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1. Introduction

The recent trend in optical transport networks toward mesh topologies—driven primarily
by their capacity efficiency and flexibility—has led to the development of new survivability
schemes as well as numerical and mathematical tools to analyze and optimize the routing
and assignment of working and restoration capacity. To provide the desired availability,
communication networks must promptly restore traffic when a link or node fails. There
is, however, a trade-off between the time required for reestablishing the connectivity and
the amount of restoration capacity deployed in the network. Shared path-based restoration
schemes, which sometimes reroute traffic along a path that is disjoint from the working
path, have been shown in general to be more capacity efficient than link-based restora-
tion schemesl1-6]. However, the trade-offs often cannot be easily and readily evaluated
because of the lack of a general description of the extra capacity requirements that is ap-
plicable over wide ranges of network size and topology. It is the objective of this study to
provide a useful description of the requirements of shared path-based restoration capacity
for general mesh networks by formulating and deriving bounds and estimates of the average
extra capacity requirement analytically.

The detailed analysis and design of mesh networks with shared restoration requires
complex, and sometimes heuristic, algorithms and often requires significant computer re-
sources and long computation time. Optimum and near-optimum solutions can be accu-
rately determined with integer linear programming (ILP) and linear programming (LP)
techniques, which provide detailed routing information and required capacities; however,
these can become time consuming for large networks employing path-based restoration,
especially if the demand matrix is dense-§]. Analytical descriptions of the optimized
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solutions can significantly reduce the computation time when the user does not require spe-
cific knowledge of the details of the demand routing and may also provide valuable insights.
The lower bound for the extra capacity requirement for link-based restoration and also esti-
mations of the requirement for path-based restoration have previously been deggiiihed [
Other researchers have also derived the average restoration capacity specifically for mesh
toroid and chordal ring network§{9]. Previously we have shown that the extra capacity
requirements for path-based schemes in regular planar mesh networks can be approximated
by compact expressioni(]. Here we extend the formulation and derivation of the extra
capacity requirements for nominally planar mesh networks to nonregular nodal degree and
a wider range of demand profiles and introduce a new estimator for path-based restoration.
We test this more general formulation by comparing it with simulations for instances of
nominally planar networks having both regular and nonregular nodal degree and for uni-
form and nonuniform demand. We also compare our approximate model with results for
uniform mesh toroid networks.

In Section2 we define the network variables and state the problem explicitly. In Sec-
tion 3 we derive the global expectation value of the extra capacity for both link restoration
(LR) and path-disjoint restoration (PRd). In Sectibmve compare our expressions with
simulation data and conclude the paper in Secsion

2. Network Model

In this section we establish the relationships between the working and restoration capacity
and the network variables using the Network Global Expectation model formaligm [

12]. The average value of a segf{ of the variableq will be represented byq), and its
variance will be represented I (g). The covariance of two setp) and {qg} having the

same number of elements is represented®p, q). The network is represented as a graph
G(N,L), where f} is the set of nodes andll} is the set of links andN andL are the
numbers of nodes and links in the network, respectively. The degree of a®madeahe
number of links attached to the node. The global average of degrees of nodes is then

® =2 ()

Throughout this work we consider all demands between nodes to be two-way demands, and
we refer to the set of links that are used to route a demand as a path. A primary path routes
a demand in the absence of link failures, and when a failure occurs, the affected demands
(demands whose primary path included the failed link) are routed over the backup paths.
Once the primary and backup paths are allocated, the total capacity of a link is defined as
the sum of the working capacity, allocated to primary paths, and the restoration capacity,
allocated to backup paths. For specificity, here we consider that each demand occupies one
unit of capacity, e.g., a channel or a wavelength. In this case the average working capacity,
(Wp), on a link in the network is given byl [l]

(d){h)

W) =5~ )
where(d) is the average number of demands terminating at a nodéharis the average
numbers of hops of the demands in the network. We define the average extra cdpgcity,
as the fractional increase in total network capacity to ensure survivability against any single
link failure over theminimumnetwork capacity necessary to support the working demands
alone. The average total capacity on a l{Wk) can then be expressed as

(W) = Wb) (1+ (k). ©)
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The value ofW) is determined by minimum hop routing, and we note that for nominally
planar networks and uniform demaftg can be approximated by 1]

(h) = (J“&‘_Zl)l/z. @)

For degree= 4 mesh toroid networkgh) is given by Egs. %), (6) when the value oN/2
is even and odd, respectively{

N3/2
(h) = 2N=1)° (5)
1/2
(=" ©

3. Analytical Analysis

To facilitate our analysis we identify and distinguish between two distinct sets of demands
on a link. We consider th&f demands on a link to be composed of the terminating de-
mandsW!, i.e., demands that terminate at one of the nodes attached to the failed link, and
through demand&)/". (Note, if a node attached to a failed link is the source or destina-
tion of a set of demands, which we refer to as terminating demands\heepresents
the subset of these terminating demands whose primary paths include the failed link.) In
our analysis we calculate the average restoration capacity at a node and then calculate the
global average over all nodes in the network. Therefore the demands on a link are counted
relative to one of the nodes attached to the linkd;lfare the terminating demands at a
noden; of degreed;, then on average there adg/d; terminating demands on each link
connected tay and thus with Eq.), (W!) and (W™) can be approximated.(] by Egs.
(7), (8), respectively:

o = 8 ™

W) = ) - ) = () (1- ) ®
Our strategy is to consider the extra capacity requirement8Nbr and denote it ag;).
Later we consider the incremental extra capacity required on a link to reroute demands not
terminating at the adjacent node, referred to as through demands, and denote this incremen-
tal extra capacity a&). The total average extra capacity on a likk), is then the sum
of (Kt) and{Kin).

3.A. Restoration Capacity Requirements of Terminating Demands

We consider the linkk; terminating at node;, which ared; in number, as shown in Fig,

and denote the terminating working capacity and the restoration capacity dp Iaxssl’d\/,tJ

andR;j, respectively. If a particular link fails, then the sum of the restoration capacities

of the surviving links connected to node must be greater than or equal to the failed
terminating demands on lirll to be able to restore the traffic. This condition specifying

the lower bound on the required extra capacity on the links differs from the condition
described by Iraschket al, who investigated the bound on the links at the end nodes of
the failed demands5]. As the number of demands terminating at the node adjacent to a
link is greater than or equal to the number of demands between any given node pair present
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on a terminating link, the condition introduced here will impose a larger requirement for
the extra capacity. The constraint we propose may be stated mathematically by

&
;mzw& )
]

Because Eq.9) is true for all of the links connected to nodg we may sum Eq.9) overk

to obtain
5 & 5

Z%ngm. (10)

The sum on the right-hand side is just the total terminating demands atmaohel is
equal tod;. The double summation on the left-hand side of H) (nay be rewritten as an
unrestricted sum with the result that E§O)Y becomes

&
(8 -1)YRj>d. (11)
J

We introduce the symbdt; to represent the average value of the restoration capacity of the
links connected to nod& and note that

& 1\
;Rijzéi <6i>§Rij_6iRi- (12)
Substituting Eg.12) in Eq. (L1) and then summing over all nodes, we obtain
N N
Y G-1DER >3 d (13)
I 1

or
N

zwn%—%emz%di. (14)

Dividing Eqg. (14) by N we see that this equation may be expressed in terms of the average
values over all nodes, i.e.,

(°R) — (8R) > (d). (15)
The covariance of two variables may be expressed in terms of expectation values as
o?(p,q) = (pa) — (p)(a), (16)

and using this we may rewrite EdL5) to obtain the average restoration capacity, viz.

(d) N 0%(3,R) — 0 (&,R)
(0) ((3) —1)+0%(3) ~ (3)((8) —1)+0?(3)

(R > 17)
For typical backbone networks the variance of the degrees of no@ig5), which appears
in the denominator of Eq.1(7), is of order~ 1 and therefore smaller tha@)(() —1)
by an order of magnitude or more for the networks we studied. With Bghé average
terminating extra capacity can be expressed as

R - 1 +02 (8,R) — 0% (8%, R)
Mo) — [(M((®)—=1)  {d)(h)((8)—1)

1

[HOZ (9)/[(8) ({8) = 1)]
(18)

(ke) =
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The dominant term on the right-hand side of Ei)(is the first term from the left within the
first parentheses. It has a contribution from the ratig/df) and (Wo) in the form of 1/(h)

[see Eq. {)] and a contribution from the ratio of the failed to surviving links connected to
the adjacent node in the form of 1) — 1). The term in the second parentheses from the
left is a multiplication factor that incorporates the effects of topological variations and is
nominally 1 wheno? (8) is much smaller thard) ((8) — 1).

Ny

Fig. 1. Example link failure scenario.

The derivation of Eg.X8) assumed that all surviving links connected to the node par-
ticipate in restoring the terminating demands on the failed link; i.e., ther@-atedisjoint
backup paths available. This therefore represents the maximal sharing of restoration ca-
pacity and consequently the minimum extra capacity requirement. At the other extreme
only one backup path might be found, and in this scenario two links attached to a node
must be assigned restoration capacity equath). (If only one link is assigned backup
capacity, then the demand is not restorable in case that particular link fails.) Thus, in this
case the total restoration capacity on all links attached to the node is on avévege 2
and the total working capacity i®) (Wp). The dominant term contributing t;) is then
2(WHY / ((8)(Wo)) = 2/ ((h)(3)). In this scenario the constraint expressed by Egjs(mod-
ified so that the summation on the left-hand side of the inequality reduces to one term; i.e.,
the link chosen for restoration must have restoration capacity greater than the failed termi-
nating demand. Because both links attached to npttet are assigned restoration capacity
are equally likely to be chosen to restore the failed terminating demand (except when one of
these links has failed, in which case the other must necessarily be chosen), they contribute
equally to the total restoration capacityrpt This sum is equal td;R, from the definition
Eg. (12), as was previously outlined above. The remainder of the detailed analysis for the
mean restoration capacity is similar to the one presented above leading tb8gcand
it can be shown tha{R) and (k;) for the limiting condition where there is only a single
backup path can be expressed as

2(dy  d*(3R)
<R> Z <6>2_|_0.2(6) <6>2+0_2(6)’ (19)
_ (R 2 _02(62,R) 1
<Kt> B <W0> Z [<h><6> <d><h><6> 1+0-2 (6)/<6>2 : (20)

Equations {8), (20) represent the approximate lower bounds of the average optimal
extra capacity to restore the terminating demands and shall be referred to as the divisible
(maximum sharing of restoration capacity) and indivisible (minimum sharing of restoration
capacity) bounds, respectively. Since the average of the number of restoration paths lies
between 1 andd) — 1, the optimum value ofk;) lies between the divisible and indivisible
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bounds. The covariance terms may be computed using an ansatz for the local dependence
of the extra capacity of a linkgij, on the local degrees of nodey, and 6;, and local
terminating demands andd;, such as introduced in Eq. 15t of our earlier wotK]f

3.B. Restoration Capacity Requirements of through Demands

When a link fails in the network, the failed demands—on aver@gg in number—are
routed over restoration paths of average length denoteb, asThe restoration path of a
failed demand may be selected from amang (h) links, as the restoration path is disjoint
from the working path. Of théWp) failed demands, the terminatinv!) demands can

be restored by the assignment(af) extra capacity to all links in the network as derived
above. Next we denotRn) ., @S the maximum additional average restoration capacity
required on all links in the network to restore th&!") through demands. As the total
additional restoration capacity requiredW™) (h;), (Rin) sy C2N be expressed as

WM (1 ()
Rl = 7255 =0 (1= 55) (575 ) @

and the maximum contribution t&) by the through demand§in) max = (Rih) max/ (Vo)

can be expressed as
_ 1 <hr>

From Egs. {), (8) we see for networks whergh) is greater than 2, thaw'") is larger

than (W!). While at first it would seem that the through demands therefore place the more
stringent requirement on the extra capacity, we realize that the various demands that make
up (W) will in general be rerouted over paths spread across many different links. There-
fore a given link in the network will be used in the backup paths of only a few of the
through demands of a failed link. Consequently, we anticipate that the average extra ca-
pacity (k;) derived in SubsectioB.A in consideration of the terminating demands should

be nearly sufficient also to protect the through demands. It should be noted that express-
ing the total restoration capacity on a link of the network as the sum of the restoration
capacity required for restoring the terminating demarBs ¢alculated in SubsectidhA)

and the restoration capacity required for restoring the through dentérgls,,,,) assumes

that the backup paths of all through demands include links whose terminating restoration
capacity has been depleted in servicing backup routes offie terminating demands.
However, in general only a fraction of through demands will require extra capacity in ex-
cess of the terminating restoration capacity already assigned to the network. Denoting the
averageincrementalrestoration capacity required on a link to restore through demands
as (Rin), with 0 < (Rin) < (Ri)max the contribution to(k) by the through demands is

(Kth) = (Rin)/(Wo), where 0< (ki) < (Kih)max TH€E average extra capacity required on a
link (k) can thus be represented as the sum of the extra capacity required for protecting the
terminating demandsk; ), and the incremental extra capacity required for protecting the
through demand&y), i.e.,

(K) = (Kt) + (Kth)- (23)
In planar networks the routing choices are constrained by the boundary of the network [Fig.
2(a)], and we find thafkn) approaches its maximum value @) ., for nominally planar
networks.

As an aside, note that for ring topologies, which have a linear dimensional character-
istic, the average length of the restoration path is relatgtitdy (h;) = L — (h). Conse-
quently, for ringskt) and{k), Egs. (8), (22), reduce to 1(h) and 1—1/(h), respectively,
as the variance and covariance terms are 0 because of the regular nature of the ring topol-
ogy. In this case the total average extra capacity, Eg), (s (k) = 1, as expected.
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(b)

Fig. 2. (a) Example uniform planar networks of constant degree 3 and 4 and (b) mesh
toroid network withN = 9.

Equations {8), (20), (22) represent the average extra capacity requirements for termi-
nating and through demands with the only assumption being that the backup path is disjoint
from the primary path, a necessary condition of PRd. This description can be modified to
calculate the average extra capacity for LR as described below.

3.C. Link Restoration

Although LR is distinct from PRd in many aspects of the restoration process (e.g., signaling
scheme, backup route calculation), for capacity estimation purposes we can consider LR to
be a special case of PRd where the working capacity on a link, represent®ghys a

set of one hop demands terminating at the end nodes of the link and in case of link failure
will be rerouted around it. Thus, the condition of disjointness of the working and backup
paths is satisfied, and we can use the results derived in Subs&diidn calculate the
average extra capacity for LR by setting the length of all primary paths to 1{h)e= 1.
Considering the short length of the primary paths, we conjecture that the number of disjoint
backup paths available for restoring terminating demands may be fewer than the maximum,
and in that situation the extra capacity should be described more accurately by the larger
(indivisible) approximation [Eq.Z0)] rather than the smaller (divisible) bound [EG8]]

[11]. Substituting(h) = 1 in Eqg. £2), we find that(kg) is 0 and the lower bound of the
average extra capacity for LR can be expressed by

i_oz (3%,R)
e l<6> @)

The lead term in Eq.24), 2/(d), which is slightly larger than the well-known estimate for
LR of 1/ ((8) — 1), was previously recognized as a possible bound by Doucette and Grover
[6]. Recently, we have proven th&) = 2/(3) is exact for LR and PRd for the case of
uniform, unit demand on the smallest regular network of a given degftge [

1
1+02(3) /<5>2] ' (24)

3.D. Path Restoration in Mesh Toroid Networks

The three-dimensional topology of mesh toroid networks presents routing choices not
present in planar networks. Acampartal. [7] have derived the extra capacity require-
ment for uniform degree- 4 mesh toroid networks for PRd as

_(B-1VN)
(K)y = m (25)
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Although the routing constraints imposed by a boundary do not exist in mesh toroid net-
works, the analysis in Ref7] imposes new constraints for primary and backup routes with
load balancing of the working and total capacity. This limits the routing choices for backup
paths and suggests that the indivisible bound is a more accurate description of the extra
capacity requirements for terminating demands aqg) approaches its maximum value.

We also observe from Eq28) that (Kin)pax iS O for the smallest size planar networks of

a given degreed, (N = 6+ 1), which have(h) = 1. Imposing a similar condition for the
smallest size mesh toroid netwoild,= 9 shown in Fig.2(b), we see from Eq.6) that
(Kth)max = O for (h) = 1.5. Additionally, the variance and covariance terms in E8),(

(20) are identically O because of the regular nature of the topology of the regular toroid.
Thus the average extra capacity requirement for mesh toroid networks for PRd with load
balancing can be expressed as

Finally if all constraints due to topology or load balancing are removed thgh ap-
proaches its minimum value and the extra capacity can be approximated in the divisible
bound as

(K) = o - (27)

4. Simulations and Comparisons

To test the formulations presented above we simulated planar mesh networks of varying
average degrees and sizes using a LP tool, SPIOBR Ve computed the average total
capacity of the links for a network designed to be survivable under all single-link failure
scenarios. The tool sought to minimize total capacity (working + spare) with the cost func-
tion of all links equal to 1; i.e., the cost of a primary route is the humber of hops in the
route. Therefore the cost of a link after optimization is the number of demands assigned
to primary and backup paths. The capacity occupied by a primary route that has failed
and subsequently been rerouted was considered not to be available to route other failed
demands. We also separately computed the average minimum working capacity using min-
imum hop routing of all demands. Capacity was counted in units of channels on a link. To
investigate the dependence(&l on the size of the networly, we carried out simulations

for constant degree (regular) networks of degree 3 and 4 of varying sizes, and also nonreg-
ular networks of mixed degrees. Two of the networks from among the 12 regular networks
we simulated are shown in Fig(a). For regular networks all variance and covariance terms

in Egs. (L8), (20) are 0. The demand profile consists of uniform, fully connected demands.

The results for LR are shown in Fig.on a log—log plot of extra capacity versus number
of nodes. The rms difference between the curves for the extra capacity corresponding to Eq.
(24) and the simulation data set is 12.5%. The data indicates that the extra capacity for link
restoration is roughly independent of the number of nodesyhich is not surprising, as
LR is a process relatively localized near the failure.

To test our analysis for mesh networks for PRd, we simulated both regular and mixed-
degree planar mesh networks with no constraints on the length of the primary and backup
paths. The results of our analysis are shown in Fi¢g) and4(b) for regular networks of
degree 3 and 4 and in Tablefor networks of mixed degree. The average extra capacity
(k) was calculated for both the divisible and indivisible bounds, and the corresponding
curves are plotted in Figl. Also plotted for reference is the contribution @fy,) to the
sum. The average extra capacity for through demafgg, was computed with Eq2@),
wherein the average backup path lendif} was approximated as being equal to twibi
the average number of hops over all demands. This relationship, which we have observed
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Fig. 3. Extra capacity for uniform mesh networks using LR.

for regular networks, was previously also observed for nonuniform networks employing
dynamic restoration heuristics to achieve optimal capacity assignin®nother indi-
cation of the validity of this approximation fdh;) is noted by analyzing the smallest size
regular network of a given degree, el§.= 4 ford= 3 andN =5 for d =4, whereh=1
andh, = 2 for every demand. For the smallest size network the contributigrf is O

and the value ofk) in the indivisible bound is 2(3), the same as the LR requirement.
Having constrained the constant of proportionality betwéerand (h;), we note that no
free parameters remain within the present model for the extra capacity for PRd.
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Fig. 4. Extra capacity for PRd in uniform degree planar networks of degree (a) 3 and (b) 4.

We observe from the figures for the cases we have investigated that the requirements
imposed by consideration of the terminating demands are the dominant contribution to the
extra capacity for shared restoration. Also, the reader will observe that the contribution
of (k) increases initially with the network size and then decreases monotonically. This
is becauseky,) is a product of two terms, the ratio of through demands to the average
working capacity on a link, represented fdy— 1/(h)), and the ratio of the average length
of the backup pathh;) of a failed demand to the number of links that are candidates
to be part of the backup path, represented(fny/ (L — (h)). These two terms increase
and decrease monotonically with network size, respectively, and res(it,inhaving a
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maximum, as shown in Figk.

In Table1 we list the variables for PRd for planar mixed-degree, i.e., nonregular, net-
works. In the two columns on the right-hand side, we tabulate the average extra capacity
calculated by the LP tool and the analytic prediction [EX) for (k) in the indivisible
bound using an ansatz (Eq. 15t in Réfl]) to specify the local dependence of the average
terminating restoration capacity;, at a node, i.elR = 2d;/;. The first four networks in
the table are mixtures of degree-2 and degree-3 nodes anddjavetween 2 and 3. The
modeled indivisible bound predicts the required extra capacity with an rms error of 7.5%
in these cases. The agreement is similar (7.8% underprediction) for Network 5 of aver-
age degree 3.5, which is a mixture of degree-3 and degree-4 nodes. The network with the
largest mean degree, Network 6, is a mixture of degree 4, 5, and 6 nodes, and the difference
between the analytic result and the simulation datum for this network is 6.4%.

Table 1. Network Parameters of Mixed Degree Networks
Network N L (8 0(8) (k) (LP) (k) Analytic

1 4 5 25 0.0 0.85 0.86
2 36 47 26 0.49 0.39 0.36
3 34 46 2.7 0.46 0.38 0.35
4 34 48 28 0.38 0.36 0.33
5 34 59 35 0.50 0.29 0.27
6 27 69 51 0.88 0.20 0.22
7 32 51 32 046 0.34 0.29
8 15 28 37 124 0.58 0.43

In addition to testing our analytic approximations fa) with simulation data for uni-
form demand, we also considered a nonuniform demand profile imposed on the nonregular
topology of 32 nodes and 51 links described in R, {vhich we denote here as Network
7. The demand profile we used was based on a gravity attraction model where the measure
of attraction is the degree of a nodg.[The ratio of the maximum to minimum number
of demands per node pair was 2.6 for the demands between the 496 node pairs in this
network scenario. We observe that the analytic approximatidr)ofEq. (20)] underpre-
dicts the simulation result by approximately 16% for this case. Network 8 is a metropolitan
area model with 15 nodes and 28 links and a sparse demand profile ((3/ef the en-
tries are 0) between the 105 node pait§]| For this network the minimum number of
demands between node pairs is 1, while the maximum is 22 over the entire range of node
pairs that generate demands. We note that recently DeMaessehalckave modeled the
anticipated traffic demand for intelligent optical networks, and their predicted distribution
of the traffic demand among points-of-presence (PoPs) for 2006 exhibits a similarly large
variation with approximately 99.8% of the interterminal demands falling within a ratio of
21:1 [16]. For Network 8 the analytic approximation ¢£) underpredicts the simulation
result by approximately 26%4K) = 0.43 versus 0.58). In all, the rms difference between
the LP data and our analytical approximations is 12.2% for the indivisible bound with
(hr) = 2(h) and (ki) = (Kih)max OVEr the entire data set of 20 networks (both regular and
mixed-degree). The rms difference in comparison to the divisible bound is 19.9%.

In interpreting the quality of the agreement between the present analytic model and the
simulations, at this point we remind the reader that the variable optimized by the linear
programming simulations is the total capacity of the network, as it is the total capacity that
reflects the total cost of the network. Because the extra capacity to implement survivability
by shared restoration schemes is less than the capacity required for provisioning alone, the
difference in extra capacity between the model and simulation is a more sensitive metric of
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comparison than is the difference in total capacities. The reader may confirm, in fact, that
the difference in predicted and simulated total capacities is smaller than the difference in
extra capacities by approximately the ratio of the extra capacity to the total capacity, i.e.,
(K)/ (14 (K)). Thus, for example, for a value dk) less than 0.5 the difference in total
capacities is less thary3 the difference in extra capacity. When we compare the predic-
tions of the model for the total capacity with that of the simulations, the rms differences
for the divisible and indivisible bounds for the data set of 20 networks investigated here
are found to be 6% and 3.3%. The difference between the model and simulation for any
individual case from among the 20 network scenarios we have considered is less than 10%.
Such agreement may serve useful for the purpose of the quick estimation of trends in the
network requirements and costs. A word of caution is also in order, however, regarding the
potential range of applicability of the present formulation, because the richness of network
graphs and demand possibilities may give rise to cases for which the difference between
the model and detailed simulations is larger. For example, as mentioned above, we have in-
troduced some formulas assuming the graph to be nominally planar, i.e., two dimensional
in character, and we expect deviation from these semi-empirical approximations as the net-
work graph becomes more linear, such as when the fraction of the number of nodes having
degree 2 is increased. Another regime that warrants caution is when the demand matrix is
sparse or the network is small, as in such situations there is little opportunity for statistical
averaging of otherwise rare routing events.

Finally, to test our analysis of mesh toroid networks, we simulated five uniform
degree= 4 networks with no constraints. The results of the LP simulation are shown in
Fig. 5 along with our expression fdk) for the no constraint mesh toroid case [Egj7).

Also shown for comparison are the extra capacity requirements for mesh toroid networks
with load balancing as derived in Ref][[Eq. (25)] and our expression as shown in Eq.
(26). The comparison of the present formulations with the previously reported results for
degree= 4 mesh toroid networks provides further indication of the capability of the ap-
proach described here.
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Fig. 5. Extra capacity for PRd in mesh toroid networks.

5. Conclusion

In this paper we have derived the average restoration capacity requirements for mesh net-
works survivable under single-link failure scenarios. We have shown that our description
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of the extra capacity for survivability and total network capacity requirements agrees with
numerical simulations for a wide range of nominally planar networks with an rms differ-
ence of less than 13% and 4%, respectively, and also agrees with previously published
results for toroidal networks. Our results indicate that the restoration capacity requirement
for link-based shared mesh restoration is roughly independent of the network size, which
is consistent with the view that link-based restoration is a process localized near the link
failure. Our analysis also shows that for path-based schemes, the restoration of terminat-
ing demands introduces the dominant contribution to the global average extra capacity.
These analytic results suggest the extra capacity for both link- and path-based shared mesh
restoration may be estimated quickly for a wide range of network sizes and topologies for
the purpose of gauging trends in the network requirements and costs.
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