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In this paper we describe an efficient algorithm for solving novel optimization models arising in the context of multiperiod
capacity expansion of optical networks. We assume that the network operator must make investment decisions over a
multiperiod planning horizon while facing rapid changes in transmission technology, as evidenced by a steadily decreasing
per-unit cost of capacity. We deviate from traditional and monopolistic models in which demands are given as input
parameters, and the objective is to minimize capacity deployment costs. Instead, we assume that the carrier sets end-to-end
prices of bandwidth at each period of the planning horizon. These prices determine the demands that are to be met, using
a plausible and explicit price-demand relationship; the resulting demands must then be routed, requiring an investment in
capacity. The objective of the optimization is now to simultaneously select end-to-end prices of bandwidth and network
capacities at each period of the planning horizon, so as to maximize the overall net present value of expanding and operating
the network. In the case of typical large-scale optical networks with protection requirements, the resulting optimization
problems pose significant challenges to standard optimization techniques. The complexity of the model, its nonlinear nature,
and the large size of realistic problem instances motivates the development of efficient and scalable solution techniques.
We show that while general-purpose nonlinear solvers are typically not adequate for the task, a specialized decomposition
scheme is able to handle large-scale instances of this problem in reasonable time, producing solutions whose net present
value is within a small tolerance of the optimum.
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1. Introduction
In this paper, we describe a novel model and develop
efficient algorithms for addressing capacity expansion and
allocation combined with bandwidth pricing, in the context
of designing resilient optical transport networks.
A network is modeled as a set of nodes, representing

cities and/or metropolitan areas, which are connected by
links representing physical routes owned by the network
operator; transmission systems deployed on links are used
to carry traffic. The carrier, or network operator, makes
investments for deploying those systems and incurs peri-
odic operating expenses, while collecting revenue from car-
rying demand for customers.
We consider network planning over a time horizon that

spans many years. During such a period several genera-
tions of transmission technologies will typically emerge.
Although a newer system may have a higher deployment
and operating cost, the magnitude of capacity improvement

can be expected to far outpace that of cost increase. As a
result, a new technology results in a lower cost per unit
of capacity than previous ones, thus making it an attractive
candidate for new deployment.
In addition, after a new technology becomes available,

its deployment cost decreases over time due to a learning
effect. As a result, there may be an economic incentive
to delay the deployment of a new technology to exploit
savings from future cost reductions.
Such a dynamic technology environment immediately

poses two interesting problems. First, timing: When should
the operator start to deploy the new systems and phase
out old technologies? Second, sizing: How much capacity
should be deployed on each link at each time period?
Traditional network-planning problems have been dis-

cussed extensively in the literature, and it would be
impractical to provide a thorough review here. See Alevras
et al. (1998), Balakrishnan et al. (1995), Bienstock et al.
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(1998), Bienstock and Günlük (1996), Bienstock and
Saniee (2001), Günlük (1999), Magnanti et al. (1995), Stoer
and Dahl (1994), and the references therein. Typically, the
critical decisions involve adding capacity, at minimum cost,
to existing capacity levels, so that one can route known
demands (fully or partly, with a penalty for shortfalls).
Lisser et al. (1999) and Sen et al. (1994) consider models
in which demands are imperfectly known.
While such models rationalize decision making from

an engineering perspective, they reflect a monopolistic
approach to decision making under price regulation. Con-
sequently, more comprehensive approaches have been pro-
posed in recent studies to integrate capacity planning into
the overall business optimization strategy, in particular in
the context of optical networks (Lanning et al. 2000).
In Lanning et al. (2000), instead of assuming fixed fore-

cast demands between pairs of nodes, an explicit nonlinear
price-demand relationship is taken into consideration, and
demands are treated as flexible quantities that are deter-
mined by prices. Prices, which must be chosen for every
pair of nodes, are critical decision variables playing two
roles: They determine the revenue for each unit of service
rendered, and through the price-demand relationship they
affect the amount of deployed capacity, and thus, incurred
deployment cost. Consequently, capacity planning is driven
not by the need to meet a fixed-demand target, but by the
desire to generate higher profits. In summary, the objec-
tive of the optimization model is to simultaneously choose
network capacities and prices of network services, so as
to maximize the overall net present value of operating the
network; i.e., we want to maximize the discounted total
revenue minus total cost over the planning horizon. An
important qualitative observation in Lanning et al. (2000) is
that, as the price elasticity of demand grows larger than 1,
the observed (optimal) capacities become large.
The study in Lanning et al. (2000), while innovative, in-

corporated several limitations: The networks that were con-
sidered were of small size and were simple, the number
of time periods in the model was small, and the underly-
ing network design problem was simplified. We expand on
these limitations next.
First, in Lanning et al. (2000) the planning model was

limited to a five-node ring network over five time periods.
The small size of the network and small number of time
periods obviated the need for truly effective optimization
algorithms. We note that in the case of large-scale opti-
cal networks (e.g., national networks, quite likely entailing
hundreds of nodes), the optimization problem poses signifi-
cant computational challenges. In comparison with standard
minimum-cost capacity-planning models, the new approach
introduces a price variable and a demand variable for each
period for each node pair; thus, the total number of price
(and demand variables) is on the order of N 2T . Here, T is
the number of planning periods, while N is the number
of nodes in the network. In addition, each pricing variable
appears in a nonlinear term in the objective function. As a

result, when planning a node network with possibly hun-
dreds of nodes, typical for national or international optical
transport networks, over a 10-period horizon, we obtain an
optimization model that could have even millions of vari-
ables that explicitly appear in the nonlinear component of
the objective.
Another modeling component of current interest, not con-

sidered in Lanning et al. (2000), is that of survivability. In
the context of traditional network design problems, surviv-
ability was considered in Alevras et al. (1997), Bienstock
and Saniee (2001), Bienstock and Muratore (2000), Stoer
and Dahl (1994), and others. Survivability modeling seeks
to ensure reliable communications in the presence of pos-
sible failures. When considering optical transport networks,
one way to achieve this end is to have multiple nonoverlap-
ping paths between every node pair, with enough capacity
allocated so that recovery from a link failure is guaranteed.
Several specific routing and protection schemes that need
different formulations will be considered in the following
sections. In terms of our optimization model, the survivabil-
ity feature calls for additional variables used to specify the
rerouting of traffic when a network failure occurs. Formula-
tions of some capacity-efficient survivability schemes, such
as shared protection, require the introduction of new flow
variables whose number is again on the order of N 2T .
A third feature not addressed in Lanning et al. (2000),

and implicit in the prior paragraph, concerns routing
schemes—in the case of a ring network, routing is trivial.
Typically, standard network design models have assumed
that any path may be used to route traffic (for exceptions,
see Bley et al. 2000, Günlük et al. 1996). In realistic set-
tings, however, one cannot route using arbitrary paths—for
example, allowable paths are typically limited in length, or
they may be constrained by an underlying routing proto-
col. In general, the decision as to which paths can be used
may be defined somewhat idiosyncratically, and for opti-
mum flexibility in the design of an algorithm, it should be
assumed that an allowable path family is given as an input
to the problem. The restriction to a (potentially large) given
path family will almost certainly increase the difficulty of
the model.
Clearly, a decision-support tool that could handle large,

complex networks over many time periods, while incor-
porating survivability and routing features, and, of course,
the price/demand model, would be of great strategic
importance—it would serve as a means to forecast future
demand trends, and to ascertain the interplay between dif-
ferent price/demand models and estimations of future per-
unit capacity costs.
In this paper, we present the development of such a tool.

First, we extend the model in Lanning et al. (2000) so as
to incorporate all the features we described above. Sec-
ond, we develop and test an optimization algorithm geared
for large instances. Our algorithm is able to handle very
large problems endowed with all of the above modeling fea-
tures in reasonable time, while providing feasible solutions
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whose net present value is guaranteed to be within a small
tolerance of the optimum. Here, we stress once more that
the optimization problems we tackle are truly difficult. As
we will show, general-purpose commercial solvers prove
unequal to the task. Finally, our solution techniques are
robust in the sense that they can handle a broad range of
models without modification.
The rest of this paper is organized as following. In §2, we

present a detailed description of our overall problem. In §3,
we present a mathematical formulation of the optimiza-
tion model. Our solution techniques are presented in §4,
and §5 presents computational experiments. Section 6 con-
tains concluding remarks.

2. Modeling
In this section, we discuss several key concepts and
assumptions of the pricing and capacity-planning model
presented in this paper. The scope of our study is out-
lined in Figure 1 and is explained as follows. First, the
model we use differs fundamentally from the norm in that
demand is not given in advance. Rather, based on a given
price-demand relationship, we make pricing decisions so
as to generate corresponding amounts of demands and, as
a result, revenues. Next, routing and protection decisions
relate generated demands to link capacity requirements.
These requirements are satisfied by the deployment of
transmission systems, whose availability, cost, and capacity
are prespecified as a technology “roadmap,” the principal
ingredient of which is that it models (per-unit) capacity
costs that decrease over time.
Thus, pricing decisions and capacity planning are inter-

related, as installed capacity must be sufficient to route
the generated demands; and the issues of pricing, routing/
protection, and capacity planning are embedded in the over-
all optimization framework, whose objective is to maximize
the net present value of the total cash flow of all planning
periods.
We note that the general topic of combining resource

allocation with revenue management has been taken up
in other problem settings, notably in supply chain man-
agement; our price-demand relationship described below
(and close variants) has been studied in that context. See
Federgruen and Heching (1999), Chen and Simchi-Levi
(2002), and references therein for recent results.

Figure 1. Model framework.
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In the rest of this section, we discuss the precise details
of our models.
Throughout this paper, we will model the network by a

graph G = �N �L�, where N is the set of nodes and L is
the set of physical links (rights-of-way). Pairs of nodes in
the network are denoted by � ∈N ×N . We also denote the
length of the planning horizon by T , and index each period
by t = 1� 
 
 
 � T .
We will first describe the individual components of our

model; a complete formulation that puts together these
components is given in §3.

2.1. Price-Demand Relationship

We first introduce the notion of the price elasticity of
demand.
Let dt

� � 0 be the demand between node pair � in
period t, which relies on price per unit of demand pt

� � 0.
The price elasticity of demand is defined as the negative
ratio of the percentage change in demand to the percentage
change in price, i.e.,


t� =−�dt
�

�pt
�

pt
�

dt
�




Following Lanning et al. (2000), we assume that 
t� is con-
stant and solve the above differential equation to arrive at
the following price-demand relationship:

dt
� =At

��p
t
��

−
t� 
 (1)

The revenue Rt
� collected from node pair � in period t

is then

Rt
� = pt

�d
t
� = �At

��
1/
t� �dt

��
1−1/
t� 
 (2)

In this paper, we assume that 
t� > 1 for all � and t.
Therefore, Rt

� is an increasing and concave function of dt
� ,

i.e., the carrier always receives more revenue by carrying
more demand, but the slope of revenue growth declines as
demand volume increases.
In our model, dt

� will be a decision variable, with price
implicitly determined through the demand function (1).

2.2. Routing and Protection

In fiber transport networks, node-pair demands give rise
to required link capacities through routing and protection
design. The latter is of vital importance: It is mandatory
to allocate capacity to protect carried traffic so as to be
able to weather a failure, such as a fiber cut or equipment
outage. Typically, all traffic affected by a failure must be
rerouted. There are many possible schemes for ensuring
survivability, each characterized by a particular trade-off
between efficiency of capacity use and complexity of the
implementation. See, e.g., Alevras et al. (1997).
In this paper, we consider several routing/survivability

schemes under the common assumption that for each node
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pair, there is a preselected set of disjoint paths to carry the
demand; we must choose which paths will be used and how
much to route on each path. We will assume that at most
one failure can occur, and that in the event of a failure we
must be able to reroute all affected traffic.
There is an added modeling benefit that ensues from

regarding the set of allowable paths as an input to the opti-
mization. The reason for this is that in a realistic applica-
tion, the question of which paths can be used to route traffic
may be outside the scope of the optimization process, e.g.,
it may be determined by some qualitative service require-
ments. It is worth discussing this point with a little more
detail. In the traditional network design literature, in partic-
ular in work with an optimization focus (especially integer
programming aspects of network design), it is frequently
assumed that the optimization algorithm has complete con-
trol over routing decisions. That is to say, the optimiza-
tion engine produces the paths used to route demands.
From a networking standpoint, this is usually not a real-
istic assumption, as the optimization may route demands
using an excessive amount of “splitting” over many paths,
or may produce overly long and circuitous paths, in par-
ticular when there is a survivability requirement. A more
satisfactory framework is one where a limited path fam-
ily is input to the optimization engine: Then, the problem
becomes that of choosing paths (and corresponding traffic
amounts) from among this family. For example, the path
family may embody simple structural restrictions (such as
limited path length), or may reflect idiosyncratic business
objectives of the network operator, or may describe con-
straints that are imposed on the network operator, such as
being forced to use an existing protocol to route traffic (see
Bley et al. 2000).
In fact, all of the above restrictions may well arise at the

same time. This makes their incorporation into a mathemat-
ical programming model problematic, because, typically, it
is impossible or extremely costly to describe the allowable
set of paths through the use of, e.g., linear inequalities.
Thus, in this paper we assume that an explicit path family
is given—the precise nature of the family is irrelevant to
the design of our solution procedures.
Let ���� be the set of candidate paths for demand

pair �—recall that dt
� measures the amount of demand

for � at time t. These paths, as discussed above, are
assumed to be pairwise disjoint. Also recall that dt

� is a
variable: It will be determined by the optimization. Denote
f t
r � 0 as the amount of flow carried on path r in the nor-
mal (nonfault) condition, and �t

r ′�r�� 0 as the amount of
flow diverted from route r to r ′ when r is disrupted by
failure (r� r ′ ∈ ����, and �t

r ′�r� = 0 if r ′ = r). It follows
that to carry all demand under the normal condition,∑
r∈����

f t
r = dt

� � (3)

and to restore all traffic when failure occurs,∑
r ′∈����

�t
r ′�r�= f t

r ∀ r ∈����
 (4)

There are two alternate models that can be built on these
equations. In the first, and simplest, we assume that there
are given constants �tr and �t

r ′�r� such that

f t
r = �trd

t
� � where

∑
r∈����

�tr = 1 and �tr � 0�

�t
r ′�r�= �t

r ′�r� ∗ f t
r � where∑

r ′∈����

�t
r ′�r�= 1 and �t

r ′�r�� 0


In the second model, f t
r and �

t
r ′�r� are decision variables

to be optimized by the model, subject to (3) and (4). The
second approach will, of course, typically produce better
solutions, at the cost of increased problem size.
Regardless of which approach we take, on link l at time t

the total bandwidth that is consumed can be expressed as
the sum of two terms:(∑

�

∑
r∈�����l∈r

f t
r

)
+ ztl
 (5)

In this expression, the summation in parentheses is the
amount of bandwidth used for carrying traffic on primary
routes, while ztl � 0 is the amount of (“redundant”) band-
width used for protecting traffic on other routes when a
failure occurs.
There are different ways for planning backup capacity,

resulting in different formulas for ztl . One approach is to set
aside dedicated protection capacity for each demand, i.e.,

ztl =
∑
�

z̄tl���� where z̄tl�����t
r ′�r�

∀ l ∈ r ′� ∀ r� r ′ ∈����� r �= r ′
 (6)

This ensures that for each demand dt
� , when any route r

fails, every link l on a protection route r ′ has enough
capacity to carry �t

r ′�r�, which is the amount of traffic
rerouted to r ′.
A more efficient but complicated approach is to allow

protection bandwidth to be shared by different demands. In
this case, we first define for each pair l, l′ of distinct links,

z̃tl�l
′�=∑

�

∑
r∈����� l′∈r

∑
r ′∈����� l∈r ′

�t
r ′�r��

as the amount of redundant bandwidth consumed on link l
to protect traffic against the failure of l′. The equation
shows that when l′ fails, all paths r that contain the link
are disconnected, and flows on them are rerouted to some
backup paths r . The redundant bandwidth needed on l is
then the sum of rerouted traffic, �t

r ′�r�, for all r that con-
tains link l. To satisfy rerouting requirements in the pres-
ence of any link failure, the redundant capacity on link l
should be the maximum of protection bandwidth set aside
for each failure scenario, i.e.,

ztl � z̃tl�l
′�

for each l′ �= l.
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To summarize, we formulate flow values in two ways:
We either make them prespecified fractions of the corre-
sponding demand variables (in which case the flows do not
appear in the formulation as explicit variables), or include
them in the optimization model as decision variables. There
are also two ways to derive required link capacity from
flows; one allows the sharing of protection bandwidth by
multiple demands and the other does not. The combina-
tion of these options generates four routing and protection
schemes. The two that do not allow sharing of link protec-
tion capacity are called single-demand protection with fixed
percentage (SDP), and single-demand protection with no
fixed percentage (SDN). The other two that allow sharing
are called multiple-demand protection with fixed percent-
age (MDP), and multiple-demand protection with no fixed
percentage (MDN).

2.3. Capacity Planning

Our model deploys capacity on the links of the network—
at each time period, there must be enough capacity to cover
the required bandwidth on each link, as described in Equa-
tion (5). Of course, the combined pricing/routing/capacity
optimization model that we will describe makes all deci-
sions simultaneously, to maximize net present value of
profit, but in this section, we focus on the capacity compo-
nent. Our model uses continuous variables to model capac-
ity decisions. We will comment on the rationale for this
approach at the end of this section. First, we will provide
a broad description of our model.
Our primary modeling goal is to incorporate the empiri-

cal fact that per-unit capacity costs are expected to decrease
over time. This is due to improving economies of scale,
a result of improving technologies. Our numerical data
reflect these effects through a simple “technology roadmap”
that posits a progressive decrease of per-unit capacity costs
as time goes by. Thus, our experiments reflect the interplay
between our price/demand relationship and the technology
roadmap.
For additional discussion, please refer to Raskina (2003).

Also see Dixit and Pindyck (1994, especially Chapter 11)
for related material from an economic viewpoint. We will
now describe our detailed capacity model.
For a link l and time period t, we denote by ctl the cost

of deploying one unit of capacity on link l at time t. This
cost is paid at time t. Having deployed capacity at time t,
this capacity can be kept in the link for use during future
time periods, or can be retired (at zero cost) at future time
periods under a retirement schedule of our choice. On the
other hand, each unit of capacity that is not retired incurs a
maintenance/operating cost during each future time period
that it remains in operation. For time periods 1� s < t � T ,
the cost incurred by each unit of capacity deployed in link l
at time s and still in operation at time t is denoted by cs� tl

(which is paid at time t).
We will use two types of variables:
(1) For each link l and time period 1� t � T , set ytl =

total capacity deployed on link l at time t, and

(2) For each link l and time periods 1� s < t � T , set
ys� tl = amount of capacity installed on l at time s, which
we still keep in the network at time t.
Using these variables, the cost that we incur for at time t

deploying and maintaining this capacity configuration on
link l is

ctl y
t
l +

∑
s<t

cs� tl ys� tl 


Further, we have to have enough capacity in link l at time t
to handle the load on this link. Using Equation (5), this is
expressed as

ytl +
∑
s<t

ys� tl −
(∑

�

∑
r∈����� l∈r

f t
r

)
− ztl � 0�

where the first two terms indicate the total capacity we
have available on l at time t. Finally, we need constraints to
describe the possibility of capacity retirement. Put in other
words, we want to mandate that the amount of capacity that
can be carried over from one period to the next should not
exceed the amount that is currently in use. Thus, we have

ys� s+1l � ysl

for each l and 1� s < T , and

ys� tl � ys� t−1l

for each l and 1� s < t− 1< T .
Finally, we impose ys� tl � 0 for all s, t, and l.

2.3.1. On the Use of Continuous Variables. In a tac-
tical network design setting, “capacity” is deployed by
means of discrete transmission “systems.” Typically there
are a number of available different system types (e.g., tech-
nologies) with different cost/performance profiles. In addi-
tion, deployed capacity systems must be “configured”—this
entails making decisions about configuration of subcompo-
nents of the systems (ports, interfaces, cables, etc.). The
configuration of each deployed system affects the actual
capacity of that system and its cost, and also constrains
the configuration of other transmission systems. In network
design models, the discrete nature of the transmission sys-
tems, as well as their configuration, is handled by relying
on mixed-integer programming formulations. These formu-
lations draw heavily on precise technical knowledge of
the existing transmission technologies. For example, sup-
pose that there are two available transmission systems, one
with throughput 48, and another with throughput 96. Then,
we would describe the capacity constraint on link e using
an inequality of the form

re − 48x1e − 96x2e � 0
 (7)

Here, re is a continuous variable used to describe the total
load on link e, while x1e and x2e are integer-valued variables
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used to describe the number of systems of throughput 48
and 96 that we purchase for link e.
In addition, tactical models assume fairly accurate

knowledge of demand levels, which are not decision
variables.
In this paper, however, we do not consider a tactical

network design model. On the contrary, ours is a strate-
gic, multiyear model devised to extract long-range infor-
mation. Namely, we would like to predict demand levels,
as a function of our projected price/demand relationship.
The usefulness of this type of model is that it can be used
to predict future profit levels, future cash flows, resource
needs, and so on. An important point is that when using,
say, a 10-year model, it is neither feasible nor desirable to
use a precise description of the transmission technologies—
in particular, we cannot even know what technologies will
be available during the later stages of the planning horizon
(historically, such technologies have changed rapidly, with
steeply decreasing per-unit costs). As a result, a detailed
mixed-integer programming model becomes an unneces-
sary hindrance—restricting the model to the set of tech-
nologies that are known at the start of the planning horizon
would limit the scope of the model.

3. The Formulation
In this section, we provide the complete nonlinear program-
ming formulation of our model, summarizing what we dis-
cussed above. Below we refer to this formulation as MUL-
TIREV.
Our formulation describes decisions over T periods.

For 1 � t � T , let ht denote the discount factor used to
weigh cash flows at time t. The objective function is for-
mulated as

maxF �d� y�≡
T∑
t=1

ht

[∑
�

�At
��

1/
t� �dt
��

1−1/
t�

−∑
l

(
ctl y

t
l +

∑
s<t

cs� tl ys� tl

)]

 (8)

In the above equation, items inside the square brackets
reflect the cash flow in period t, where the first summa-
tion refers to the revenue (see §2.1), aggregated over all
node pairs, and the second summation refers to the cost
(see §2.3), aggregated over all links. Thus, the objective,
which we seek to maximize, is the sum of discounted cash
flows, or net present value.
Our formulation has two broad sets of constraints. The

first set models the fact that capacity purchased in a given
period can be reused in the next period (and in future
periods), while at the same time allowing the possibility of
“retiring” capacity at any time.

ys� s+1l − ysl � 0 (9)

for each l and 1� s < T , and

ys� tl − ys� t−1l � 0 (10)

for each l and 1� s < t− 1< T .
The second set of constraints requires that in any period

there should be enough capacity on each link to carry and
protect all traffic.

ytl +
∑
s<t

ys� tl −
(∑

�

∑
r∈����� l∈r

f t
r

)
− ztl � 0
 (11)

Flow variables f t
r and protection bandwidth ztl are related

to demand variables dt
� in different ways, depending on

routing and protection schemes.
Case 1. In the case of SDP, for simplicity of demonstra-

tion, the formulation of ztl below, as well as that for Case 3,
is based on the assumption that paths r ∈���� are disjoint
from each other. This restriction can be easily removed by
grouping nondisjoint paths and defining new flow variables
associated with groups. This extension will not affect our
main point, which is the linear structure of constraints.

f t
r = �trd

t
� � and ∀ t� l� ztl �

∑
�

max
r� r ′∈����� l∈r ′

'�t
r ′�r�f

t
r (�

(12)

where �tr , �
t
r ′ are constants that are an input to the algo-

rithm. Here, the f t
r are not variables—rather, we substitute

the first equation in (12) into, e.g., (11). The ztl are decision
variables.
Case 2. In the case of MDP, the quantities �tr , �

t
r ′ , and f

t
r

are as in the previous case, but instead we impose

ztl �
∑
�

dt
�

[ ∑
r∈����� l′∈r

( ∑
r ′∈����� l∈r ′

�t
r ′�r�

)]
∀ l′ �= l
 (13)

Case 3. In the case of SDN, f t
r are decision variables,

and we impose the constraint∑
r∈����

f t
r = dt

� 
 (14)

To specify ztl , we define another set of decision vari-
ables, �t

r ′�r�, representing the amount of traffic rerouted to
route r ′ if the primary path r fails. We impose∑
r ′∈����

�t
r ′�r�= f t

r 


Let ��t
r ′���=maxr∈����� r ′ �=r �

t
r ′�r�. Then, we also impose

ztl =
∑
�

∑
r ′∈����� l∈r ′

��t
r ′���
 (15)

Case 4. In the case of MDN, f t
r are decision variables

constrained by Equation (14), and ztl , the constraint we
impose, is

ztl �
∑
�

∑
r∈����� l′∈r

∑
r ′ �=r� l∈r ′

�t
r ′�r�� (16)

where �t
r ′�r� is defined as in the previous case.

Finally, all variables are assumed to be nonnegative.
We emphasize that the decision variables appearing in

our model can be divided into two categories. Those vari-
ables in the first category, d = )dt

�*, are nonlinear in the
objective function but linear in all constraints; while those
in the second category, w= )f t

r � y
t
l � y

s� t
l � ztl��

t
r ′�r�*, are lin-

ear in both the objective and constraints. We will exploit
this problem structure in developing our algorithms.



Bienstock et al.: Combined Network Design and Multiperiod Pricing
Operations Research 54(2), pp. 261–276, © 2006 INFORMS 267

4. The Algorithm
In this section, we describe a computationally efficient
algorithm to solve MULTIREV to a practicable tolerance.
One of our goals in the design of this algorithm is that
it should be scalable: Its running-time performance should
deteriorate gracefully as the problem size increases. Moti-
vated by the nature of MULTIREV (in particular, its multi-
year nature and the inherent inaccuracy of the input data),
we view this scalability goal as more significant than that
of obtaining extremely accurate solutions, and this view has
shaped our overall design of the algorithm. We will return
to this topic later.
Note that an instance of MULTIREV can be very large

even when the underlying network is of moderate size. For
example, a network with 50 nodes and 70 links consid-
ered over 14 time periods can result in a formulation with
approximately 60,000 variables for the MDN model. The
formulation resulting from a larger network with 150 nodes
and 800 links over the same time horizon will already have
over one million variables for the same model. The large
number of variables is primarily due to the complex rout-
ing component of our model—every pair of nodes, in every
time period, constitutes a commodity, which must be routed
using the given path families.
The nonlinear objective function in MULTIREV strongly

suggests the use of an approach that relies, at the core,
on the use of Newton’s method or a similar second-order
method (see Luenberger 1989, Gill et al. 1991). The attrac-
tiveness of such an approach is, however, tempered by the
risk that the complex structure of the constraints, and the
large size of the models, will conspire to turn the necessary
matrix computations into an insurmountable obstacle. This,
in fact, is precisely what we found when testing general-
purpose solvers, which proved unusable, as will be detailed
in §5.
Thus, the challenge at hand is to develop a second-

order method that intelligently leverages the structure of
the model so that the critical computational matrix algebra
is only carried out on “small,” sparse matrices.
In this section, we provide a high-level description of

an algorithm that successfully relies on this approach, with
enough details for the purposes of this paper. For a com-
plete description of the algorithm and related details, see
Raskina (2003).
To motivate our algorithm, note that the objective func-

tion to be maximized in MULTIREV, F �d� y� (see Equa-
tion (8)), can be written as

F �d� y�=R�d�− cT y� (17)

where R is the sum of present values of all revenues (and is
thus nonlinear) and cT y is the sum of present values of all
capacity purchase and maintenance costs, a linear function.
The key insight that we will use is that, for a given

demand vector d, the capacity vector y is chosen so that the
demands d can be routed at minimum cost. More precisely,

for a fixed-demand vector d = d̂, y is determined from d̂
by the solution of the linear program LP�d̂� given by

C�d̂�=min cT y

s.t. constraints (9)–(16)� (18)

where in (18) we are fixing demands at d̂. This statement
of the linear program is perhaps misleadingly simple, as we
have other decision variables besides capacities (for exam-
ple, percentages in the cases where these are variables).
Nevertheless, what we have is that, intuitively, having fixed
demands we should then choose capacities as cheaply
as possible. The following is a consequence of standard
results in linear programming theory (see Schrijver 1999
for background).

Theorem 1. Consider the function C�d�, which is the
value of the linear program LP�d�.
(a) C�d� is a piecewise-linear convex function of d.
(b) The space of all nonnegative demand variables is

the union of a finite collection of polyhedral regions
�1��2� 
 
 
 ��K , such that for any such region �j there is a
vector /j with the following property: For any d ∈ �j , we
have that C�d�= /T

j d.

Technical Note. The regions in (b) can be chosen to
have disjoint relative interiors but, for example, may over-
lap on lower-dimensional faces.

According to the theorem, inside each region the cost
function is linear in the demands. In view of this result, we
can recast our overall optimization problem as

max
1�j�K

max
d∈�j

)R�d�−/T
j d*
 (19)

Based on this observation, we can now state a “proto-
type” algorithm.

Step 1. Find an initial feasible solution, contained in
region �j for some j .
Step 2. Use a Newton-like method, and optimize R�d�−

/T
j d over �j . Let d̂ be the optimal solution.
Step 3. Use a first-order step to find a better solution

than d̂ in a different region �k. If no such improvement is
found, Stop: d̂ is optimal. Otherwise, reset �j ← �k, and
go to Step 2.
END.

The correctness of this ideal algorithm follows from the
fact that, as we will see below, the objective function is
a concave function of the demands. The essential simpli-
fication embodied by this algorithm is that the cost func-
tion is now linear in the demands, while, at the same time,
the dimensionality of the problem has been substantially
decreased. Nevertheless, Step 2 is difficult to implement:
It entails constrained nonlinear optimization. Another way
to put this is that, while running (say) Newton’s method,
a step may take us from a feasible solution in region �j
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to outside of this region. In spite of this difficulty, one key
property enjoyed by this algorithm is that, when we are in
the relative interior of the given region �j , we can cast our
problem as an unconstrained optimization problem in the
appropriate space of variables. Our actual algorithm, given
below in §4.2, uses this point of view. Another potential
difficulty lies in the fact that, quite likely, the total num-
ber of regions could be very large—but we do not need to
enumerate the regions in advance; they are simply “discov-
ered” in the course of the algorithm. We will return to this
point later.
To develop a complete algorithm, we also need a

starting-point heuristic to carry out Step 1, and we also
need a termination criterion that, unlike that in Step 3,
allows us to stop the algorithm early when it has achieved
sufficient accuracy. The heuristic is outlined next, while the
termination criterion is described in §4.3.

4.1. Outline of the Heuristic

The starting-point heuristic is quite simple and we will only
outline it here (for full details, see Raskina 2003). To under-
stand the heuristic, note that in problem MULTIREV there
is a separate demand for each pair of nodes—the amount
of the demand is controlled by the price of that demand,
as in Equation (1). One could, in principle, study a version
of the problem where demands are defined for only a cer-
tain restricted subset of all pairs of nodes. In other words,
we would be given, as an input to the problem, a subset
1 ⊆ N × N of all node pairs, and Equations (1) and (2)
would only be defined for node pairs � ∈1. All other con-
straints would be adjusted to reflect this restricted demand
set. It would be straightforward to adapt our algorithm to
consider such a restricted version of the problem, but in this
paper we are concerned with the case that 1=N ×N , and
all our computational tests are for instances of this type.
Nevertheless, the restriction is useful to develop heuristics.
Specifically, in our heuristic we repeatedly consider the ver-
sion of the problem where there is a demand for precisely
one node pair � (i.e., �1� = 1).
The heuristic consists of performing the following two

steps.
(H.a) Solve the optimization problem obtained by

restricting MULTIREV to one demand at a time. That is to
say, we focus on a single demand (a single node/destination
pair), and then solve the optimization problem: This
involves choosing prices and amounts for this demand (and
this demand only) over the entire planning horizon, and
also simultaneously choosing capacities so as to feasibly
route the demand during each of the time periods; all of
this done so as to maximize the present value of profit.
We stress that during this step all price/demand variables
for other demands (i.e., other node/destination pairs) are
removed from the model—the reader may view this as
restricting the model we have to a particular demand.
(H.b) The solutions obtained in (H.a) are simply put

together. This means that the prices, demands, flows (and,

when appropriate, percentages) obtained in (H.a) are used
verbatim, and we simply add (for each time period and
for each link) all capacity variables computed in (H.a)
(this includes z and y variables) so as to obtain a feasible
solution.
This heuristic is admittedly myopic—it ignores potential

savings that would result from intelligent capacity decisions
and how this would impact the pricing process. However,
on the other hand, the heuristic already does incorporate
some basic understanding of the nonlinear price/demand
relationship. As may be expected, on small, simple problem
instances the heuristic performs fairly well; less so on larger
and more complex instances (see Raskina 2003 for details).
In any case, all we require from the heuristic is that it
produce a feasible starting point, and it is the job of the
core optimization algorithm to refine this initial solution.
One point that should be clear is that each of the opti-

mization tasks in (H.a) is a significantly simpler problem
than MULTIREV—while the latter has on the order of N 2T
variables, each of the single-demand problems solved in
(H.a) has O�N +T 2� variables (in fact, this can be reduced
to O�T 2�) and is in addition far simpler. In the case of a
large network, this has a major impact on problem diffi-
culty, and as a result many solution approaches are likely
to be effective; we used a first-order method (see Luen-
berger 1989) to carry out (H.a) to reasonable accuracy with
small computational overhead. Briefly, first-order methods
are algorithms that at each iteration compute a step direc-
tion that maximizes the inner product with the gradient,
while maintaining feasibility. Once the step direction has
been computed, a line search is conducted so as to com-
pute the next iterate (which maximizes the objective along
the step direction). First-order methods are notorious for
slow convergence to an optimal solution in the case of non-
trivially nonlinear problems (such as ours)—but the risk
of slow convergence is mitigated by the relatively much
smaller size of the problem that we consider, and by the
fact that we do not really need to converge to a very precise
solution.

4.2. Core of the Algorithm

Now we return to the critical part of the algorithm, which
primarily corresponds to Step 2 in the above prototype. To
make this approach effective, we need to change our def-
inition of “region” a bit. Rather than viewing regions as
defining subsets of the demand space only, the regions we
will use involve all variables. However, the (critical) com-
ponent that in each given region the cost function is a linear
function of the demands will be maintained. From a stan-
dard nonlinear programming point of view, our method is
(essentially) an active-set method that operates in a reduced
space of coordinates. It differs from a standard active-set
method in that it treats the demand variables in a spe-
cial way, and that it only focuses on the capacity con-
straints. In this last regard, the method also bears some
resemblance to Lagrangian relaxation schemes, although it
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always maintains a primal feasible solution. Details can be
found in Raskina (2003); a similar algorithm was employed
in Bienstock (1996). See Luenberger (1989) and Fiacco
and McCormick (1968) for general background. Additional
comments concerning the design of our method are given
later.
The constraints of our optimization problem, including

nonnegativity, can be written as

−Pw+Qd� 0� (20)

where w is the vector containing all variables other than
demand variables. Hence, w includes not only the capacity
variables, but also the flow variables, and all other variables
as needed in the various versions of our model. Conse-
quently, with a slight abuse of notation, we denote the cost
incurred by w as cT w. This is an abuse of notation in the
sense that in Equation (17) the vector c was restricted to
the capacity variables, but we would rather not introduce
new notation.

Definition 1. A working set consists of a triple �I� J �K�,
where I is a set of rows of the matrix 'P Q(, J is a set
of w-columns, K is a set of d-columns, and such that the
submatrix of P indexed by I and J has full column rank.

Definition 2. Let �I� J �K� be a working set. We say that
a vector � �w� d̂� is consistent with �I� J �K� if:
(i) −P �w + Qd̂ � 0 with equality precisely for those

rows i ∈ I ,
(ii) J is the support of �w, i.e., �wj > 0 if and only if

j ∈ J , and
(iii) d̂k > 0 if and only if k ∈K.

Now we have the following (straightforward) results (we
refer the reader to Schrijver 1999 for basic linear program-
ming facts):

Lemma 2. Suppose that there is an optimal solution to
problem MULTIREV. Then, there is an optimal solu-
tion �w∗�d∗� that is consistent with some working set
�I∗� J ∗�K∗�.

Proof. Pick an optimal solution �w∗�d∗� such that, in
addition, the support of w∗ has minimum cardinality among
all optimal solutions. Because MULTIREV has an objective
that is linear in the variables w, standard linear program-
ming theory implies that the set of columns of P corre-
sponding to the support of w∗ is linearly independent. The
rest of the conditions follow similarly. �

Lemma 3. Let �I� J �K� be a working set. Then, there is
a vector / = /I�J �K ∈ R�K� with the property that, for any
vector � �w� d̂� consistent with �I� J �K�,

cT �w= /T d̂K
 (21)

Proof. Denote by PI� J the submatrix of P indexed by I
and J . Because PI� J has full column rank, it contains a
�J �×�J � invertible submatrix Z. Let �Q denote the submatrix
of Q indexed by the row set of Z. By definition of working
set and consistency,

�wJ =Z−1 �Qd̂�

where �wJ is the subvector of �w indexed by the column
set J . As a result,

cT �w= cTJ �wJ = cTJ Z
−1 �Qd̂� (22)

and the result follows because dk = 0 for k �K. �

As a consequence of Lemmas 2 and 3 we can now state
the critical result:

Lemma 4. Let �I� J �K� be a working set. Then, if �w�d� is
consistent with �I� J �K�, its objective value in the overall
optimization problem is

R�dK�−/T
I� J �KdK�

where dK is the subvector of d indexed by the columns K,
and, with a slight abuse of notation, R�dK� is the revenue
associated with d.

Using the above definitions and results, we state our core
algorithmic step.

Routine �� �w� d̂� Î� Ĵ� �K	

Initialization. We are given a working set �Î � Ĵ � �K� and
a vector � �w� d̂� that is consistent with �Î � Ĵ � �K�.
Step A. Using Newton’s method, solve the uncon-

strained optimization problem

u=maxR�d �K�−/T
Î� Ĵ � �Kd �K�

with solution d̄K .
Step B. Let �wĴ be the (unique) solution to

−PÎ� Ĵ �wĴ +QÎ� �Kd̄ �K = 0�

where PÎ� Ĵ and QÎ� �K are, respectively, the submatrices of P
and Q indexed by row set Î and column sets Ĵ and �K.
Step C. Define d̄ to be a vector of demands that

equals d �K on the column set �K and is 0 otherwise; and
similarly define the w-vector �w so that it agrees with wĴ

on the column set Ĵ and is 0 otherwise.
Step D. If � �w� d̄� is consistent with �Î � Ĵ � �K�, then

� �w� d̄� is feasible, and is optimal over all solutions consis-
tent with �Î � Ĵ � �K�. Routine exits and outputs � �w� d̄�.
Step E. Otherwise, � �w� d̄� violates a constraint (possibly

nonnegativity); hence, there is a maximum value 0<9< 1
such that

�w̆� d̆�

= �1−9�� �w� d̂�+9� �w� d̄�
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is feasible. Because 9 < 1, �w̆� d̆� satisfies with equality
some inequalities that are slack for � �w� d̂�. Then, without
loss of generality, �w̆� d̆� is consistent with a working set
�Ĭ � J̆ � K̆�.
We reset � �w� d̂�← �w̆� d̆� and �Î � Ĵ � �K�← �Ĭ � J̆ � K̆�, and
go to A.
END.

Comment. Essentially, this method can be viewed as a
Newton method that operates on reduced coordinates, but
the choice of which coordinates to eliminate is specific
to problem MULTIREV. From an intuitive standpoint, our
strategy in devising this algorithm went as follows: Step A,
at the core of routine :, is an unconstrained problem that
only uses the demand variables. Thus, during Step A, the
capacity variables and constraints have been effectively
removed (although of course they reappear in other steps).
This is a “good” idea in that, by removing the capacity
inequalities, the problem naturally tends to decompose on
separate problems that reflect the demand structure (this is
a feature shared with Lagrangian relaxation schemes for
solving, e.g., multicommodity flow problems). A complete
decomposition is not always possible because of the multi-
period structure of the problem, but nevertheless a substan-
tial simplification of the problem is attained. We have:

Lemma 5. Routine : is finite and always exits as in
Step D.

Proof Sketch. Any time that the routine executes Step E,
one more tight inequality is found, and henceforth the rou-
tine operates in a lower-dimensional face. Thus, the routine
must terminate in Step D. �

4.3. Termination Criterion

The primary termination criterion we use relies on a simple,
yet experimentally effective, upper bound on the optimum
discounted profit. This upper bound, furthermore, is already
obtained when running procedure :, and hence entails no
additional computational burden.
The key insight to understand the upper-bounding pro-

cedure lies in Theorem 1. To restate it, recall that the profit
function associated with a particular demand vector d is of
the form R�d� − C�d�, where R is the (discounted) rev-
enue function and C is the (discounted) cost of routing d.
Theorem 1 states that C�d� is convex, and that the space
of all demands is the union of a collection of polyhedral
regions �j , such that C is linear when restricted to any one
such region. As a result, we have:

Theorem 6. Let V ∗ denote the optimal value of MULTI-
REV. Suppose that �j is one of the regions, and let /j be
a vector such that C�d�= /T

j d for all d ∈�j . Write

V ∗
j =max

d
)R�d�−/T

j d*
 (23)

Then,

V ∗
j � V ∗
 (24)

Proof. First, we stress that in (23) the maximum is taken
over all d, not just all d ∈�j .
Further, as a technical point, both maxima are attained,

without loss of generality, if all capacity costs are positive.
In this case, R�d�−C�d� goes to −� as �d�→+�.
Now consider some other region d̂ ∈ �k. Then, once

more C�d� is linear over all d in this region, i.e., if d ∈�k,
then C�d�= /T

k d for some vector /k. In summary,

C�d�= /T
j d ∀d ∈�j � (25)

C�d�= /T
k d ∀d ∈�k
 (26)

Because C is in addition convex, we have

/T
k d� /T

j d ∀d ∈�k (27)

(to see this, it may help to think of the line segment joining
a point in �j and a point in �k). Thus, for any d ∈�k,

R�d�−C�d�=R�d�−/T
k d�R�d�−/T

j d� (28)

and now (24) follows by definition of V ∗
j in (23). �

Suppose that we temporarily think of a working set
�I� J �K� as defining a region �j . Then, each time we exe-
cute Step A in procedure : we are computing a new upper
bound on the value of MULTIREV, and we can use this
step to keep track of the best upper bound found so far.
Now note that, as shown in Lemma 4, the cost func-

tion C�d� is linear over the points consistent with any given
working set; consequently, if somewhat informally, we can
say that each polyhedral region �j is a union of working
sets. More precisely: It is the projection to the demand
space of those points that are consistent with a finite fam-
ily of working sets, all of which define the same linear
function /T

I� J �Kd. Hence, Theorem 6 applies, and the upper-
bounding procedure described in the previous paragraph
can be used.

4.4. The Complete Algorithm

Using §§4.2 and 4.3, we can now systematically lay out
a formal algorithm to solve MULTIREV derived from our
prototype algorithm given above. As the procedure iter-
ates, it will keep track of two values: vF , the maximum
objective value attained by any feasible solution found
by the algorithm so far, and vU , an upper bound on the
value of the problem. The algorithm uses two parameters,
> and ? , to handle termination. For full details, see Raskina
(2003).

Step I. Use the starting-point heuristic to find an initial
feasible solution � �w� d̂�. Without loss of generality, � �w� d̂�
is consistent with some working set �Î � Ĵ � �K�. Let vF be
the objective value associated with this solution, and set
vU ←+�.
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Step II. Run routine :� �w� d̂� Î � Ĵ � �K�, which outputs a
vector � �w� d̄�. Let ū be the smallest value u computed in
any execution of Step A during this run of :. Reset vU =
min)vU � ū*.
Step III. Reset vF to be the objective value of the solu-

tion � �w� d̄�. If vF has not improved by at least >% during
the last ? iterations, exit.
Step IV. Perform a first-order step from � �w� d̄�, to find

a better solution, � �w� d̂�. Go to Step II.
END.

In our implementation, we used > = 5 (i.e., 5%) and
? = 10. How effective would we expect this algorithm to
be? In the worst case, it could display the classical behavior
of a first-order algorithm, i.e., severe tailing-off reflected by
too many iterations of Step II. Another potential difficulty
is that, if the optimum is highly degenerate, the algorithm
might also use too many iterations. On the positive side,
however, we have that:
(a) Our method greatly reduces the effective number of

variables used at any time—this could make the difference
between being able to run a problem or not,
(b) Within a region our method is “careful:” It imple-

ments a second-order algorithm, and
(c) The anecdotal experience with first-order methods is

that while they can tail-off, they also can provide substan-
tial improvements during the first few iterations.
Point (c) is important: As we have stated before, the

nature of the application demands an algorithm that scales
well with problem size, with less emphasis on being able
to obtain solutions of very high accuracy.

5. Computational Experiments
We tested our algorithms using real network data. This data
involved international long-distance networks. The data
included the (geometrical) length of links.
First, we used five medium-sized networks; by varying

some of the numerical parameters we generated a total of
7,750 problem instances of MULTIREV on which we ran
our implementation.
In addition, to stress-test our algorithm, we used five

large networks to generate a set of 50 problem instances.
The medium-sized problems were solved on a 336 MHz
UltraSPARC machine with 1.7 GB of RAM, while the tests
using larger networks were conducted on a 1.89 GHz Xeon
with 3 GB of RAM.
We will next describe how we constructed the problem

instances.

5.1. Inputs

5.1.1. Cost Data. We generated capacity investment
and maintenance data that are consistent with our modeling
goals, as described in §2.3. To do so, for each link l we gen-
erated the per-unit capacity investment at time t, ctl , and the
per-unit maintenance costs, ct� sl (see §2) for 1� t < s � T .

The values ctl should be nonincreasing (e.g., c
t+1
l � ctl ) so as

to model the emergence of improved technologies. Finally,
to make the data realistic, we wanted to incorporate into
the costs a dependence on the geometrical length of the
links.
To achieve these ends, we first set

ctl = @t−1Al
 (29)

Here, Al is the geometrical length of link l, and 0<@ < 1
is a constant chosen in a manner described below. The point
of Equation (29) is that in any given time period, the unit
capacity investment costs are proportional to link lengths,
and that they become progressively cheaper as time goes
by. Note that ideally one might want some proportional-
ity constant in (29)—but the objective of MULTIREV (see
Equation (8)) can be scaled without changing the nature of
the problem.
Second, we generated maintenance costs of the form

ct� sl = ctlBC
s−t

for any link l, and each pair of time periods t < s, where
B < 1 and C > 1. This models the case where (per-unit)
maintenance costs are a fixed fraction of (per-unit) invest-
ment costs, but become more expensive with age. For our
experiments, we set B= 0
05 and C= 1
05.

5.1.2. Price-Demand Data. As discussed in §2.1, we
used a price-demand relationship of the form dt

� =
At

��p
t
��

−
t� for any given service � . Denoting by N the
number of demands (e.g., the number of node pairs), we
set At

� =A/N for all t and � , where the parameter A was
randomly chosen using a procedure described below. This
procedure was also used to create random values to the
parameters 
t� .

5.1.3. Network Topology. In Table 2 we describe
basic properties of networks and describe resulting
instances of MULTIREV. Columns 2 and 3 show the num-
bers of nodes and links in each network. The next three
columns show the number of node pairs that have maxi-
mum of two, three, and four disjoint paths, respectively. No
node pair had more than four disjoint paths. This is due to
the sparsity of the underlying graph, typical in real trans-
port networks. Thus, the total number of paths that can be
used in optimization is limited to four in all five networks.
(In large instances of the problem, we used up to 12 disjoint
paths per node pair, see Table 11.)
The paths were generated using the SPIDER code (Davis

et al. 2001), a tool that generates paths so as to achieve
various survivability criteria.
The columns headed “Vars,” “Const,” and “Nonzero”

describe, respectively, the number of variables, constraints,
and nonzeros in the optimization problem. These values
are determined by the network size and the length of time
horizon, which is set to 14 in all cases.
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Table 1. Data parameters.

Â �@ 
̂

50,000 0
85 1
3
500,000 0
9 1
4

5,000,000 0
95 1
5

5.1.4. Numerical Parameters. In summary, to com-
pletely specify a problem instance, we had to assign values
to three types of parameters: @ (in Equation (29)), A,
and 
t� .
To do so, we used the following procedure.
1. First, choose a triple �Â� �@� 
̂� from among the values

in Table 1.
2. Second, having chosen �Â� �@� 
̂�, we then choose A

randomly from a uniform distribution in the interval
�4Â/5�6Â/5�. Similarly, @ is chosen from a uniform dis-
tribution in � �@−0
05� �@+0
05�. Finally, each 
t� is chosen
from a uniform distribution in �1�2
̂− 1�.
Note that, using this procedure, the mean of A is Â, the

mean of @ is �@, and the mean of 
t� (for each � and t)
is 
̂. All possible triples �Â� �@� 
̂� in Table 1 were used
(a total of 27 combinations), and for each triple, 50 problem
instances were generated as indicated for a grand total of
1,350 data sets.

Table 2. Medium-sized problems.

Node pairs with
X disjoint paths

Net Nodes Links X = 2 X = 3 X = 4 #Vars Const Nonzero

snet1 14 22 36 49 6 3�584 2�310 17�472
snet2 38 48 670 30 3 12�782 2�940 96�222
snet3 47 55 1�043 38 0 20�909 5�775 196�623
snet4 49 64 1�125 48 3 23�870 6�720 223�272
snet5 70 94 2�006 400 9 43�680 9�870 431�382

Table 3. Performance summary—SDP model.

Â �@ 
̂

Net Gap (%) 50,000 500,000 5,000,000 0.85 0.9 0.95 1.3 1.4 1.5

snet1 Ave 0
00081 0
00077 0
00082 0
00062 0
00078 0
001 0
00098 0
00075 0
00065
Min 0 0 0 0 0 0 0 0 0
Max 0
0085 0
0082 0
0088 0
0068 0
0081 0
0098 0
0096 0
0082 0
0071

snet2 Ave 0
006 0
0061 0
0061 0
0041 0
006 0
008 0
0086 0
0062 0
004
Min 0 0 0 0 0 0 0 0 0
Max 0
051 0
052 0
051 0
039 0
051 0
063 0
071 0
053 0
04

snet3 Ave 0
019 0
018 0
016 0
009 0
017 0
044 0
039 0
018 0
01
Min 0 0 0 0 0 0 0 0 0
Max 0
078 0
076 0
075 0
064 0
076 0
088 0
089 0
075 0
065

snet4 Ave 0
019 0
023 0
021 0
011 0
021 0
031 0
033 0
021 0
012
Min 0 0 0 0 0 0 0 0 0
Max 0
11 0
125 0
14 0
1 0
13 0
25 0
21 0
12 0
096

snet5 Ave 0
021 0
024 0
025 0
012 0
023 0
041 0
033 0
022 0
013
Min 0
011 0
014 0
009 0
007 0
013 0
018 0
019 0
014 0
007
Max 0
193 0
198 0
21 0
176 0
2 0
29 0
28 0
196 0
18

Finally, we used the discount factor ht = 0
86t−1 for
every time period t except for period T �T = 14�, where we
let hT take a larger value to account for the terminal value
of installed network capacity. In our example, hT = 2
0,
which is calculated based on the assumption of a 7% con-
tinuous cash flow growth after the planning horizon.

5.2. Test Results

We can now describe the results of our computational tests.
Table 3 shows the average, maximum, and minimum per-
centage error (“GAP”) yielded by our algorithm on differ-
ent parameter groups, while Table 4 presents running-time
information, both for runs using the SDP model. (Here the
percentage error is the relative gap between the upper and
lower bounds computed by the algorithm.)
Table 3 shows that the problem becomes easier to solve

as the elasticity 
 increases and the yearly reduction rate @
decreases. On the other hand, the scaling constant A does
not appear to affect the performance. In addition, using a
smaller value of @ induces a large decrease in cost from one
year to another and helps to reduce the problem degeneracy,
thus allowing a faster convergence.
Tables 5 and 6 give summary performance data for the

algorithm, on the same data sets as above, for the SD
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Table 4. Average running time (sec)—SDP model.

Â �@ 
̂

Net 50,000 500,000 5,000,000 0.85 0.9 0.95 1.3 1.4 1.5

snet1 15 15 14 15 15 16 16 16 14
snet2 45 47 45 44 46 47 46 46 44
snet3 100 100 99 99 99 102 100 100 98
snet4 150 152 151 148 151 153 153 152 148
snet5 213 212 214 213 213 215 214 214 212

Table 5. Performance summary—SDN, MDP, and
MDN models.

Model Gap (%) snet1 snet2 snet3 snet4 snet5

SDP Ave 0
0008 0
0061 0
021 0
021 0
024
Min 0 0 0 0 0
007
Max 0
0098 0
071 0
089 0
25 0
29

SDN Ave 0
32 0
35 0
48 0
47 0
65
Min 0
22 0
17 0
2 0
21 0
4
Max 0
44 0
61 0
88 0
85 1
13

MDP Ave 0
27 0
29 0
33 0
33 0
41
Min 0
16 0
18 0
16 0
18 0
2
Max 0
39 0
43 0
52 0
59 0
64

MDN Ave 1
19 1
77 2
01 2
2 2
3
Min 0
82 1
16 1
29 1
56 1
45
Max 1
56 2
47 2
89 3
08 3
89

model without percentages (SDN), and the MD model with
(MDP) and without (MDN) percentages. Table 5 shows the
average and boundary optimality gaps, while Table 6 shows
the average running time.
An issue of interest is the relative effectiveness of our

starting-point heuristic. To obtain data on the performance
of the heuristic, we ran 27 additional models of the SDP
type. The results are presented in Table 7. The first three
columns concern the optimality gap attained by the heuris-
tic, while the last three columns are for the overall algo-
rithm. Note that while the heuristic is generally effective,
in some cases it is less so, and is substantially improved
upon by the algorithm.
Another relevant issue is the experimental convergence

rate of the algorithm, and the number of iterations it per-
forms. Recall that the algorithm iterates through Steps
II–IV as detailed in §4.4. We will refer to these as “major”
iterations to distinguish them from the iterations produced
by the call to routine : in Step II, which we will call
“minor” iterations. Figure 2 presents an overlay of five dif-
ferent runs of the algorithm on network snet5, plotting the
gap computed by the algorithm as a function of the major
iteration count. Thus, two of the runs terminated in six iter-
ations, and the remainder in 11 iterations, always achieving
a final gap below 1%.
A major iteration count on the order of 10 was typical

for the snet1–5 instances. On these instances, the typical
minor iteration count was on the order of 50. In the much
larger problem instances that we will discuss in §5.4, the
minor iteration count was on the order of 1,000.

Table 6. Running-time (sec) summary—SDN, MDP,
and MDN models.

Model snet1 snet2 snet3 snet4 snet5

SDP 15
1 45
5 99
6 150
8 213
3
SDN 10 79 119 108 284
MDP 11 80 126 130 304
MDN 13 93 142 158 332

Table 7. Effectiveness of the heuristic and overall
algorithm (%).

Heuristic (%) Algorithm (%)

Ave Min Max Ave Min Max

snet1 2
12 0
61 4
06 0
32 0
22 0
44
snet2 4
33 1
81 6
81 0
35 0
17 0
61
snet3 5
14 1
71 10
09 0
48 0
20 0
88
snet4 5
51 2
36 8
32 0
47 0
21 0
85
snet5 3
24 0
79 8
60 0
79 0
28 1
13

5.2.1. Economic Interpretation of Results. Here we
will compare the behavior of the different models from the
perspective of the practical model that we discuss in this
paper.
One of the goals of our study was to analyze the impact

of survivability on profit. In particular, we would like to
study the effect on profit of using fixed percentage routing
schemes, and to compare the SD and MD models, as they
were designed to provide different degrees of survivabil-
ity, at potentially higher cost. Table 8 shows the (percent)
decrease in the optimal objective value when fixed per-
centages are used, and Table 9 demonstrates the average
increase in total profit when the MD model is used instead
of the SD model.
The average improvement is about 2% of the overall

profit for all cases considered. Thus, a weaker survivabil-
ity model offers a considerable increase in profit. On the

Figure 2. Convergence plots, showing the major itera-
tion counts in five different runs of the algo-
rithm in §4.4 on snet5.
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Table 8. Decrease in profit (%) when fixing
percentages.

Model snet1 snet2 snet3 snet4 snet5

SDN/SDP 1.5 1.7 1
6 1
8 1
85
MDN/MDP 1.6 1.9 1
86 1
91 1
9

Table 9. Change in profit (%)—SD vs. MD
comparison.

Model snet1 snet2 snet3 snet4 snet5

SDP/MDP 1
92 1
79 1
98 2
01 2
02
SDN/MDN 2
4 2
34 2
22 2
3 2
19

other hand, the decrease in profit resulting from using fixed
percentages is also about 2% on average. However, it is
evident from Tables 5 and 6 that reducing the size and
complexity of the problem by using fixed percentages does
not provide a considerable decrease in the running time or
noticeable improvement of the algorithm performance. This
in turn implies that it is most likely not worthwhile to use
fixed percentages.

5.3. Comparison to Other Solvers

To evaluate our algorithm, we compared it against LOQO
(Vanderbei 1997) and SNOPT (Gill et al. 1997), two
well-known and highly regarded general-purpose nonlinear
solvers. Recall that Table 2 describes statistics on the opti-
mization problems.
Before we describe our comparison, we would like to

expand on the philosophy and purpose of the compari-
son. Inherently, a direct comparison between our solver and
a generic solver is both unfair and complex. Our solver
was designed to scale well for the specific instance of the
optimization problem MULTIREV with many degrees of
freedom, e.g., 1M–18M variables for problem instances
bnet1–5 (see Table 11), possibly at the cost of obtaining
less accurate solutions. In contrast, generic solvers are typ-
ically designed for much tighter convergence requirements,
possibly at the cost of scalability to large problem sizes.
For example, generic solvers may generate dense matri-
ces involving many variables and as a result will not scale
well beyond a few thousand variables. The critical point
we investigate in our comparisons is whether our algorithm
can solve realistic instances of problem MULTIREV with
modest accuracy, when generic solvers could not provide

Table 10. Performance comparison on real problems—average optimality gap (%) and
time (sec).

Solver snet1 snet2 snet3 snet4 snet5

LOQO 0
000001/30 0
000001/600 0
000001/720 0
000001/900 —
SNOPT 0
000001/90 — — — —
Our code 0
0008/15 0
006/46 0
018/100 0
021/152 0
023/213

a solution with high predefined accuracy. Is it possible to
lower the accuracy of generic solvers so that a fair com-
parison can be conducted with our scheme?
As we will see, the answer to this question appears to be

no—in fact, scalability proves to be an obstacle for generic
solvers regardless of desired solution accuracy. In some
sense, this is hardly surprising. For example, SNOPT is
not designed to handle many degrees of freedom; so-called
“superbasic” variables, which our formulation will produce
in large numbers, are stored in dense format.
In Table 10, we present a performance comparison

between our algorithm and the two solvers on the
Table 2 networks, using the SDP models that, as we have
described, produce comparatively easier problem instances.
The results in Table 10 describe, for each network, the aver-
age behavior on 20 random instances. AMPL was used to
input the problems to both LOQO and SNOPT. We tested
several settings for the control parameters for both solvers,
without noticeable improvement, and the runs below reflect
default settings. The LOQO runs used our heuristic solution
as the starting point (which proved beneficial). The SNOPT
runs used its default starting point.
In each cell of Table 10, we show the average optimality

gap (in percents) followed by the average running time, in
seconds. A “—” in a cell indicates that the solver failed
to solve any of the instances corresponding to that cell.
Failure occurred in one of three ways:
(a) Failure to converge in 30 minutes (run aborted).
(b) Solver could not run due to excessive memory

requirements.
(c) Solver crashed (core dump).
We stress that in the case of LOQO or SNOPT, each

solver had a consistent behavior with regards to failures—
either all runs corresponding to a network converged, or
they all failed. Also, in failures of type (a), at termination
the attained solution quality was typically poor (optimality
error of the order of 40%). Finally, in the case of network
snet5 most of the failed runs were of type (c).
It seems clear that the general-purpose solvers cannot

directly handle the larger medium-sized models. What is
more, in those cases where the solvers ran successfully, our
algorithm ran in significantly faster time while still provid-
ing a solution with negligible optimality error.
The primary difficulty experienced by LOQO and

SNOPT clearly appears to be caused by large-scale linear
algebra issues, which already arise in the Table 2 instances.
Conceivably, a general-purpose solver other than LOQO or
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Table 11. Larger problem instances.

Net Nodes Links Paths (min) Paths (max) Vars Const Nonzero

bnet1 100 500 3 6 745�500 406�000 5�299�700
bnet2 150 900 3 7 1�659�000 889�350 15�340�500
bnet3 200 1�500 3 9 4�336�500 1�850�100 40�267�500
bnet4 250 2�000 3 10 6�746�250 2�852�500 69�618�500
bnet5 300 4�500 4 12 18�053�700 5�558�700 311�100�300

SNOPT might do better. In the next section, we will address
this issue from the point of view of our primary area of
interest: scalability to large-network size.

5.4. Larger Problems

To study the performance of our algorithm in a more
comprehensive fashion, we also carried out tests involv-
ing 50 data sets arising from large, dense networks.
Table 11 describes the five larger-problem instances that we
generated.
The numerical parameters for these runs were chosen

using the same recipe as for the medium-sized problems;
but because these larger problem instances were likely to be
far more demanding problem instances, we only used the
triple Â= 50�000, 
̂= 1
5, and �@ = 0
95—recall that these
values generated the hardest instances on the medium-sized
data sets. For the same reason, the performance was tested
on the largest model (MDN). The triple �Â� �@� 
̂� was used
to generate 10 random triples �A�@� 
� as explained above
for each network. Thus, we considered a total of 50 large-
problem instances.

5.4.1. Comparing to Other Solvers on the Large
Models. Based on the comparisons given above, it is rea-
sonable to expect that LOQO and SNOPT will be unable
to directly handle the larger problems. In fact, our tests
showed that the underlying computational linear algebra
(for example, Cholesky factorizations) was a critical stum-
bling block: All runs using either solver either produced no
output (even after a very long time had elapsed) or were
aborted, by the solver. In some cases this resulted from a
“crash,” or core dump, and it is difficult to say exactly why
this happened, but it appears likely that this was due to
excessive memory requirements, despite having 3 GB of
physical memory available.
However, hypothetically, a nonlinear solver endowed

with an extremely efficient Cholesky factorization might
be able to mount a challenge against our method. There
are large numbers of nonlinear solvers (both academic
and commercial codes) that are available; we would like
to tackle our hypothetical question without engaging in
wholesale testing of every code. Fortunately, a simple test
turned out to provide a negative answer to our question.
CPLEX (1999) is known to have a very fast Cholesky

factorization scheme that makes effective use of sparsity,

and is thus a natural algorithm to test on the larger prob-
lems. However, CPLEX does not handle general nonlin-
ear optimization problems, making a direct comparison
impossible. On the other hand, CPLEX does solve (con-
vex) quadratic minimization problems. To accommodate
this issue, we replaced the nonlinear objective in MUL-
TIREV with its second-order Taylor series approximation,
evaluated at the solution computed by our heuristic, yield-
ing, after changing the sign of the objective, a single convex
quadratic program. While this negates a direct comparison
with our algorithm, it makes it possible to provide a clear
(negative) answer to our hypothetical question, as we will
see next. Table 12 shows a running-time comparison of our
algorithm (run on the nonlinear problem) with CPLEX (run
on the quadratic approximation of the problem).
As we can see from this table, CPLEX’s efficiency dete-

riorates rapidly as the network size and density increase,
while our algorithm shows stable and scalable performance.
From this test, we conclude that it is rather unlikely that
a general-purpose second-order method will dramatically
outspeed our implementation. Of course, it is conceivable
that a first-order method might “work”—but we are skepti-
cal, given the large size, nonlinear objective, and complex
constraints of MULTIREV.
Table 13 illustrates the optimality gap and the running

time of our algorithm on the large-problem instances.
On these problems, the number of outer iterations of

our algorithm (calls to routine :) was typically of the
order of 10, while the number of inner iterations (within

Table 12. Average running times on large models (sec).

Solver bnet1 bnet2 bnet3 bnet4 bnet5

CPLEX 2�341 7�982 14�324 18�943 ∗
(QP approx)

Our code 1�943 2�457 2�691 2�893 3,103

Table 13. Performance summary—optimality gap and
running time on the large models.

Gap (%) bnet1 bnet2 bnet3 bnet4 bnet5

Ave gap (%) 2
91 2
99 3
15 3
26 3
51
Min gap (%) 1
71 1
82 1
83 1
93 1
96
Max gap (%) 4
56 4
87 4
91 5
1 5
08

Ave time (sec) 1,943 2,457 2,691 2,893 3,103
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routine :) was much larger than on the smaller problems—
on the order of several hundred.

6. Conclusion
Our numerical results indicate that our approach leads to
a viable algorithm that provides a high-quality solution
within a reasonable time frame, and scales well with prob-
lem size. Note that the specific form of the nonlinear com-
ponent of the objective function is not essential for the
development of the algorithm. The idea of projecting out
the capacity variables and working only with the demand
or flow variables can thus be extended to different pric-
ing models as long as the resulting objective can be for-
mulated as a separable concave function. We expect that
this approach will prove efficient for other network design
problems with linear or concave objective functions.
Further, we have demonstrated that the integration of

pricing and design can be efficiently accomplished, and
that it should be possible to handle more detailed design
models (for example, using more sophisticated protection
requirements).
An interesting extension would be to incorporate sto-

chastic components into the price/demand relationship (as
in Federgruen and Heching 1999, Chen and Simchi-Levi
2002). Another would be to create a hybrid tactical-
strategic network layout model that serves to capacitate
networks in a medium-term setting while incorporating
both economic considerations and a more accurate model of
capacity systems. Some work in this direction is described
in Raskina (2003).
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