
Building Flexible Mobile Applications for Next Generation Enterprises

 Karun Karunanithi, Khurram Haneef, Bruno Cordioli, Amjad Umar, and Ravi Jain.

Telcordia Technologies Inc.
 445 South Street, Morristown, NJ, 07960-6438

Phone: 973-595-7990 Email: karun@research.telcordia.com

 Copyright 2000 Telcordia Technologies, Inc. All Rights reserved.

ABSTRACT
In order to understand and gain practical insights
into various aspects of Next Generation
Enterprises, we are building a testbed for flexible
mobile applications. We started with a generic
architecture and used it to build different
applications in different domains. Our testbed
consists of a multi-tiered architecture incorporating
various user interfaces and access technologies,
middleware components, enterprise integration
systems, supply chain management and a host of
currently emerging technologies. The first
application we have developed is an information
application for Olympics to provide personalized
information for mobile users through a variety of
end-user devices. The second experiment is a
typical e-commerce online purchasing application
that uses mobile agents (brokers) to buy products
from multiple suppliers based on user specified
criteria. The third example demonstrates a typical
workflow scenario that may be needed in a highly
collaborative and reliable NGE environment. In
this paper, we present our preliminary experiences
in building these applications. Based on our
experience, we are pursuing further research and
evaluation of various technologies for flexibility,
mobility, scalability and ease of integration.

1. INTRODUCTION

Next Generation Enterprises (NGE) that are currently
emerging can be characterized as follows: 1) use
internet/intranet as corporate wide communication
infrastructure, 2) integrate multiple vendors and suppliers
through a zero latency supply chain management, 3) integrate
back end legacy systems, ERP and other systems using EAIs
(Enterprise Application Integrators), 4) implement virtual
inventories and virtual offices, 5) utilize host of middleware
components to access back end systems from application
clients, 6) facilitate dynamic service creation and disassembly
of services when not needed, 7) allow automated contract
negotiation and match-making, 8) incorporate integrated

billing, customer care and decision support systems, and 9)
allow both wireline and wireless (web) access to users from
desktop computers, PDAs and cell phones or traditional
phones and/or any other custom designed access devices. One
of the important classes of NGE applications is mobile
application, which typically have one or more of the following
features:
• Mobility of customers, employees, and partners over

wireless networks.
• Mobile agents to handle mobile/nomadic platforms,

software, and data
• Advertise, negotiate, and settle services and deals

through XML
• Specialized middleware for wireless
• Virtual enterprises to support virtual inventories and

virtual offices.
• Dynamic workflow and high level of collaboration
• Integration of services from multitude of suppliers

(EAI, ERP).

 To gain practical insights into building mobile applications,
we started with a generic mobile application framework that
can be customized for different business segments. This
framework, shown in Figure 1, consists of a multi-tiered
architecture. This framework introduces a wide range of
research and operational issues in integrating wireless
networks, mobile agents, wireless middleware, workflow,
data replication, XML, adapters, virtual operations, trading
hubs, etc. While building our testbed, we used an incremental
approach to add building blocks and related technologies as
when needed. We first developed an OlympicInfo
application, described in section 2, that has only one
information store (an Oracle Database that contains the
Olympic information) and a wide range of information users.
In this application we deployed a variety of nomadic support
middleware components. This experiment showed us how
new middleware can be used to adapt for wireless situations.
In section 3, we extend this model to a mobile e-commerce
application with multiple stores (XML-based content) and
brokering through mobile agents. In Section 4 we describe
an implementation of dynamic workflow model to highlight
high-level collaboration between a broker agent, various
suppliers and buyers. Section 5 concludes this paper by
discussing the lessons learned and outlining future areas of
work.

2. A Mobile Information Service Application

Based on our generic NGE framework shown in Figure
1, we have developed a mobile information application
called OlympicInfo (Figures 2 and 3). This mobile
application was designed for a large number of visitors
expected at the Olympics. OlympicInfo allows a user to
register which of the many Olympics sports events are of
interest to him or her, and receive up-to-the-minute
information relevant to those sports before and during
the Olympics. The information to be delivered could
include the scheduled times, contestants and venues of
events for each sport of interest, changes in times and
venues, the results of events as they occur, directions to

 travel to the events by foot or by buses
provided in the Olympics Village, etc. In
addition, from time to time OlympicInfo
will provide the user some general
informations e.g. weather forecasts and
possibly advertising messages from the
service provider or other sponsors. The
user can choose to receive this
information by a variety of media, e.g.
pager, fax, screen phone, or PDA,
although obviously some types of
information (e.g. images) can only be
delivered if the user has a terminal
device of the correct type.

OlympicInfo offers users a variety of
ways to enter their choices about
sports and events they are interested
in, and these choices are stored in
user profiles.

 These include operator-based methods where the user
calls an (800 or 900) telephone number and speaks to a
live operator, or obtains and faxes back a form to a
clearinghouse, Web-based methods where a user enters a
form and entry via OlympicInfo information kiosks.

Figure 2 shows the OlymicInfo prototype. Two classes of
clients are used in the prototype. “Thin” clients are those
that have limited computing, display and communication
capabilities. In the prototype these are limited to one-way
alphanumeric pagers, PCs or digital cellular handsets with
small screen displays, and browsers that can display
Handheld Device Markup Language (HDML) cards sent
using the Handheld Device Transport Protocol (HDTP).
For the purposes of this prototype the main difference
between thin and thick clients is that the latter can run a
CORBA Object Request Broker (ORB).

Figure 3: General software
architecture for OlympicInfo

System Software

Commercial Middleware Platform e.g. DCOM, CORBA

Profile Manager
Address
Profile

Info.
Profile

Media
Profile

Mailbox Manager

Pager FaxEmail

Media Translation
Text-to
Speech

Text-to
Page

Text-to
Fax

Media Manager

Pager FaxEmail

Query Manager
SQL

Cache
Canned

SQL

Unified
Messaging

Personalized
Information

Mobile Data-
base Access

Mobile
Computing

Applications

Nomadicity
Middle-
ware

Base
Middle-

ware

Mobility and wireless adapter

Figure 2: OlympicInfo System

Desktop
Win 95/NT

Laptop
Win 95

“Thick” Clients

Screen
Cellphone
or Pager
Proprietary
OS

Screen
Cellphone
Proprietary
OS

Palmtop
Proprietary
OS or
Win CE

“Thin” Clients

Intra/Internet

Enterprise TCP/ IP LAN

OlympicInfo
database
Win NT

OlympicInfo
server
Win NT

Unwired
Planet
gateway

IIOP /
LAN, WAN or
Dial-up link

Internet

HDML / HDTP
HDML / HTTP

Web
server

HTML / HTTP

Internet

HDTP/CDMA

HTTP/
IP/CDPD

FLEX

IIOP/
IP/CDPD

JDBC / IIOP

SMS/CDMA

Figure 1: NGE Prototype Architecture

Catalog
in XML

* Client

NGE Site (Web Server)

Broker/
Negotiator

Suppliers
Services in

XML

Searcher
Aglet

SCMs

* SQL/OQL
Type Queries

 * Enterprise Application Integrators (EAIs)

*Mobile Agent
(Searcher Slave
Aglet)

* Wired * Wireless

Suppliers

Workflow
(CMI)

Back-end
Systems InventoriesERPs

GUI, VoiceWAP

* indicate
work initiated

*

*

*
* * *

 Example of thick clients that will operate in the
prototype are laptops running Windows 95 that can be
attached to CDPD wireless modems and which can
run a CORBA ORB, specifically Inprise’s VisiBroker
ORB. The clients run a CORBA application written in
Java that communicates using CORBA’s Internet
Inter-ORB Protocol (IIOP) over TCP/IP, which in turn
will run over the wireless link.

The prototype server resides in an enterprise TCP/IP LAN
environment and consists of a Windows NT platform
running a CORBA ORB, specifically Inprise’s VisiBroker
ORB. The application is a CORBA application written in
Java. The actual information is stored in a database (an
Oracle version 8 database) that runs on a Windows NT
platform running a CORBA ORB with access to the
database using Java Database Connectivity (JDBC) APIs.

Figure 3 shows the software architecture of OlympicInfo.
This architecture is designed to support a variety of
applications such as unified messaging, in addition to
mobile applications -- the focus of this paper. The
architecture includes an extensive middleware stack for
nomadic users that need support for profiles management,
mailbox management, and media management/translation.
The nomadic middleware stack at present runs on top of
basic middleware such as CORBA. Adapters for wireless
and mobility are included in the architecture but were not
implemented (these adapters are expected to be provided
by Information Distribution Manager [1] and Wireless
CORBA). Details of the OlympicInfo software
architecture are beyond the scope of this paper (see [2] for
details).

3. A Mobile e-Commerce Application

In this application, we further extend the general mobile
e-commerce application framework in several ways:
multiple suppliers, mobile agents, and XML content
representation. As part of this extension, we evaluated
Voyager [4] and Aglet [3] platforms for mobile agents
(we chose Aglet due to its openness), developed an Aglet
application that goes around multiple sites and chooses
the best deals for the customers, constructed user
interfaces, and specified a wide range of products in
XML. We are currently investigating WAP(Wireless
Application Protocol) and voice processing as further
extensions.

Figure 4 shows the mobile e-commerce aspect of the
mobile application. It consists of 3 shopping sites:
• "BookStore" selling books and CDs

• "CDStore" selling CDs and software
• "PCStore" selling hardware and software

The products that each of these site sells are defined as
XML files. At each of theses sites, an Aglet server runs a
“Supplier Aglet”. The Supplier Aglet reads the XML file
corresponding to its site, and parses it using the Sun’s Java
XML Standard Extension API (see
http://java.sun.com/products/xml/). Once the XML file is
parsed, it resides as a Java object in the Supplier Aglet. In
addition to its products, each site defines its selling
policies, also in XML, and store policies (i.e., a
return/exchange policy, and credit cards the site accepts).

The buyer’s interface to the demo is through a web page.
In this web page, the buyer specifies the product it is
interested in, in addition to the policies that the buyer
desires. Once the client specifies, and submits its request,
the request is handed over to a “Searcher Aglet” in the
form of a CGI string. The Searcher Aglet, which has the
capability of accepting http requests as messages, parses
the CGI string to obtain the unique code of the product in
the request, and creates a “Searcher Slave Aglet” that
compares the user query with the local Supplier Aglet to
determine a match. Once the Searcher Slave Aglet obtains
the query results, it dispatches to the next site, and so on.
The Searcher Slave Aglet maintains an itinerary that it
should follow to various sites. In the case where a site on
the itinerary is not up, the Searcher Slave Aglet will skip
that site. Once the Searcher Slave Aglet has completed its
trip, it returns to its original site and delivers the search
results to the Searcher Aglet. The Searcher Aglet, in turn,
embeds these results in a dynamic HTML page that it
creates, and then writes that HTML page back to the
browser in a manner similar to CGI applications.

Note that the communication between the Searcher Aglet
and the Searcher Slave Aglet, as well as that between the
Searcher Slave Aglet and the Supplier Aglet is carried
locally through the Aglet messaging mechanism, and thus
it does not consume network bandwidth. Unlike classical
client/server database applications, the connection
between the database client (in this case the Searcher
Aglet) and the server (in this case the Supplier Aglet),
need not be established while the search is being
performed. This characteristic is especially important in
the case of wireless network, since the nodes may get
disconnected frequently.

http://java.sun.com/products/xml/)

Figure 4: Mobile Ecommerce Prototype Architecture

Book
Supplier

Content Consumers

Primary Content Provider

Services in
XML

CD
Supplier

Services in
XML

Searcher
Aglet

PC
Supplier

Services in
XML

Searcher
 Slave Aglet

 Searcher
Slave Aglet

Searcher
Slave Aglet

Mobile
and wireless

Secondary
Content
Providers

Other

Services

Instead of maintaining a stationary Supplier Aglet at each site,
we might have allowed the Searcher Slave Aglet to access the
XML files directly. However this design option provides at
least three advantages:
• More secure: the Aglet security model differentiates two
kinds of Aglets:
i. Trusted Aglets: downloaded from a local codebase
or a trusted host. These Aglets have access to the local
resources of the host, (files, etc.)
ii. Untrusted Aglets: downloaded from an untrusted
host. These Aglets have limited access to local sources, but
they can communicate with Aglets on the host.
From the supplier’s point of view, trusting a Searcher Slave
Aglet represents a security threat. The Supplier Aglet,
therefore acts as a gateway between the searcher and the
resources that contain the services.
• More efficient: allowing the Searcher Slave Aglet to
perform the query search will require it to be more
complicated, and thus larger in size. This, in turn, will cause
its dispatching to consume more bandwidth, and be less
efficient.

• More modular: consider the case where the
service implementation at each site is different. This
requires a different interface to the service at each site. This
heterogeneity should reside in the individual stationary
(Supplier) Aglets instead of residing in the roaming Aglet.
This remark illustrates a design principle that, we believe,
every mobile agent application should follow: target sites
should provide stationary agent to interface with mobile
agents, and thus hide the complexity required in local
computations

in those instead of exposing information directly to the
roaming agents.

4. Dynamic Workflow and High-level
Collaboration

In this example we track the order flow of a typical
consumer purchase from the client end to various back-
end subsystems and provide a high-level collaboration
between the buyer and the system via a broker agent. This
system consists of a virtual store, a broker and two
warehouses (suppliers). The virtual store is implemented
as a web server though which a customer can order goods
(in this case PCs and Games) using a browser interface
(Java). The virtual store does not maintain its own
inventory and it fully relies on its suppliers. For each
registered buyer, the store has a profile maintained in a
local database.

This profile typically consists of some payment
information and preferences. The suppliers maintain their
own inventory of various brand name PCs and Video
Games. Each warehouse has its own demand forecast,
pricing and delivery options. The broker in the middle acts
as an agent to negotiate and match a best price and/or other
criteria. When a purchase order comes to the server, the
server sends the request to the broker along with the
buyer's profile. The broker will then match the order (along
with its buyer's constraints) with designated suppliers'
ability to meet the order. It should be noted that the broker
has its own discretion to deal with partial purchases, if
necessary, from different suppliers and then package a
complete order fill to the buyer. Figure 5 illustrates a

typical scenario of this example where a buyer makes a
purchase of a PC and Games. All work flow steps involved in
this typical purchase are labeled 1 through 8 in Figure 5. In
this example scenario, Warehouse 1 ran out of PCs and the
broker then purchased all items from Warehouse 2. Once
broker gets confirmation from the Warehouse(s) of all items
matching buyer's constraints it will issue a 'Commit' and relay
that as a 'Order Confirmation' to the buyer. In actual
prototype, we have implemented several scenarios involving
different levels of interaction between the buyer, broker and
suppliers.

Usually, interaction occurs between the buyer and the
broker. But in certain situations, for example, the order
may have to be shipped by the Warehouse to a different
address than that of the buyer and the Warehouse may need
a shipping Zip code for optimum shipping cost or delay. Is
such a scenario, the Warehouse may directly prompt the
buyer to enter additional information. It is also possible
that the buyer may cancel the order at any time (before the
final 'Commit'), even if the broker finds a matched order.

In our implementation, both the virtual store server and the
broker reside on the same server while the warehouse servers
reside on different machines. The communication between the
broker and the warehouse is implemented using special protocol
on top of Unix Pipe. Each warehouse maintains its own database
and the warehouses are implemented in TCL. This example
illustrated that in emerging NGE platform, workflow is an
important aspect if we have to assure quality of service,
reliability and high level of customer satisfaction.

5. Lessons Learned and Future Directions

We have learned a great deal by developing this testbed. We
have mainly learned that at present the application designer has
to know apriori whether the application will run on a wired
versus wireless network. This is why the IDM capabilities of
adapting for wireless networks transparently are quite useful.
Other problems, beyond the scope of IDM, also need to be
considered. For example, we found that the Web Browsers for
hand-held devices are not Java-enabled and also do not support
JavaScript and Frames. Thus a single wireless user can force

change/re-structure of web interfaces (we had to
redesign our Web site for wireless users because we
initially used JavaScript to access XML documents).
In addition, we found unique firewall issues due to
wireless. For example, our Web site is within
Telcordia’s firewall so we could not access our web
site using Wireless IP Modems (in order to make it
happen we need to put our web server outside
Telcordia’s firewall). The Nomadic Middleware
discussed in the OlympicInfo application addresses
these issues. In the long run, standards like WAP and
Wireless CORBA should address these problems.

We have also learned design principles that mobile
agent application developers should follow. For
example, mobile agents are particularly suitable for
wireless networks because they can find their way
on a frequently disconnected network (i.e., a mobile
agent can stay at a node until a suitable connection
is found). In addition, the target sites should provide
stationary agents to interface with mobile agents and
thus hide the complexity required in local
computations by roaming agents.

We have also found XML to be quite effective in specifying
information to be exchanged. In particular, the behavior of the
participants can be represented by using scriptlets in XML

From our workflow example, we found out that giving proper
feedback to the buyer about the order progress is very important.
Furthermore, providing facilities to monitor order flow and, if
necessary, allow the buyer to intervene the order flow to correct or
change the order is very valuable. Also maintaining a log of order
flow steps and interactions is very valuable for post analysis and data
mining.

We are considering following future directions:
1. Investigate the role of emerging standards such as WAP and
Wireless CORBA on mobile applications in the army environments.
2. Research into integration with back-end systems through
Enterprise Application Integrators.
3. Investigate suppliers running on mobile devices. This raises
many issues. First, if the device cannot run a standard Java VM, then
an alternative such as Java for Windows CE must be found. Second,
in this case, the mobile agent infrastructure should be able to take
advantage of wireless middleware.
4. Allow the mobile agents to perform sophisticated contract
negotiations and trading/brokering with the Suppliers.
5. Build analytic models to decide under what conditions what
approaches (e.g., mobile agents) should be used.
6. Investigate the role of an Open API-based compensating
middleware package such as IDM in building mobile applications
quickly.
7. Investigate the role of automated code generators for
automatically generating the adapters needed for different aspects of
mobile applications. The code generators should accept, for
example, UML information and generate adapters.

Overall, we have found that a testbed that can be used to build
generic mobile applications to be an effective research and learning
tool. We plan to conduct research towards a knowledge-based
workbench with open APIs for building large scale mobile
applications of the future. At the core of the workbench will be a
generic application model, somewhat similar to the one described in
this paper, that will be used to quickly generate different
applications through inheritance/specialization. The workbench will
provide a set of components (e.g., Java Beans, Enterprise Java
Beans), adapters to hide the wireless versus wireline issues and the
necessary tools to compose mobile applications and to reason about
them. In particular, this workbench should provide intelligent
decision support facilities for helping to decide, for example, when
to use mobile agents and when not to, and what type of data
conversions, routings, and workflow capabilities will be needed for
the target application.

REFERENCES
 [1] Umar, A. et al, “An Open API for Information Distribution in
Mobile Environments”, submitted to ATIRP 2000.
[2] Jain, R., et al, “OlympicInfo Architecture", Telcordia
Document, 1999.

[3] Aglet API documentation and architecture,
http://www.trl.ibm.co.jp/aglets/documentation.html.
[4] Voyager, Application Server Platform,
http://www.objectspace.ibm.co.jp/aglets/documentatio
n.html

Trademarks:
The following are trademarks of respective companies:
OlympicInfo - Telcordia Technologies Inc., Aglet –
IBM Corp., Java – Sun Microsystems Inc., Windows
95 and Windows NT – Microsoft Inc.

BIOGRAPHIES
Karun Karunanithi is a Research Scientist at
Telcordia Technologies since 1992. He received his
PhD from Colorado State University in Computer
Science. He has published in several IEEE journals and
conferences. His current research interest are in E-
Commerce, Enterprise System Integration, Specialized
Portals, GUI using advanced visualization
technologies.

Amjad Umar is the Director of the Advanced
Distributed Systems Group at Telcordia Technologies
and an Adjunct Professor at Rutgers University. His
more than 20 years of experience includes software
development, research, management and consulting
assignments in the telecommunications industry,
manufacturing organizations, educational institutions,
and organizations in England, Singapore, China,
Italy, Argentina, and Canada. He is the author of
three Prentice Hall books: "Application
(Re)Engineering: Building Web-based Applications
and Dealing with Legacies", "Object Oriented
Client/Server Internet Environments", and
"Distributed Computing and Client-Server Systems".
He has a Ph.D. in Information Systems Engineering
from the University of Michigan
Ravi Jain received a Ph.D in computer science from
the University of Texas at Austin in 1992. Prior to
that he worked for several years on developing
communications and systems software, performance
modeling and parallel programming. Currently he is
director of the Middleware and Mobile Applications
Research group at Telcordia Technologies. His
interests include programmability, middleware and
applications for next generation networks, mobile
Internet access and applications, and mobile and
wireless networking
Khurram Khaneef is a research scientist at
Telcordia Technologies. His Research interests are
CORBA and JAVA as applicable enterprise and
wireless systems.
Bruno Cordioli is a student visitor from Italy.

http://www.trl.ibm.co.jp/aglets/documentation.html
http://www.trl.ibm.co.jp/aglets/documentation.html
http://www.trl.ibm.co.jp/aglets/documentation.html

	Building Flexible Mobile Applications for Next Generation Enterprises
	2. A Mobile Information Service Application
	4. Dynamic Workflow and High-level Collaboration
	5. Lessons Learned and Future Directions
	
	
	
	BIOGRAPHIES

