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Abstract. Spatial and temporal load variations, e.g. traffic hot spots and sudden load spikes,
are intrinsic features of wireless networks, and give rise to potentially huge performance reper-
cussions. Dynamic load balancing strategies provide a natural mechanism for dealing with load
fluctuations and alleviating the performance impact. In the present paper we propose a distributed
shadow-price-based approach to dynamic load balancing in wireless data networks. We examine
two related problem versions: (i) minimizing a convex function of the transmitter loads for given
user throughput requirements; and (ii) maximizing a concave function of the user throughputs
subject to constraints on the transmitter loads. As conceptual counterparts, these two formula-
tions turn out to be amenable to a common primal-dual decomposition framework. Numerical
experiments show that dynamic load balancing yields significant performance gains in terms of
user throughputs and delays, even in scenarios where the long-term loads are perfectly balanced.

1 Introduction

Even more so than other communication networks, wireless data networks are characterized by the
occurrence of large spatial and temporal load variations. The spatial variations manifest themselves
in flash overloads in hot spots in dense urban areas due to mobility, transportation busy hours, acci-
dents, and other unpredictable events. Temporal fluctuations occur in time scales from milliseconds and
minutes to hours and days. On the latter time scales, the traffic load varies according to predictable
day-of-week and hour-of-day aggregate patterns. On the former time scales, the load fluctuates not only
because of the intrinsic randomness in user arrivals and session durations, but also due to variations in
the transmission rates that rapidly change due to fast fading. Clearly, the spatial and temporal variation
and uncertainty in the traffic will only tend to be more pronounced in ad-hoc deployment environments
compared to carefully planned commercial cellular networks.

Third-generation cellular systems aim to provide high-speed data services despite these spatio-temporal
variations. In fact, the fast temporal fluctuations are taken advantage of by the base station to al-
locate resources based on channel feedback and backlog through careful scheduling [1,3,7,13,17]. In
all existing systems, however, including CDMA, UMTS and even IEEE 802.11, each base station, or
access point, independently arbitrates among users in its coverage area. That is to say, users simply
select the strongest received base station, and each base station allocates resources to users without
any coordination with other base stations in its vicinity. As a result, one base station or access point
may experience severe overload, while resources might be abundant at surrounding base stations, thus
providing scope for performance gains through some form of coordination.

Coordinated resource allocation has recently been considered in several studies, see for instance [5, 6,
18]. The work in [6] shows the gains due to coordination to be significant. Despite these gains, how-
ever, coordinated resource allocation among cells remains a challenging task. Centralized coordination
requires huge processing capability as well as exchange of vast amounts of information among all users
in a geographical area and the coordinating entity.

A possible remedy comes from decentralized or self-organizing schemes where a sufficient degree of
coordination is achieved with minimal exchange of state. In previous work [4], the authors considered
distributed load balancing as a mechanism for achieving such functionalities for power-controlled ser-
vices, such as voice connections. In that work it was shown that shadow prices for carefully selected
critical resources provide the additional means to dynamically allocate users to cells based on load



considerations, in addition to the standard notion of proximity, and thus achieve a high degree of opti-
mization, without the need for centralization. Dynamic association of users with access points has also
been considered in the context of IEEE 802.11 networks, see for instance [2].

In the present paper we combine the utility maximization framework that has been successfully lever-
aged for scheduling and resource allocation in the uncoordinated case [20,21] with the distributed
optimization approach developed in [4] to achieve a critical level of network optimization. Even though
the aim is not to enable full-fledge network-wide scheduling, we show that significant gains result from
careful assignment of users to cells and near-optimal allocation of resources from each cell to each user.
Additional per-cell scheduling will obviously further improve the performance. The proposed mecha-
nism relies on distributed shadow prices for dynamic load balancing. We examine two related problem
versions: (i) minimizing a convex function of the transmitter loads for given user throughput require-
ments; and (ii) maximizing a concave function of the user throughputs subject to constraints on the
transmitter loads. As conceptual counterparts, these two formulations turn out to be amenable to a
common primal-dual decomposition framework. Numerical experiments indicate that dynamic load bal-
ancing yields significant performance gains in terms of user throughputs and delays, even in scenarios
where the long-term loads are perfectly balanced.

The remainder of the paper is organized as follows. In Section 2 we examine the problem of minimizing
a convex function of the transmitter loads for given throughput requirements. In Section 3 we turn
attention to the problem of maximizing a concave function of the user throughputs subject to constraints
on the transmitter loads. We describe how the merits of load balancing schemes can be evaluated in
terms of transfer delays and user throughputs in Section 4. In Section 5 we present the numerical
experiments that we conducted to benchmark the performance gains from dynamic load balancing.

2 Load minimization

2.1 Model description

We consider a wireless data network with C' transmitters. For now we will focus on a static scenario
with M users, and address the problem of determining which users should be allocated resources from
which transmitters for various optimality criteria. Later we will examine a dynamic setting where users
generate random finite-size data transfers and come and go over time. The static scenario considered
in the present section may be interpreted as a ‘snap shot’ in time of such a dynamic situation.

Denote by r,,. the feasible transmission rate of user m when served by transmitter c¢. By feasible
rate, we mean the long-term rate that the user would receive if it were allocated all the transmission
resources (time slots, power, frequencies) of the transmitter. Let z,,. be the actual amount of resources
of transmitter ¢ allocated to user m. We assume the transm1ss1ons to be (roughly) orthogonal, so that

user m receives a total rate of (approximately) T, := E TmeTme- Let Ly := Z Tme be the total load
m=1
(resource utilization) at transmitter ¢. Denote by 7, the rate requirement of user m, and by o, the

maximum sustainable load on transmitter ¢, when applicable.

The coefficients r,,. only serve as a parsimonious representation of the rate statistics, and likewise the
parameters 7, are only meant to provide a coarse characterization of the traffic demands. We abstract
from the specific details of the air-interface structure, and also ignore the burstiness in the traffic
processes and the fact that actual transmission rates vary over time because of fast fading. While the
latter aspects are clearly crucial for the scheduling at each of the transmitters on a fast time scale, they
are less relevant in deciding which users should be served by which transmitters. Also, the quantities z,,.
will only play the role of decision variables in coordinating the assignment of users to transmitters, with
the actual allocation of resources governed by local schedulers residing at the individual transmitters.



2.2 Problem formulation

We first examine the problem of minimizing a convex function F/(Ly,..., L) of the transmitter loads
for given throughput requirements 74, ..., 7). This formulation is particularly natural when the users
have intrinsic rate requirements and conservation of transmission resources (e.g. battery life) is of vital
importance, or when the level of congestion is a critical performance measure.

min F(Ly,...,L¢o) (1)
M
sub Lc:mec c=1,...,C (2)
m=1
c
TmZZTmcwchTm m=1,...,M (3)
c=1
Tme > 0 m=1,...,M,c=1,...,C.

Convex duality implies that the optimal solution to the above problem may be found from the La-
grangian formulation max, cg i F*(u), with F*(u) = minxefoc L(z,p),

M C
L:(:L',,u) = F(Ll, .- -:LC) + Z Nm(Tm - ZTmcme)a
m=1 c=1

and pq, ..., puy Lagrangian multipliers.
The optimality conditions for the latter formulation read g—li > Tmelty,, With the complementary slack-
c
ness conditions z}, . (gTF - rmc,u:n) =0foralle=1,...,C,m=1,...,.M,and g}, (T, — > rme®i,.) =
i c=1

OQforallm=1,..., M.
Note that the problem (1)-(3) will have a feasible solution (and the Lagrangian will have a finite solution)
as long as mincrmc > 0 for all m = 1,..., M. Also, there exists an optimal solution with at most

c=1,...,
M +C —1 non-zero variables z}, ., which means that there will be at most C —1 additional ‘legs’ beyond
the minimum number that is necessary to connect all the M users.

c
We now focus on the case where the objective function is of the form F(Li,...,Lc) = >, K (L.),
1

c=

with K.(-) some strictly convex differentiable function. In that case, z} . satisfies K.(L¥) = rpcph,

for all m € M., M, = arg rrllaxMrmcp";n, and z¥,. = 0 for all m ¢ M.. In the special case where
m=1,...,

K.(z) = '8 /(1 + B) for some 3 > 0, we obtain Z,,.c = (Pm.cftm.)"/?. The parameter 3 governs the
trade-off between minimizing the total load and the maximum load across all transmitters. As 3 | 0,

c

the objective function becomes > L., which is minimized by simply assigning each individual user m
c=1

to the strongest transmitter ¢, = arg max Tmc. In contrast, when 8 — 0o, the problem amounts to

c=1,...,

minimizing max L., which deserves special treatment and will be examined in further detail below.
c=1,..0

The Lagrangian formulation may be interpreted as follows. Each of the users can be allocated resources
from each of the transmitters. The cost associated with the load imposed on the transmitter ¢ is specified
by the function K.(L.), while each unit of throughput obtained by user m carries a reward p,,. There
are two opposing players. Player 1 aims to allocate the resources to users so as to minimize the net
cost (or maximize the net revenue) for given rewards u,,. Player 2 aims to set rewards g, so as to
maximize the net cost incurred (minimize the net revenue earned) by the first player.

In principle, the above problems may be readily solved using standard routines. However, these al-
gorithms generally involve centralized computation and require global knowledge of all parameters.
Motivated by these issues, we now present an Arrow-Hurwicz type dual-ascent scheme [9] which, while



slower to converge, is mostly distributed in nature, and only involves a limited exchange of information
among transmitters and users. The scheme may be interpreted as a repeated game between the two
opposing players as described above. The convergence proof is omitted because of page constraints.

Algorithm description for problem (1)-(3)

1. Initialize p = (@1, ..., um), .8, ,AS) =1forallm=1,...,M.
c M
2. Forgiven u = (p1, - - ., uar), find resource allocations Zmc (1) that minimize F* (p) := Y Ke(Le)+ >, pon(Tm—

c=1 m=1
c
> Pmeme)- This amounts to allocating the resources of each individual transmitter ¢ to the most ‘rewarding’
c=1
user me = arg max = Tmechm; Tm.c(p) satisfies Ko (Zmec()) = Tmectm., and Tme(p) = 0 for all m # me.
m=1,...,
In the special case where K.(x) = z'*? /(1 + ) for some 3 > 0, we obtain Zm.c() = (rm.cpm.)'/?.
(4) i
1 0

3. Let T, (1V) be the aggregate throughput of user ¢ for given p® = (p ..,pg\’/l)) as determined in step 2.

Update /15,? as ' ' '
pt = pl + 0i(rm — T ().

OO
To guarantee convergence, it is required that lim g; = 0 and ) g; = co. For example, one may take g; =
1—>00 § —

=0
0i~ /%< for positive constants ¢, o. To ensure that uﬁfﬁ” > 0 for all m = 1,..., M, truncate the update step
if needed.
4. Let xmc(u(i)) be the optimal amount of resources allocated by transmitter ¢ to user m for given p(i) =
(ugi), ... ,ug\?) as determined in step 2. Update =), as

gt = (1 - 6)zl + Gieme (),

i
with ¢; := g;/ > 0j. (In particular, ¢o = 1, so that ah) = Tme(p(?).)
j=0
5. Repeat the above steps until some convergence/stopping criterion is satisfied.

Some observations

i) In view of the complementary slackness conditions, the optimal shadow price vector p* = (ug, ..., uhy)
is sufficient to determine which users should be assigned to which transmitters. The exact amount of
resources allocated by the various transmitters will in practice be dictated by the traffic generated by
the users. In that sense step 4 is optional since it is only required in order to obtain the optimal resource
allocations z}, ., and is not needed for finding the optimal shadow price vector.

ii) As mentioned earlier, the dual-ascent scheme is distributed in nature and only involves limited com-
munication among transmitters and users. Specifically, for a given shadow price vector p = (p1, ..., par),
the throughput vector T = (T,...,Ta) in step 2 can be obtained by each of the transmitters au-
tonomously updating its resource allocation. For a given throughput vector T = (T4,...,Tu), the
update in the shadow price vector u = (p1, - - -, par) can be determined by each of the users separately.
We now investigate the case where the objective function is of the form F(L4,...,L¢) := max weLe,

=1,
i.e., the maximum weighted load across all transmitters. In that case, problem (1)—(3) reduces to the
following linear program:

min L 4)
M
sub Lchchch-'L'mc c=1,...,C (5)
m=1
c
Tm:ZTmcxchTm m=17"'7M (6)
c=1

Tme > 0 m=1,...,M,c=1,...,C.



The dual version of the above linear program reads:

M
max ZTmum (7
m=1
c
sub » A <1 (8)
c=1
Pmelbm < WeAe m=1,...,.M,e=1,...,C (9)
Ae, oy > 0 m=1,...,M,c=1,...,C,

with A, and p,, representing the dual variables or shadow prices associated with the constraints (5)
and (6), respectively.

c
Since optimality demands ) A¥ =1 and u}, = r{lincwc)\’c‘ /Tme, the latter variables may be elimi-
c=1 c=1,...,

nated, and the dual problem may be more succinctly cast as:

max V(Ar,...,A¢0) (10)
c
sub Z Ac=1 (11)
c=1
A >0 c=1,...,C,
M
with V(A1,...,A¢) == Y. T C_r{lin WeAe[Tme. The latter quantity represents the minimum value of
oyl =1,...,

c

> weAc L for given throughput requirements 7,p,.

c=1

The latter problem may be interpreted in a similar fashion as above. Each of the users can be allo-
cated resources from each of the transmitters. User m needs to receive throughput 7,,, while each unit
of resource allocated by transmitter costs w.A., so the cost when transmitter m provides the entire
througput required by user m is w.A.7,,. There are two ‘opposing’ players. Player 1 aims to allocate
transmission resources to the users so as to minimize the total cost for given prices A, while satisfying
the throughput requirements. Player 2 aims to set prices A, so as to maximize the total cost incurred
by the first player.

The problem (4)—(6) may be solved by a dual-ascent scheme similar to the one that will be described
in the following section.

3 Throughput maximization

We now turn attention to the problem of maximizing a concave function G(Ti,...,Ta) of the user
throughputs for given load (resource utilization) constraints o1, ..., o¢. This formulation is appropriate
when users have elastic traffic demands and the consumption of transmission resources (e.g. power) is
constrained by hard limits, but not a crucial criterion otherwise.

C

sub Ty, = Zrmcxmc m=1,...,M (13)
c=1
M

L= Tme< 00 c=1,...,C (14)
m=1



The above formulation is conceptually similar to the multi-path extension of the basic utility max-
imization problem in [11], i.e., joint routing and rate control, see also for instance [10,12,14,15,19,
22-24].

Convex duality implies that the optimal solution to the above problem may be found from the La-
grangian formulation minyep o G*(A), with G*(\) = MAX, g MxC Lz, N,

C M
L(z,X) = G(T1,...,Tae) + D Acloc = Y Tme),
m=1

c=1

and Aj,...,A¢ Lagrangian multipliers.
The optimality conditions for the latter formulation read % < A% /Tme, with the complementary slack-

M
ness conditions z7, . (;TG - /\z/rmc) =0forallec=1,...,C,m=1,...,M,and X;(oc.— > z},.) =0
m m=1

forallm=1,..., M.
Note that the problem (12)-(14) will have a finite solution as long as mincrmC > 0 for all m =

c=1,...,
1,..., M. Also, there exists an optimal solution with at most M + C — 1 non-zero variables z},., which
means that there will be at most C' — 1 additional ‘legs’ beyond the minimum number that is necessary
to connect all the M users.

M
We now focus on the case where the objective function is of the form G(T1,...,Tu) = >, Un(Tw),
m=1

with Uy, (-) some strictly concave differentiable function. In that case, ., satisfies U], (T}) = rmepil,
for all c € C,, C,, := arg minc)\:/rmc, and z; . =0 for all ¢ € Cpp,.

We will in particular consider the family of o-fair utility functions defined by Uy (T) = ™ for some

1-a
a > 0, yielding z}, . = rel%1(A¥)~1/a The parameter o represents a fairness coefficient which char-

acterizes the trade-off between the total throughput and the minimum throughput across all users [16].
In particular, the cases a | 0, « = 1 and a@ = 0o correspond to maximum throughput, Propertional
Fairness and max-min fairness, respectively. As « | 0, optimality is achieved by simply allocating all
the resources of each individual transmitter ¢ to the strongest received user m, = arg max 7,,.. In

c=1,...,

contrast, when o — oo, the problem merits special treatment and will be revisited below.

Algorithm description for problem (12)-(14)

1. Initialize A = (A1, ..., o), eg, A = M/C forallc=1,...,C.
M c

2. For given A = (A1,...,A¢), find resource allocations Zm,c that maximize £(z,A) := Y U(Tm) + > Ac(oc —
m=1

c=1

M
> Zme). This amounts to allocating each individual user m resources from the most attractive transmitter
m=1
Cm 1= arg r{lincz\c/rmc; Tmer, Satisfies Ul (Tmem Tmem ) = Aem /Tmems and Tme = 0 for all ¢ # ¢y In the
c=1,...,
special case where Uy, (z) = z'7%/(1 — ) for some a > 0, we obtain Zme,, = Amen [Tem ) Y /Tmen =
l/aflAfl/a

mcem Cm - . .
3. Let Lo(A¥) be the optimal load at transmitter ¢ for given A® = (A, ... A\%))) as determined in step 2. Update
0 e e ,
MG = XD 4 0y (Le(AP) — 00).

e
To guarantee convergence, it is required that lim g; = 0 and ) ¢; = co. For example, one may take g; =
i—00 i=0

i~1/2%< for positive constants ¢, p. To ensure that Ag“‘l) > 0 for all c =1,...,C, truncate the update step if

14
needed. ] )
4. Let Tmo(A\D) be the optimal amount of resources allocated by transmitter ¢ to user m for given A\() =

()\gi), .. .,)\g)) as determined in step 2. Update 28 as

oot = (1= @)zit + zme (),



i
with ¢; := 0;/ > 0.
j=0

5. Repeat the above steps until some convergence/stopping criterion is satisfied.

The convergence proof is skipped because of page limitations.

Some observations

i) In view of the complementary slackness conditions, the optimal shadow price vector A* = (A}, ..., A%)
suffices to determine which users should be served by which transmitters. The exact amount of resources
allocated to the various users will in practice be governed by local schedulers at each of the transmitters.
In that sense step 4 is again optional, as it only serves to obtain the optimal resource allocations z7, .,
and plays no role in finding the optimal shadow price vector.

ii) As before the dual-ascent scheme allows a distributed implementation, with both users and trans-
mitters making mostly autonomous decisions and only parsimoniously exchanging information.

We now investigate the case where the objective function is of the form G(Ty,...,Ty) := min Ty,

m=1,...,

i.e., the minimum throughput across all users. In that case, problem (12)—(14) reduces to the following
linear program: (with v,,, =1 for all m =1,..., M):

max T
C
sub T < vy Ty = vy Zrmcymc c=1,...,C (15)
c=1
M
Lc:zymcsac m=1...,.M (16)
m=1
Yme > 0 m=1,...,.M,c=1,...,C.

The above problem is equivalent to (4)—(6) with v,, = 1/7,,, and 0. = 1/w, in the sense that the optimal
solutions are related and hence will not be discussed further.

4 Dynamic setting

In the previous section we addressed the problem of maximizing a throughput utility function for a
given static user population. While utility maximization provides a useful guiding principle for fair and
efficient resource sharing among competing users, the utility function does not necessarily have any
physical meaning in terms of actual perceived performance. In particular, the exact numerical value of
the utility function or the fact that the aggregate system utility has been maximized may not be of
any direct relevance to a data user. What a data user does perceive, is the performance experienced in
terms of delays or actual received throughputs for example, and hence we will evaluate the merits of the
load balancing schemes in terms of these metrics. In order to do so, we will consider a dynamic setting
where users generate random finite-size data transfers over time. For convenience, we assume that users
belong to one of K classes, with transmission rates taking values in a discrete set of values, but the
results easily extend to scenarios with a continuum of rates. Class-k users arrive as a stationary ergodic
process of rate vy, and have generally distributed service requirements with mean i (bits). Define
p:=(p1,...,pK), with pp := vi 0B the traffic intensity associated with class-k users. Denote by Rg.
the feasible transmission rate of class-k users when served by transmitter c. As before, we assume the

transmissions to be (roughly) orthogonal, so that class k receives an aggregate rate of (approximately)
K

> ZpeRpe, when zp, is the total amount of resources of transmitter ¢ allocated to class k.

k=1



In order for delays and user throughputs to be meaningful, a first prerequisite is that the system is
stable. Define the rate region of the system by

c
R:={reR :3we€X:rg <> mpcRyforall k=1,...,K},
c=1
K
with X := {z € RE*? . 3 x4 < o, forall ¢ = 1,...,C} representing the set of feasible resource

allocations. Clearly, p € Rkisla necessary condition for the existence of a resource allocation strategy
that achieves stability, while p € interior(R) is a sufficient condition.

We will consider four different scenarios.

(i) The ‘greedy’ scheme simply assigns users to the strongest received transmitter. Thus, class-k users
are statically assigned to transmitter ¢; := arg maxc Ry.. Let K. := {k : ¢, = ¢} be the set of user

c=1,...,
classes assigned to transmitter ¢, and define 6, := ) ek, Pk /Ry as the resulting load on transmitter c.
It is easily seen that the greedy assignment achieves stability if and only if 6. < o, forall c=1,...,C.

(ii) The “fractional’ a-fair strategy assigns users to transmitters so as to maximize the aggregate a-fair
utility. Specifically, suppose that there are Ny class-k users at some point in time. Then the fractional
a-fair strategy solves the following optimization problem:

K N
max ZZUQ(T,M)
k=1n=1
C
sub Tin = RkcThne n=1,...,Ny,k=1,....K (17)
c=1
K N
chzzkagac c=1,...,C (18)
k=1 n=1
Tknc Z 0.

It is easily verified that all the class-k users will receive the same throughput, and thus the above problem
K

can alternatively be phrased as maximizing > U, (T} /Ny) subject to (T,...,Tk) € R. Since R is a
k=1

convex set, it then follows that the fractional a-fair strategy achieves stability for any p € interior(R),
provided a > 0.

(iii) The ‘integral’ o-fair strategy also assigns users to transmitters so as to maximize the aggregate
utility, but subject to the additional constraint that users can only be assigned to a single transmitter.
It is readily checked that in this case all the class-k users assigned to the same transmitter will receive

K
the same throughput. Also, the above problem can be equivalently stated as maximizing Y Uy (Tk/Nk)
k=1

subject to (T4,...,Tk) € R(N1,...,Nk). Here R(N1,...,Nk) C R is some subset with the property
that limp, .. Ng—o0o R(N1,...,Nk) = R. This implies that the integral a-fair strategy also achieves
stability for any p € interior(R), provided a > 0.

(iv) The ‘ideal’ scenario is where the resources of all the transmitters can be pooled into a single trans-
mitter which offers a transmission rate Rj'** = . max Ry, to class-k users. This is a hypothetical

scenario typical propagation conditions, and is only meant to provide an absolute bound on the achiev-
c c

able performance. It is easily seen that stability occurs in the ideal scenario if and only if > 6. < Y o..
c=1 c=1

In conclusion, both the fractional and the integral a-fair strategies achieve stability whenever feasible.

The greedy assignment may generally fail to do so, while the stability region for the ideal scenario

will typically be strictly larger than R, except in the rather special circumstance that 6. = & for all



c¢=1,...,C. In that case the stability regions for both the greedy assignment and the ideal scenario
coincide with interior(R).

We now compare the performance in terms of delays and perceived throughghputs in the various sce-
narios. Clearly, if p € interior(R), but 6. > o, for some ¢ =1,...,C, i.e., the loads are imbalanced, but
the total load is sustainable, then the delay under the greedy assignment will be infinite, whereas it is
finite under both the fractional and integral a-fair schemes. Now consider the case . < 0. =1 for all
c=1,...,C. If we assume Poisson arrivals and fair sharing of resources among competing users, then
the mean number of active users under the greedy assignment is

C _
ENgreedy — Z Oc

1-a.’
c=1 ¢

whereas the mean number of users in the ideal scenario is
c
o= (£0) s (o 5:0.)
c=1

c c
It is easily verified that for a given value of ) &., EN97¢% is minimal if 6. = 5 = Y. 7./C, and
c=1 c=1

C C
then equal to C5/(1 —5) = Z F./(1— E 5./C) = CENeal Thus, even in the best-case scenario
~ -
where the loads are perfectly balanced tﬁe mean number of active users under the greedy assignment
is C times as large as in the ideal scenario. Because of Little’s law, this implies that the mean delays
will be C times as large as well, and thus the throughputs (defined as the ratio of service requirement
and delay) will be C times higher. Although the delays for the fractional and integral a-fair strategies
are expected to be “somewhere in between”, this appears difficult to prove, let alone quantify where
exactly they fall relative to the greedy scheme and the ideal scenario. Hence, we will examine the delay
performance in the various scenarios in the next section through numerical means.

5 Numerical experiments

We now discuss the numerical experiments that we conducted to benchmark the performance gains
from dynamic load balancing. We consider a dynamic setting where users generate random finite-size
data transfers as described in the previous section, and evaluate the performance in terms of transfer
delays and blocking rates.

We first examine a linear network with just two transmitters. While admittedly simple, a two-transmitter
scenario is likely to provide conservative estimates for the potential gains, since the scope for load sharing
increases with the number of neighboring transmitters, as will in fact be confirmed later.

The two transmitters cover an interval [0, D] and are located at positions D /6 and 5D /6, respectively.
The path loss ¢ behaves as a function ¢ = d~7 of distance d, with v = 3.5. The feasible transmission
rate r at transmitter ¢ (in bits/second behaves as a function r, = (log(1 + snr.) of the Signal-to-
Noise Ratio (SNR), with snr. = q./(n + 8q. + g3—¢), ¢ = 1,2, with (, 6, n system-specific parameters.
Throughout we take n = 0.01, 8 = 0.1, ¢ = 800.

Users arrive as a Poisson process of rate v (per second), and have service requirements with mean [
(in bits). Throughout we take 8 = 250 Kbits (31.25 Kbytes). At most L = 40 users are admitted into
the system simultaneously. Users that generate a transfer request when there are already L transfers in
progress, are blocked and lost. Let (R, R2) be the rate pair of an arbitrary user. The nominal average
load on transmitter ¢ under the greedy assignment may then be derived as

VOR{ = I{R ey} = VBE{— L SP(Re> Ry},

max{R1 s R2



We compare the four scenarios described in Section 4 as well as the dual-ascent scheme. We take
U(z) = log(z), i-e., @ = 1, which corresponds to Proportional Fair (PF) scheduling. In the dual-ascent
scheme, we only executed 30 iterations for every change in the user population, with ¢; = 0.5/ Vi.

We first consider a scenario where the user locations are uniformly distributed across the coverage area.
In this case, the nominal load on each of the two transmitters is p/2, with p := vGE{ M}. Since
the long-term loads are perfectly balanced, this provides a lower bound for the potential gains from

load balancing.

Figure 1 shows the mean transfer delay as function of the arrival rate. Note that the delay in the
ideal scenario is roughly half of that under the greedy assignment, as indicated by the analysis in the
previous section At high load, the relative difference reduces though. This may be explained from the
fact that a significant fraction of the users are blocked under the greedy assignment (not shown in the
figure), effectively reducing the load on the system, while the blocking in the ideal scenario remains
negligible throughout. Further observe that the performance of the dual-ascent scheme is virtually
indistinguishable from that of the globally optimal integral or fractional PF allocation. Given the small
number of iterations, this indirectly demonstrates that the dual-ascent scheme converges rapidly enough
to achieve similar performance as a globally optimal allocation. It also suggests that the dynamic
load balancing is hardly hindered by refraining from soft hand-off and assigning users to just a single
transmitter. The mean transfer delay in each of these three cases is approximately 15-25% lower than
under the greedy assignment, even though the long-term loads are perfectly balanced.
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Figure 1 (left): Mean transfer delay as function of arrival rate; uniform traffic. Figure 2 (right): Mean
transfer delay as function of arrival rate; non-uniform traffic.

We now look at a scenario where the density of users is three times higher in one half of the coverage area
than the other. In this case, the nominal loads on the two transmitters are p/4 and 3p/4, respectively.

Figure 2 plots the mean transfer delay as function of the arrival rate. As before, the performance of
the dual-ascent scheme is practically identical to that of the globally optimal integral or fractional PF
allocation. The reduction in mean transfer delay in each of these three cases varies from 30% to 80%,
which means that the improvement in perceived user throughput can be as large as 500%. Further note
that at high load, the relative improvement diminishes. This reflects the fact that a substantial fraction
of the users are blocked under the greedy assignment, as shown in Figure 3, essentially lowering the
load on the system, while the blocking with load balancing remains moderate. Observe that even with
load balancing the system will become overloaded at some point, but load balancing helps to move that
point significantly further out.
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Figure 3 (left): Blocking probability as function of arrival rate; non-uniform traffic. Figure 4 (right):
Mean transfer delay as function of arrival rate; uniform traffic.

We now investigate a network with a square coverage area [0, D] x [0, D], with four transmitters located
at positions (D/6,D/6), (D/6,5D/6), (56D /6,D/6), (56D/6,5D/6). In this case the SNR at transmitter ¢
is determined by snr. = q./(n+ Zizl ga— (1—0)q.), with g4 the path loss to transmitter d governed by
a power-law as function of distance with exponent v = —3.5 as specified earlier. At most L = 80 users
are admitted into the system simultaneously. We only present the results for the dual ascent scheme,
and not for the globally optimal integral and fractional PF allocation.

We first consider a scenario where the user locations are uniformly distributed across the coverage area.
In this case, the nominal load on each of the four transmitters is p/4, with p := vGE{ m}.
Figure 4 shows the mean transfer delay as function of the arrival rate. Note that the delay in the ideal
scenario is now roughly a quarter of that under the greedy assignment, as predicted by the analysis in
the previous section. At high load, the relative difference decreases again because a significant fraction
of the users are blocked under the greedy assignment, effectively shedding load from the system, while
the blocking in the ideal scenario remains negligible throughout. The mean transfer delay for the dual
ascent-scheme is now 30-50% lower than under the greedy assignment, which corroborates the earlier
assertion that the gains from load balancing tend to increase with the number of transmitters.

We now look at a scenario where the density of users is three times higher in one square corner of the
coverage area than elsewhere. In this case, the nominal load on one transmitter is p/2 and p/6 on the
other three.

Figure 5 plots the mean transfer delay as function of the arrival rate. The reduction in mean transfer
delay achieved by the dual-ascent scheme ranges from 50% to 90%, which means that the improvement
in perceived user throughput can be as large as 1000%. Further note that at high load, the relative
improvement diminishes again because a substantial fraction of the users are blocked under the greedy

assignment, as shown in Figure 6.
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Figure 5 (left): Mean transfer delay as function of arrival rate; non-uniform traffic. Figure 6 (right):
Blocking probability as function of arrival rate; non-uniform traffic.
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