Building Flexible M obile Applications for Next Generation Enterprises

Karun Karunanithi, Khurram Haneef, Bruno Cordioli, Amjad Umar, and Ravi Jain.

Telcordia Technologies Inc.
445 South Street, Morristown, N.ﬂ 07960-6438
Phone: 973-595-7990 Email: karun@research.telcordia.com

ABSTRACT

In order to understand and gain practical insights
into various aspects of Next Generation
Enterprises, we are building a testbed for flexible
mobile applications. We started with a generic
architecture and wused it to build different
applications in different domains. Our testbed
consists of a multi-tiered architecture incorporating
various user interfaces and access technologies,
middleware components, enterprise integration
systems, supply chain management and a host of
currently emerging technologies. The first
application we have developed is an information
application for Olympics to provide personalized
information for mobile users through a variety of
end-user devices. The second experiment is a
typical e-commerce online purchasing application
that uses mobile agents (brokers) to buy products
from multiple suppliers based on user specified
criteria. The third example demonstrates a typical
workflow scenario that may be needed in a highly
collaborative and reliable NGE environment. In
this paper, we present our preliminary experiences
in building these applications. Based on our
experience, we are pursuing further research and
evaluation of various technologies for flexibility,
mobility, scalability and ease of integration.

1. INTRODUCTION

Next Generation Enterprises (NGE) that are currently
emerging can be characterized as follows: 1) use
internet/intranet as corporate wide communication
infrastructure, 2) integrate multiple vendors and suppliers
through a zero latency supply chain management, 3) integrate
back end legacy systems, ERP and other systems using EAls
(Enterprise Application Integrators), 4) implement virtual
inventories and virtual offices, 5) utilize host of middieware
components to access back end systems from application
clients, 6) facilitate dynamic service creation and disassembly
of services when not needed, 7) allow automated contract
negotiation and match-making, 8) incorporate integrated

Copyright 2000 Telcordia Technologies, Inc. All Rights reserved.

billing, customer care and decision support systems, and 9)

alow both wireline and wireless (web) access to users from

desktop computers, PDAs and cell phones or traditiona

phones and/or any other custom designed access devices. One

of the important classes of NGE applications is mobile

application, which typically have one or more of the following

features:

« Mobility of customers, employees, and partners over
wireless networks.

* Mobile agents to handle mobile/nomadic platforms,
software, and data

e Advertise, negotiate, and settle services and dedls
through XML

e Specialized middleware for wireless

e Virtua enterprises to support virtua inventories and
virtual offices.

e Dynamic workflow and high level of collaboration

e Integration of services from multitude of suppliers
(EAI, ERP).

To gain practical insights into building mobile applications,
we started with a generic mobile application framework that
can be customized for different business segments. This
framework, shown in Figure 1, consists of a multi-tiered
architecture. This framework introduces a wide range of
research and operational issues in integrating wireless
networks, mobile agents, wireless middleware, workflow,
data replication, XML, adapters, virtual operations, trading
hubs, etc. While building our testbed, we used an incremental
approach to add building blocks and related technologies as
when needed. We first developed an Olympiclnfo
application, described in section 2, that has only one
information store (an Oracle Database that contains the
Olympic information) and a wide range of information users.
In this application we deployed a variety of nomadic support
middleware components. This experiment showed us how
new middleware can be used to adapt for wireless situations.
In section 3, we extend this model to a mobile e-commerce
application with multiple stores (XML-based content) and
brokering through mobile agents. In Section 4 we describe
an implementation of dynamic workflow model to highlight
high-level collaboration between a broker agent, various
suppliers and buyers. Section 5 concludes this paper by
discussing the lessons learned and outlining future areas of
work.

Figure 1. NGE Prototype Architecture

travel to the events by foot or by buses
provided in the Olympics Village, etc. In
addition, from time to time Olympiclnfo
will provide the user some general

WAP <, *Client GUI, Voice informations e.g. weather forecasts and
* Wired I T« Wirdess possibly advertising messages from the
" - service provider or other sponsors. The
NGE Site (Web Server) user can choose to receive this
o E information by a Vanety of media, e.g.
............................ Ty Qs peger, fax, screen phone, or PDA,
?*MoblleAgent P AT Ak ANOIKIOW] S although ObViOUS'y some types Of
: (Searcher Slave information (e.g. images) can only be
A i K e) § NeBgré):?:trér delivered if the user has a terminal
S device of the correct type
XML OlympiclInfo offers users a variety of
) ways to enter their choices about
* Enterprise Application Integrators (EAIS) sports and events they are interested
... ; in, and the% ChOICeS are gored in
Back-end - user profiles
Systems * indicate
work initiated

2. A Mobilelnformation Service Application

Based on our generic NGE framework shown in Figure
1, we have developed a mobile information application
called Olympicinfo (Figures 2 and 3). This mobile
application was designed for a large number of visitors
expected at the Olympics. Olympiclnfo allows a user to
register which of the many Olympics sports events are of
interest to him or her, and receive up-to-the-minute
information relevant to those sports before and during
the Olympics. The information to be delivered could
include the scheduled times, contestants and venues of
events for each sport of interest, changes in times and
venues, the results of events as they occur, directions to

Fgure 2 Qympiclnfo System

“Thin” dients

I—DTP/

Cell
pmg'r'?é‘t”a% m

Palrrtop IP/CDDD

Propnetaly
Wn CE

(F;rsquetaryg «— A

Intarg Inrdlrt

Enterprise TCP/ IPLAN
[[

g Jec/ip B
“Thick” Qlients || o ﬁ b omtwiehons S l‘
IP/CDPD =
m
Qympicinfo ddygﬂbpldnfo

server
”CP/ WinNT WInNT
Wn 95/NT Dal -up Ilnk

These include operator-based methods where the user
calls an (800 or 900) telephone number and speaks to a
live operator, or obtains and faxes back a form to a
clearinghouse, Web-based methods where a user enters a
form and entry via Olympiclnfo information kiosks.

Figure 2 shows the Olymiclnfo prototype. Two classes of
clients are used in the prototype. “Thin” clients are those
that have limited computing, display and communication
capabilities. In the prototype these are limited to one-way
aphanumeric pagers, PCs or digital cellular handsets with
small screen displays, and browsers that can display
Handheld Device Markup Language (HDML) cards sent
using the Handheld Device Transport Protocol (HDTP).
For the purposes of this prototype the main difference
between thin and thick clients is that the latter can run a
CORBA Object Request Broker (ORB).

Figure 3: General software
architecture for Olympicinfo

Applications Unifieq Personali_zed Mobile Data- Mobilg
Messaging || Information ||base Access|| Computing

Profile Manager
Nomadicit ‘AddressH Media H Info.
Middle- Profile J{_Profile)\ Profile

Mailbox Manager

‘ Pager H Email H Fax ‘
— S Cache SQL

Query Manager

ware
Media Translation

Text-to = Text-to Textto

Speech Fax Page

Media Manager

Base

Middle- | Commercial Middleware Platform e.g. DCOM, CORBA

ware

Mobility and wireless adapter

System Software

Example of thick clients that will operate in the
prototype are laptops running Windows 95 that can be
attached to CDPD wireless modems and which can
run a CORBA ORB, specifically Inprise’s VisiBroker
ORB. The clients run a CORBA application written in
Java that communicates using CORBA’s Internet
Inter-ORB Protocol (110P) over TCP/IP, which in turn
will run over the wireless link.

The prototype server residesin an enterprise TCP/IP LAN
environment and consists of a Windows NT platform
running a CORBA ORB, specifically Inprise’s VisiBroker
ORB. The application isa CORBA application written in
Java. The actual information is stored in a database (an
Oracle version 8 database) that runs on a Windows NT
platform running a CORBA ORB with access to the
database using Java Database Connectivity (JDBC) APIs.

Figure 3 shows the software architecture of Olympiclnfo.
This architecture is designed to support a variety of
applications such as unified messaging, in addition to
mobile applications -- the focus of this paper. The
architecture includes an extensive middleware stack for
nomadic users that need support for profiles management,
mailbox management, and media management/trand ation.
The nomadic middleware stack at present runs on top of
basic middleware such as CORBA. Adapters for wireless
and mobility are included in the architecture but were not
implemented (these adapters are expected to be provided
by Information Distribution Manager [1] and Wireless
CORBA). Detals of the Olympicinfo software
architecture are beyond the scope of this paper (see[2] for
details).

3. A Mobile e.Commerce Application

In this application, we further extend the general mobile
e-commerce application framework in severa ways:
multiple suppliers, mobile agents, and XML content
representation. As part of this extension, we evaluated
Voyager [4] and Aglet [3] platforms for mobile agents
(we chose Aglet due to its openness), developed an Aglet
application that goes around multiple sites and chooses
the best deals for the customers, constructed user
interfaces, and specified a wide range of products in
XML. We are currently investigating WAP(Wireless
Application Protocol) and voice processing as further
extensions.

Figure 4 shows the mobile e-commerce aspect of the
mobile application. It consists of 3 shopping sites:
« "BookStore" selling books and CDs

e "CDStore"
¢ "PCStore"

selling CDs and software
selling hardware and software

The products that each of these site sells are defined as
XML files. At each of theses sites, an Aglet server runs a
“Supplier Aglet”. The Supplier Aglet reads the XML file
corresponding to its site, and parses it using the Sun’s Java
XML Standard Extension AP (see
http://j ava.sun. com/products/xml/) Once the XML fileis

‘ , in the Supplier Aglet. In

ch—Site defines its selling
pohm&s aso in XML and store policies (i.e, a
return/exchange policy, and credit cards the site accepts).

The buyer’s interface to the demo is through a web page.
In this web page, the buyer specifies the product it is
interested in, in addition to the policies that the buyer
desires. Once the client specifies, and submits its request,
the regquest is handed over to a “Searcher Aglet” in the
form of a CGlI string. The Searcher Aglet, which has the
capability of accepting http requests as messages, parses
the CGI string to obtain the unique code of the product in
the request, and creates a “Searcher Slave Aglet” that
compares the user query with the local Supplier Aglet to
determine a match. Once the Searcher Slave Aglet obtains
the query results, it dispatches to the next site, and so on.
The Searcher Slave Aglet maintains an itinerary that it
should follow to various sites. In the case where a site on
the itinerary is not up, the Searcher Slave Aglet will skip
that site. Once the Searcher Slave Aglet has completed its
trip, it returns to its origina site and delivers the search
results to the Searcher Aglet. The Searcher Aglet, in turn,
embeds these results in a dynamic HTML page that it
creates, and then writes that HTML page back to the
browser in a manner similar to CGI applications.

Note that the communication between the Searcher Aglet
and the Searcher Slave Aglet, as well as that between the
Searcher Slave Aglet and the Supplier Aglet is carried
locally through the Aglet messaging mechanism, and thus
it does not consume network bandwidth. Unlike classical
client/server database applications, the connection
between the database client (in this case the Searcher
Aglet) and the server (in this case the Supplier Aglet),
need not be established while the search is being
performed. This characteristic is especialy important in
the case of wireless network, since the nodes may get
disconnected frequently.

http://java.sun.com/products/xml/)

Figure 4: Mobile Ecommerce Prototype Architecture

 J
Mobile
and wireless
Primary Content Provider
Other | " ey N
- ! Searcher |
Services SlaveAgIet
Servicesin .
Servicesin

Providers

Savicesin
XML

in those instead of exposing information directly to the

roaming agents.
Instead of maintaining a stationary Supplier Aglet at each site,
we might have allowed the Searcher Slave Aglet to access the
XML files directly. However this design option provides at
least three advantages:
* More secure: the Aglet security model differentiates two
kinds of Aglets:))
i Trusted Aglets: downloaded from a local codebase In this example we track the_order flow of_ a typical
or a trusted host. These Aglets have access to the local Consumer purchase from the client end to various back-
resources of the hogt, (files, etc.) end subsystems and provide a hi_gh-level collaboratio_n
i Untrusted Aglets: downloaded from an untrusted Petween the buyer and the system via abroker agent. This
host. These Aglets have limited access to local sources, but System consists of a virtual store, a broker and two
they can communicate with Aglets on the host. warehouses (suppliers). The virtual store is implemented
From the supplier’s point of view, trusting a Searcher Slave 8 @ Web server though which a customer can order goods
Aglet represents a security threat. The Supplier Aglet, (in this case PCs and Games) using a browser interface
therefore acts as a gateway between the searcher and the (Java). The virtual store does not maintain its own
resources that contain the services. inventory and it fully relies on its suppliers. For each
« More efficient: alowing the Searcher Slave Aglet to registered buyer, the store has a profile maintained in a
perform the query search will require it to be more l0cal database.
complicated, and thus larger in size. This, in turn, will cause

its dispatching to consume more bandwidth, and be less THiS profile typicaly consists of some payment
efficient. information and preferences. The suppliers maintain their

. More modular: consider the case where the OWN inventory of various brand name PCs and Video
service implementation at each site is different. This Cames. Each warehouse has its own demand forecas,

requires a different interface to the service at each site. This pricing and delivery options. The broker in the middle acts

4. Dynamic Workflow and High-level
Collaboration

heterogeneity should reside in the individual stationary
(Supplier) Aglets instead of residing in the roaming Aglet.
This remark illustrates a design principle that, we believe,
every mobile agent application should follow: target sites
should provide stationary agent to interface with maobile
agents, and thus hide the complexity required in local
computations

as an agent to negotiate and match a best price and/or other
criteria. When a purchase order comes to the server, the
server sends the request to the broker along with the
buyer's profile. The broker will then match the order (along
with its buyer's constraints) with designated suppliers
ability to meet the order. It should be noted that the broker
has its own discretion to deal with partial purchases, if
necessary, from different suppliers and then package a
complete order fill to the buyer. Figure 5illustrates a

typical scenario of this example where a buyer makes a Usually, interaction occurs between the buyer and the
purchase of a PC and Games. All work flow stepsinvolved in broker. But in certain situations, for example, the order
this typical purchase are labeled 1 through 8 in Figure 5. In may have to be shipped by the Warehouse to a different
this example scenario, Warehouse 1 ran out of PCs and the address than that of the buyer and the Warehouse may need
broker then purchased all items from Warehouse 2. Once a shipping Zip code for optimum shipping cost or delay. Is
broker gets confirmation from the Warehouse(s) of all items such a scenario, the Warehouse may directly prompt the

matching buyer's constraints it will issue a'Commit' and relay buyer to enter additional information.
In actual that the buyer may cancel the order at any time (before the

that as a 'Order Confirmation' to the buyer.

It is aso possible

prototype, we have implemented several scenarios involving final ‘Commit’), even if the broker finds a matched order.

different levels of interaction between the buyer, broker and
suppliers.

Figure 3: A Typical Workflow Scenario

Muhliple
. Purchase
L3 Reguest
1 5 ¥ PO+ (Games
Buy Warehouse 1
2 Ohet of zinek! Pe
By PU + Games 3
whorner
Vi [ST @
b
B Comomit
4
Buy Games
4
y PO+ CGames
i : & Buy PC Warehouse 2
- lmedprice —

- In-stock Birst
- vohmhe discomds

[

In our implementation, both the virtual store server and the
broker reside on the same server while the warehouse servers
reside on different machines. The communication between the
broker and the warehouse is implemented using special protocol
on top of Unix Pipe. Each warehouse maintains its own database
and the warehouses are implemented in TCL. This example
illustrated that in emerging NGE platform, workflow is an
important aspect if we have to assure quality of service,
reliability and high level of customer satisfaction.

5. Lessons Learned and Future Directions

We have learned a great deal by developing this testbed. We
have mainly learned that at present the application designer has
to know apriori whether the application will run on a wired
versus wireless network. This is why the IDM capabilities of
adapting for wireless networks transparently are quite useful.
Other problems, beyond the scope of IDM, also need to be
considered. For example, we found that the Web Browsers for
hand-held devices are not Java-enabled and also do not support
JavaScript and Frames. Thus a single wireless user can force

change/re-structure of web interfaces (we had to
redesign our Web site for wireless users because we
initially used JavaScript to access XML documents).
In addition, we found unique firewall issues due to
wireless. For example, our Web site is within
Telcordid s firewall so we could not access our web
site using Wireless IP Modems (in order to make it
happen we need to put our web server outside
Telcordia's firewall). The Nomadic Middleware
discussed in the Olympiclnfo application addresses
these issues. In the long run, standards like WAP and
Wireless CORBA should address these problems.

We have aso learned design principles that mobile
agent application developers should follow. For
example, mobile agents are particularly suitable for
wireless networks because they can find their way
on a frequently disconnected network (i.e., a mobile
agent can stay at a node until a suitable connection
is found). In addition, the target sites should provide
stationary agents to interface with mobile agents and
thus hide the complexity required in local
computations by roaming agents.

We have aso found XML to be quite effective in specifying
information to be exchanged. In particular, the behavior of the
participants can be represented by using scriptletsin XML

From our workflow example, we found out that giving proper
feedback to the buyer about the order progress is very important.
Furthermore, providing facilities to monitor order flow and, if
necessary, alow the buyer to intervene the order flow to correct or
change the order is very valuable. Also maintaining a log of order
flow steps and interactions is very valuable for post analysis and data
mining.

We are considering following future directions:

1. Investigate the role of emerging standards such as WAP and
Wireless CORBA on mobile applications in the army environments.
2. Research into integration with back-end systems through
Enterprise Application Integrators.

3. Investigate suppliers running on mobile devices. This raises
many issues. First, if the device cannot run a standard Java VM, then
an alternative such as Java for Windows CE must be found. Second,
in this case, the mobile agent infrastructure should be able to take
advantage of wireless middleware.

4. Allow the mobile agents to perform sophisticated contract
negotiations and trading/brokering with the Suppliers.

5. Build analytic models to decide under what conditions what
approaches (e.g., mobile agents) should be used.

6. Investigate the role of an Open API-based compensating
middleware package such as IDM in building mobile applications
quickly.

7. Investigate the role of automated code generators for
automatically generating the adapters needed for different aspects of
mobile applications. The code generators should accept, for
example, UML information and generate adapters.

Overal, we have found that a testbed that can be used to build
generic mobile applications to be an effective research and learning
tool. We plan to conduct research towards a knowledge-based
workbench with open APIs for building large scale mobile
applications of the future. At the core of the workbench will be a
generic application model, somewhat similar to the one described in
this paper, that will be used to quickly generate different
applications through inheritance/specialization. The workbench will
provide a set of components (e.g., Java Beans, Enterprise Java
Beans), adapters to hide the wireless versus wireline issues and the
necessary tools to compose mobile applications and to reason about
them. In particular, this workbench should provide intelligent
decision support facilities for helping to decide, for example, when
to use mobile agents and when not to, and what type of data
conversions, routings, and workflow capabilities will be needed for
the target application.

REFERENCES
[1] Umar, A. et al, “An Open API for Information Distribution in
Mobile Environments’, submitted to ATIRP 2000.

[2] Jain, R, et a, “Olympicinfo Architecture", Telcordia
Document, 1999.

[3] Agdlet API documentation and architecture,
http://www.trl.ibm.co.j p/aglets’documentation.html.

4] Voyager, Application Server Platform, |
http://www.objectspace.ibm.co.jp/agl ets'documentatid
n.html

[] Trademarks:

The following are trademarks of respective companies:
Olympiclnfo - Telcordia Technologies Inc., Aglet —
IBM Corp., Java — Sun Microsystems Inc., Windows
95 and Windows NT — Microsoft Inc.

BIOGRAPHIES

Karun Karunanithi is a Research Scientist at
Telcordia Technologies since 1992. He received his
PhD from Colorado State University in Computer
Science. He has published in several |EEE journals and
conferences. His current research interest are in E-
Commerce, Enterprise System Integration, Specialized
Portals, GUI using advanced visualization

technologies.

Amjad Umar is the Director of the Advanced
Distributed Systems Group at Telcordia Technologies
and an Adjunct Professor at Rutgers University. His
more than 20 years of experience includes software
development, research, management and consulting
assignments in the telecommunications industry,
manufacturing organizations, educational institutions,
and organizations in England, Singapore, China,
Italy, Argentina, and Canada. He is the author of
three Prentice Hall books: pplication
(Re)Engineering: Building Web-based Applications
and Dedling with Legacies’, "Object Oriented
Client/Server I nternet Environments', and
"Distributed Computing and Client-Server Systems'.
He has a Ph.D. in Information Systems Engineering
from the University of Michigan

Ravi Jain received a Ph.D in computer science from
the University of Texas at Austin in 1992. Prior to
that he worked for several years on developing
communications and systems software, performance
modeling and parallel programming. Currently he is
director of the Middleware and Mobile Applications
Research group at Telcordia Technologies. His
interests include programmability, middleware and
applications for next generation networks, mobile
Internet access and applications, and mobile and
wireless networking

Khurram Khaneef is aresearch scientist at
Telcordia Technologies. His Research interests are
CORBA and JAVA as applicable enterprise and
wireless systems.

Bruno Cordioli is astudent visitor from Italy.

http://www.trl.ibm.co.jp/aglets/documentation.html
http://www.trl.ibm.co.jp/aglets/documentation.html
http://www.trl.ibm.co.jp/aglets/documentation.html

	Building Flexible Mobile Applications for Next Generation Enterprises
	2. A Mobile Information Service Application
	4. Dynamic Workflow and High-level Collaboration
	5. Lessons Learned and Future Directions
	
	
	
	BIOGRAPHIES

