automat-
ically switch to different settings during different times
of the day based on a set of well-known and pre-
dictable inputs. In a similar manner, the input to open
loop dynamic optimization would be a set of operator-
prescribed network settings for different hours of the
day/days of the week. Based on this input, the new
network settings are automatically loaded during the
corresponding hours of the day and days of the week.
The control elements that can be changed in the
open-loop mode of operation include:
e Cell-power budget,
e RRM parameters,
e Neighbor lists,
e Inter-frequency handoff (IFHO) parameters, and
e Electronically controllable antennas (to adjust tilt
and/or azimuth).
Some of the advantages of open loop dynamic opti-
mization are that it:
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Figure 4.
Network control architecture for open-loop dynamic
optimization.

e Facilitates preliminary testing of the full closed-
loop system,
e Allows for an intermediate realization of the near-
term dynamic optimization features,
e Avoids stability issues, and
e Permits configuration management and inte-
grated operation (unlike scripts and cron jobs)
Figure 4 shows the network control architecture
for open-loop dynamic optimization. Notice that the
“old” external user control interface is replaced with
a new external user interface that provides input
to the open-loop control elements with the recom-
mended values for cell-power budget, RRM pa-
rameters, neighbor lists, IFHO parameters, and
electronically controllable antennas. The new inter-
face also permits specification of start times for
different network configurations (e.g., 4:28 p.m. on
Wednesdays).

Closed-Loop Dynamic Optimization
Figure 5 shows the architecture of closed-loop
dynamic optimization. The only additional element
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Architecture of closed-loop dynamic optimization.

BS—Base station

Ocelot® PC

OMP—Operations and maintenance platform RCS—Radio cluster server

Figure 6.

High-level physical architecture of closed-loop dynamic optimization.

beyond open-loop dynamic optimization is the feed-
back loop that interfaces with the closed-loop control
elements. The input to the closed-loop control ele-
ments is a sliding window of service measurement
data. This window ranges from some point in the rea-
sonably recent past (e.g., several weeks) to upwards of
minutes ago. The use of older data allows longer-term
trend assessment as well as mitigation of short-term
fluctuations in the input data. The use of very recent

data facilitates responses to dramatic network events.
The output of the closed-loop control elements
identifies changes to control parameters including
cell-power budget, RRM parameters, cell neighbor
lists, IFHO parameters and electronically controllable
antenna parameters.

Figure 6 shows a high-level physical architecture
of the closed-loop dynamic optimization system. For
each optimization period, the autonomous Ocelot
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Reduction in dropped calls per day.

software would perform an optimization and then
choose a network solution that would maximize cov-
erage and still meet the expected capacity demands.
The blue arrows shown in Figure 6 indicate the
service measurement input that is fed back to the
Ocelot software module. The output from this module
is then sent to the base station (shown conceptually
by the black arrows in Figure 6).

Initial Trial Results

Field trials have been conducted using the open-
loop optimization approach to evaluate near-term dy-
namic optimization methodologies and performance
improvements. An example of performance im-
provements (measured by dropped calls) is shown in
Figure 7. Each point on the graph represents the av-
erage and uncertainty in the reduction of dropped
calls for each sector measured.

The change in the number of daily dropped calls
(trial minus baseline) is shown as a function of sector
index along with measurement uncertainties.
Sector 10 experienced 6 fewer drops per day during
the open-loop dynamic optimization trial. Sectors 15
and 18 also revealed significant improvements. For
the entire cluster under study, the dropped call rate
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and blocked call rates improved by approximately
10%. The dynamic optimization experiment also re-
sulted in improved frame-error rates and increased
served traffic.

Real-Time Measurements

The operation of modern cellular networks is
extremely complex. In order to extract the highest
possible performance from the network while simul-
taneously avoiding any associated instabilities,
dynamic optimization algorithms must be based upon
a deep and accurate understanding of actual mobile
and network behavior. Detailed measurements on op-
erating networks are critical to building this under-
standing for several reasons. First, they provide a
mechanism for quantifying important user behavior
and patterns. Such data consequently constrains the
parameter space that has to be explored with simula-
tions, thereby avoiding unnecessary and/or erroneous
assumptions regarding user and system behavior.
Second, detailed network measurements provide a
powerful tool for accurately quantifying underlying
relationships between user QoS/performance and
network parameters. Third, network measurements
provide a means for discovering unrecognized



phenomena, problems, and inefficiencies resulting
from the interplay between the multiple users and
the network.

Traditional network service measurements are
typically binned or accrued over an hourly basis. Such
service measurements are well suited to performance
monitoring situations where the relevant quantity is
deterministic and readily measurable, often associated
with a particular network sub-element. An example
might be the peak number of Walsh codes in use dur-
ing the hour. As long as this peak demand does not
exceed the maximum number of available codes, one
can safely conclude that no performance degradation
directly resulted. However, the dominant fraction of
wireless network response occurs on time scales much
finer than those captured by traditional service meas-
urements (see Figure 1). Hence a deeper understand-
ing of actual system behavior often requires much
more detailed information than service measurements
can supply. In order to draw statistically valid con-
clusions, one must correlate measurements of
individual mobiles as well as network elements upon
very fine time scales (often <1 second). Two examples
include:
¢ Understanding and managing the interactions be-

tween simultaneous voice and data users on the

same carrier, and

e Gaining a deeper statistical understanding re-
garding the typical confluence of events that gen-
erate dropped calls.

We have found that excellent results can be ob-
tained by collecting detailed network performance
data upon actual user mobiles, rather than from
intentionally introduced drive test mobiles. This
technique generates statistically valid data sets far
faster than traditional drive testing, as there are large
numbers of simultaneously active user mobiles in the
market. Connection to a single cell can provide de-
tailed information on several tens of thousands of calls
per day. Perhaps more surprisingly, we have observed
that measuring actual user mobiles can in some cir-
cumstances be more accurate in that they capture
actual user behavior such as mobility mix, traffic dis-
tributions, building penetration mix, and data traffic
models.

We have developed a flexible cellular measure-
ment tool named Celnet Xplorer [3] that spans the full
range of relevant time scales and operates with negli-
gible impact upon a fully loaded network. Our exper-
iments have focused upon several issues, including:
e Measurements of the spatio-temporal fluctuations

in user traffic distributions and their impact upon

network performance.

e Statistical data regarding user soft handoff and
data anchor behavior, including how these may
be influenced by system behavior.

¢ Understanding the primary sources of lost calls,
with a sharp focus upon identifying possible
measures that could be taken to reduce call
failures.

e  User traffic behavior, particularly for data users. A
key focus is identifying steps that could be taken
to enhance data performance.

Figures 8 and 9 display geolocation of user
mobile density and lost calls in a cellular system via
measurements made by Celnet Xplorer. Network
measurements allow us to simultaneously track all
user calls on the cluster with an average accuracy of
~150-200 meters. The figures show the base stations
as “pie slices” with a common vertex. Each pie slice
represents a particular sector direction. The road map
is also shown. Figures 8a and 8b present 10 minutes
of data aggregated into 250 m spatial bins, with color
intensity proportional to the total user connection
time per spatial bin. Substantial traffic density varia-
tions appear even on intermediate time scales.

Abnormally terminated calls are also observed
and geolocated, and the histories of those calls as well
as the associated network state are carefully analyzed.
In Figure 9, for example, we observe that the dropped
call spatial density is quite different from the user
density—i.e., the dropped call likelihood has signifi-
cant spatial dependence (in that the majority of these
drops are in the interior of the cluster, near the cell
boundaries). Taken together with the local propaga-
tion conditions, this information provides insight into
the specific user environment prone to abnormal call
termination in this cluster.

Another relevant area of user behavior is packet-
data traffic models for mobile cellular users. While
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(a) Measured mobile density: 7:20-7:30 p.m.

(b) Measured mobile density: 7:30-7:40 p.m.

Figure 8.

Measured mobile density of data aggregated in 250 m spatial bins.

Figure 9.

Total dropped calls collected over 12 hours of data,
again aggregated into 250 m spatial bins (monitored
cells in bold).

extensive packet data traffic models exist in the liter-
ature, the vast majority of these are based upon meas-
urements of TCP-IP traffic between computers
connected via hard-wired LANs. However, the statis-
tical character of cellular data traffic can be very dif-
ferent, particularly when viewed at layer 1. Other
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potential sources for changes in packet data traffic
characteristics include different application mixes for
wireless users, particularly those users with hand-held
mobile phones with small screens. The measured sup-
plemental channel activity for two simultaneous
3G1X data users is shown in Figure 10. Interactions
between these users are discernible in their traffic
patterns.

As our last example of the power of detailed net-
work measurements, we consider the impact of
forward-link transmit power upon abnormal call ter-
minations (drops). Here we have associated user mo-
bile connection time against their strongest serving
cell sector (as seen by the mobile) and simultaneously
recorded the total forward-link transmit power of that
server versus time. If a call is dropped, we similarly
note the total transmit power on the strongest serving
sector. From these data, we can infer a drop probabil-
ity per unit user-mobile connection time (i.e., the
probability that the call will drop in the next second)
as a function of the total forward power on the
strongest serving sector. The result of one such meas-
urement is displayed in Figure 11, which quantita-
tively demonstrates the role of increased interference
upon dropped call rates. The positive slope displays
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Relative drop probability per unit connection time as a
function of the total forward power on the strongest
serving sector.

the impact of forward loading. These results were in-
ferred from five days of measurement upon a specific
cell in an actual customer market. The potential rele-
vance of such results to load-balancing algorithms
(such as discussed in the next section) is clear.

Control Algorithms for Future Networks

One class of dynamic control mechanisms in fu-
ture networks defines algorithms that respond to fluc-
tuations in both traffic load and channel conditions
while respecting network-wide performance objec-
tives. For the development of this class of control
mechanisms, it is important to understand the origins
of fluctuations in traffic load and channel conditions,
their impact on network resources, and the advan-
tages and shortcomings of present mechanisms that
were not designed to tackle dynamic phenomena
comprehensively.

For example, fluctuations in traffic load and chan-
nel conditions translate into fluctuations in the de-
mand for resources, which in turn affect network
and/or cell capacity and QoS due to the limitation of
resource supplies. Current networks provide a lim-
ited set of control algorithms that attempt to distribute
the available resources appropriately. They reside at
different protocol layers and network elements and
perform operations locally. Examples for such control
algorithms are power control, scheduling, handover,
channel assignment, and congestion control.

Local control routines have the advantage that
they can react quickly. Speeding up the existing
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control mechanisms has led to significant perform-
ance improvements as seen, for instance, in the up-
grade of downlink power control from cdmaOne* to
CDMA2000%, or in the technology evolution for wire-
less packet data services from UMTS* R99 to high-
speed downlink packet access (HSDPA). In the most
recent technology upgrades, however, the speed of
power and rate control has reached the spectral limit
of channel fluctuations and further acceleration
would promise only little improvement.

Handling load and channel fluctuations through
local algorithms risks missing out on global per-
formance goals (i.e., at the cluster or network level).
A mobile utilizing a HSDPA technology interface, for
instance, may be well served through fast rate control
combined with scheduling by its anchor cell. From
the network perspective, however, it may be better
to serve this user with a slightly lower rate by a peer
that carries substantially less load and can therefore
provide more time slots. A user enjoying a conversa-
tional service at high speed may suffer from perform-
ance reductions associated with the high handoff rate
and the lack of soft-handoff robustness, which is not
supported on the HSDPA traffic channel. In such a
case, a dedicated channel may be better suited to
achieve call performance criteria.

The realization of resource utilization according
to cluster- or network-performance objectives is a
complex task, which may involve multiple parame-
ters and performance objectives as well as additional
messaging. Furthermore, the distribution of perform-
ance measurements and adjustments over various net-
work nodes makes it difficult to develop features that
can react sufficiently fast to follow the desired fluctu-
ations. Accurately estimating the potential gains is
quite challenging in view of the network complexity
and the need for underlying assumptions. In order to
overcome these challenges, a researcher needs to
follow a systematic methodology that involves math-
ematical modeling and simulation, based upon real-
time measurements of actual traffic behavior and
network response as illustrated in the previous section.

There have been various publications that
demonstrate the potential performance gains through
dynamic optimization to network-wide performance
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objectives [1, 4]. They all focus on particular
optimization tasks involving a predefined set of pa-
rameters and objectives. Often, the problem of im-
plementation is not addressed, or a centralized
control system that manages intercell or cross-layer
adjustment in a coordinated fashion is assumed.

To quantify the benefits of resource allocation ac-
cording to network-wide performance objectives, we
present an example methodology for dynamic opti-
mization algorithm development.

A Methodology for Algorithm Development
An example methodology we have used follows

three discrete steps:

e Formulation of the optimization task. This addresses
the determination of the adjustment parameters
and network-wide objectives. Objectives need to
be selected carefully since they critically deter-
mine the gain and relevance of the proposed
mechanisms in the final implementation.

e Comparative simulation studies. A mathematical
model is developed for the network objectives and
with respect to the particular technologies of in-
terest. This step allows an evaluation via simula-
tion of the potential gains that are achievable
through network optimization as compared to the
(best) performance of current systems. The latter
is obtained through detailed dynamic simulations
that can capture the network-related aspect of the
objective being optimized. Ideally, the modeling
should capture the relevant time scale of operation
for the optimization process, which should repre-
sent an optimistic limit to what is achievable under
best circumstances in practical implementations.

e Feature development. Feature development can be
guided by the knowledge gained from the math-
ematical modeling and simulation stages. For ex-
ample, a centralized optimization solution may
be realized in a distributed form only, which al-
lows approximating the optimum solution with-
out excessive communication. Alternatively, good
candidate algorithms can be “guessed” based on
observable patterns in the optimum solution
based on engineering experience. In both cases,
the outcome must be ranked against the bounds



obtained in the comparative evaluation process,

which helps in determining the expected gain

from feature development.

The uplink power control algorithm for CDMA
technologies is one example of an algorithm that con-
verges to optimum network performance in the limit
of perfect operation and sufficiently large soft hand-
off areas [9]. In the following subsections, we inves-
tigate if there is a corresponding downlink power
control mechanism that optimizes network-wide per-
formance criteria. This mechanism regulates the frac-
tion of power provided by all active-set servers to
each user and how user cell assignment reflects the
particular temporary cell load levels. Although this
problem has relevance only for dedicated channels in
3G1X and UMTS R99, it illustrates the above
methodology with a mathematical model that can be
solved in straightforward fashion. This example fur-
ther shows how the specific nature of the mathemat-
ical optimization can lead to the development of a
distributed implementation.

Formulation of Optimization Task: Global Downlink
Power Control

Fast downlink power control as provided by 3G
technologies is a powerful feature that guarantees suf-
ficient resources for every mobile while minimizing
the power-amplifier (PA) load of each cell for the as-
signed set of users. The assignment of users to cells is
determined by an independent process, which is un-
coordinated with channel power allocation and can
therefore lead to large variations in power demand
from one cell to the next. As shown in numerous pre-
dictions and field trials, network capacity can be sub-
stantially improved by balancing these load variations
through proper reassignment of users from over-
loaded to lightly loaded cells [5, 6, 8]. Such a proce-
dure is performed during the network optimization
process, where cell boundaries are shifted through
adjustments of antenna configuration or pilot power
to balance the long-term average loading of cells.
These procedures can achieve capacity improvements
of up to 25%. Obviously, one can expect larger gains
when load balancing compensates temporal fluctua-
tions in resource demand.

It can be shown that combining power control
with fast adjustment of cell boundaries may not lead
to best performance. Figure 12 shows two different
methods of load balancing. Figurel2a shows an ex-
ample of a few mobiles that are unevenly distributed

(a) Cell B, with seven users, more heavily loaded
than cell A

(b) Expanding cell A and shrinking cell B, with two
users dropped

(c) Balanced load, with no users dropped, through
individual assignment of users

Figure 12.
Different methods of load balancing.
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over the access areas of two cells. In the overlap
region, users are assigned to the strongest-serving cell.
As a result, cell B ends up more heavily loaded than
cell A. Adjusting the cell access areas to rebalance the
load has the undesired side effect that some users in
the shrinking cell may get dropped or suffer from
temporary reduction in QoS, as shown in Figure 12b.
Figure 12c shows an alternative approach, where load
balancing is accomplished by individually assigning
users to cells without causing the undesired side
effect. Mathematically, this alternative approach
translates into a network-wide cell mobile resource
assignment problem. It is obvious that this problem
has to be solved with sufficiently high frequency to
account for channel fluctuations, user mobility, and
both call arrivals and departures.

When power is the limited resource, the network-
wide cell mobile resource assignment is represented
by the matrix p,,, which determines the amount of
power cell ¢ provides to mobile m. Since p,, allows
several cells to provide power to one mobile, it im-
plicitly supports soft handoff. The following condi-
tions define the best solution for p,, in form of an
optimization problem, P:
¢ The PA load of the most heavily loaded cell should

be minimized. This condition defines an objective

function.
e Every user should be provided with sufficient

QoS. This condition defines a constraint.

The objective performs the task of load balanc-
ing, while the constraint pursues the same goal as
power control. The optimization problem can be
written in the following form:

P:min, max,L, (1)

subject to

E QD = 7(77 + E amch> Vi=m=M (2)

c=1,C c=1,C

L=Log+ D Pm V1i=c=C (3)

m=1,M

with p,,, = 0and L, = 0.

Here, «,, is the propagation loss, vy is the target
SINR, 7 is the thermal noise floor, L, is the load of
amplifier in cell ¢, and Loy the load of overhead
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channels. Expression (1) represents the objective
function and (2) translates the above-cited constraint
into an SINR requirement; (2) mimics code division
multiple access (CDMA) downlink power control with
maximum ratio combining for signals from different
cells. In this formulation, we have neglected bounds
to power control as well as same-cell channel code
orthogonality for the sake of simplicity. We further
consider only one service since all users share the
same value for 7.

The optimization problem defined by (1) subject
to (2) and (3) represents a linear program (LP). This
has the advantage that a solution can easily be ob-
tained using standard solvers. It further allows insight
on how to derive a distributed implementation
as outlined in the “Development of Distributed
Implementation” subsection below.

Comparison of Results from LP to 3G System

The optimum solution provided by the LP is com-
pared to the performance of a 3G1X system through
simulation. To capture fluctuations in load and
channel conditions, a time-driven simulator is em-
ployed. The simulation is performed on a network
layout consisting of four cells located at the corner
points of a square coverage region (Figure 13). This
scenario is sufficiently large to capture network-level
aspects while keeping the complexity of intercell re-
lations at a comprehensible level. We restrict the sim-
ulation to one circuit-switched service, which matches
the above formulation of the LP. We permit calls to
originate according to a spatially uniform Poisson
process with exponentially distributed holding times.
Users can move with constant speed and randomly
varying direction over the network area, and they are
bounced back as soon as they hit a boundary.

In this example, we assume that cell power is the
only limited resource and neglect the uplink. Due to
uniform call arrival and mobility properties over the
coverage area, load fluctuations are solely caused by
dynamics of arrival process, user motion, and channel
fading characteristics, which cover time scales
between milliseconds and minutes. Due to the sym-
metry of layout and traffic conditions, all cells have
the same (i.e. balanced) long-term properties. This
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Figure 13.
Simulation of 3G cellular network with four cells.

guarantees that the gains can entirely be attributed
to dynamic adjustments through the LP.

One critical parameter in the simulation process is
the time granularity used in the evaluation. It should
be guided by an optimistic estimation of the response
time for a realistic implementation of the LP. At this
point, we anticipate the implementation introduced in
the next subsection, which accomplishes the LP solv-
ing process through two interdependent control
algorithms: one resembles power control and can fol-
low rapidly changing channel conditions; the other
requires an iterative process involving intercell com-
munications. We can optimistically estimate the
settling time for the latter mechanism to a few hun-
dred milliseconds. Since the convergence of both
algorithms is necessary to achieve the full gain of the
LP over a common 3G system, we set the granularity
of the simulation to 500 ms and solve all faster
processes in closed form at each time step.

The fast processes include channel variations due
to multipath fading. For the 3G system, the interrela-
tion between cell load level, interference, and channel
power defines a fix-point problem, which is solved in
iterative fashion (see [9]). Arrival process, user mo-
bility and shadow fading are evaluated explicitly from
one step to the next. For the 3G-system, the soft-
handoff configurations are set according to the IS95B
standard with respect to time-step-averaged channel
conditions. We further make the approximation that
all servers in the active set provide the same transmit
power. For the LP, the soft handoff configurations are
derived during the solving process.

The final comparison is based on statistical aver-
ages over a large number of simulation snapshots.
Since the LP provides the optimum solution to a snap-
shot condition, it is agnostic to the dynamic flow of
processes. Hence, it does not include mechanisms that
provide link robustness to unaccounted channel fluc-
tuations; 3G systems support some features of that
kind (e.g., as soft-handoff), and they come at the price
of capacity. To ensure that favorable results for the LP
are not driven by the omission of robustness features,
we have repeated the comparison for a variety of sce-
narios, where certain robustness-providing or robust-
ness-demanding factors were turned off. The
scenarios read as follows:

e Scenario A. This scenario captures channel fluctu-
ations due to shadow fading and soft handoff in
close proximity to real implementations. Soft
handoff is supported for up to four servers. It in-
cludes a drop timer of 5s, which is invoked be-
fore servers are dropped from the active set.
Obviously, multiple-leg soft handoff and drop
time ensure link robustness in the presence of
channel fluctuations. Figure 13 shows a simula-
tion snapshot.

e Scenario B. The drop timer is eliminated. As a result,
soft handoff legs are dropped from the active set as
soon as their pilot signal strength falls under the
required minimum threshold. This reduces robust-
ness, since channels that have undergone a fade
for only a brief moment need to be set up again.

e Scenario C. Soft handoff and drop timer are elimi-
nated. This step further reduces robustness to fast
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Table I. Comparative studies via simulations of the linear programming solutions and the distributed

dual-ascent implementations compared to standard 3G systems.

Load reduction in worst cell: LP compared to 3G1X
Data rate Exact LP solution Distributed implementation
Scenario (arb. units) min mean max min mean max
A 10 16% 60% 99% 13% 60% 99%
B 10 6% 46% 99% 3% 45% 99%
C 10 7% 52% 96% 5% 52% 95%
D 10 3% 22% 48% 2% 21% 48%
A 20 14% 63% 98% 8% 62% 98%
B 20 5% 48% 98% 2% 47% 98%
C 20 1% 52% 97% 0% 51% 97%
D 20 1% 31% 93% 0% 29% 93%
A 40 21% 62% 98% 13% 61% 98%
B 40 5% 49% 97% 0% 48% 97%
C 40 3% 52% 97% 0% 51% 97%
D 40 1% 34% 96 % 0% 32% 96 %

3G1X—CDMA2000+% first evolution
LP—Linear program

tRegistered trademark of the Telecommunications Industry Association (TIA-USA).

channel variations unless captured by other

means (e.g., as through dual polarization diversity

at the mobile receiver). Such a solution has been
discussed for 1xEV-DO, and it would also be fea-
sible for 3G1X.

e Scenario D. In addition to soft handoff and drop
timer, shadow fading is eliminated. This would
represent a scenario of rather immobile data
users. If we assume that robustness is achieved
by other means, this scenario will definitely set
the highest bound to capacity in present 3G
systems.

We have evaluated the performance gains for the
four scenarios and with respect to three different data
rates leading overall to 12 trials. The data rate is re-
flected in the value of y in (2), which translates into
effective power consumption at given link conditions.
In order to keep the long-term average PA load for
the various data rates at approximately the same level,
we have reduced the call arrival rate proportionally.
For each of the 400 simulation snap shots of each
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trial, we solved the corresponding LP using a com-
mercial solver [10].

The trial results are summarized in Table I,
columns 3-5. The “gain” is measured by the amount
the LP can reduce the PA load of the most heavily
loaded cell over the 3G1X model system. The im-
provements due to the LP approach are shown for
the mean, the minimum and the maximum for the
400 snapshots taken for each trial compared to 3G
mechanisms. Inspecting the results, we observe that
the percentage gains from the LP range between 0%
and 99% in the various scenarios, with an average
around 50% for scenarios A, B and C. The elimination
of robustness factors such as active-server drop timers
or soft handoff apparently has a rather small impact
on the resource utilization of 3G systems. This indi-
cates that potential implementations of the LP would
substantially improve efficiency without sacrificing
robustness. With an average around 25%, scenario D
shows substantially lower gains. Since this scenario
spares out on the rather fast channel fluctuations



caused by shadow fading, one can conclude that dy-
namic optimization can especially improve on fast
fluctuations in resource demand. Finally, the results
show slightly larger improvements for higher data
rates, which can be attributed to the enhanced fluc-
tuations encountered with fewer users.

We want to emphasize that the improvements
through dynamic optimization shown are entirely due
to fluctuations occurring on time scales of minutes
and below. In real networks, the LP solution can show
substantially higher improvements since traffic fluc-
tuations on slower time scales can be accounted for
as well.

Development of Distributed Implementation

While the LP may provide a considerable load
reduction, it relies on fast, centralized processing,
which is hard to accomplish in real systems. It would
therefore be appropriate to find a method that allows
achieving the same or similar gains through a set of
distributed control algorithms. To accomplish this task,
two different approaches can be pursued. One ap-
proach starts out from existing systems and tries to
improve the available control algorithms to approach
the best solution provided by the LP. Since there is
no straightforward mathematical recipe, such an
approach would be guided by engineering judgment
combined with evaluation through simulation.

We want to illustrate another approach, which
utilizes the mathematical structure of the LP to de-
rive a distributed implementation. For that purpose,
we consider the dual linear program, D, of the opti-
mization problem in (1)—(3), which is given by

D : max, yn >, iy (4)

subject to

amCMmSyEamc;Lm-F)\c Vi=m=M1l=c=C
c

(5)
SA= (6)

c

with A, = 0 and w,, = 0.

As is well known in optimization theory, this
companion problem gives the same optimal solution
from a different perspective. It also provides the

means for a disaggregated solution to the LP that uses
local (i.e., cell-level) information to perform part of
the processing on a fast time scale and enables defi-
nition of a new protocol using intercell communica-
tions to balance the load among cells on a slower time
scale. The local part of the problem is represented by
(5), which resembles the uplink power control prob-
lem of CDMA systems and can be handled through an
equivalent control algorithm for a given vector of dual
variables, A.. Additionally, (4) and (6) require an al-
gorithm that relies on intercell communications and
sets the particular values of A.. The solution of the
dual LP can be translated into an economical prob-
lem, where A, represents the “price of power” offered
by each cell, and w,, is equivalent to the “payment”
made by mobile m to cell ¢ for purchase of this power.
In this picture, balancing load translates into maxi-
mizing total revenues by appropriately setting (nor-
malized) prices. We refer to this solution approach as
dual ascent, in reference to the fact that a solution
based on this interpretation carries out an ascent
(maximization) via use of dual “prices” described
above. Detailed considerations of this model are given
in [2].

To determine the quality of the dual approxima-
tion as described above, we also implemented the dis-
tributed version of the dual LP and repeated the
12 trials introduced in the prior section. The corre-
sponding results are included in Table I, columns 6-8.
They are almost identical to those obtained for the LP.
This result confirms that distributed implementation
of the LP optimization can be realized for the net-
work-wide optimization problem introduced without
loss in performance.

Conclusions

We have presented several facets of the Bell Labs
Research program on dynamic network optimization
that provides cellular networks with the capabilities to
respond to fluctuations in traffic and resource
demand. We have presented applications to current
networks, where network trials have demonstrated
improved network accessibility through dynamic re-
sponse to recurring traffic patterns, as well as longer-
term efforts that focus on the development of faster,
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coordinated response mechanisms that can success-
tully adapt to load fluctuations across cells.

We have further demonstrated that real-time
measurements are a fundamental ingredient to the
development of dynamic control mechanisms since
they reveal the inefficiencies in cellular networks and
provide information on actual traffic characteristics
and user behavior. In addition, they identify impor-
tant interrelations among network properties, such
as per-call QoS, resource demand, and traffic load,
which in turn drive the development of future control
algorithms. Information on actual traffic behavior is
already being applied in current dynamic network tri-
als for optimization of recurring traffic patterns.
Finally, real-time measurements become an integral
part of future dynamic optimization features for
diagnostic and monitoring purposes.

The interplay of these facets is critical to our dy-
namic optimization roadmap. Features developed for
present networks validate our dynamic optimization
approach and thereby facilitate the rollout of future
control mechanisms. We are convinced that dynamic
optimization algorithms will continuously drive
improvements in key performance metrics, such
as throughput, dropped-call rate, and resource
utilization.
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