¢ Network Capacity Recovery and Efficient
Capacity Deployment in Switching Centers
Nachi K. Nithi, Carl J. Nuzman, and Benjamin Y. C. Tang

One way for service providers to reduce their costs is through network
capacity recovery. We describe the problem of recovering capacity by
minimizing the switching overhead incurred by multiple switches in a
switching center. We also describe the Multiple ATM Switch Configuration
Optimization Tool (MASCOT), which addresses this problem. Initially
developed for asynchronous transfer mode (ATM) switches, the tool
applies flexibly to other devices such Synchronous Optical Network
(SONET) cross connects or Multiprotocol Label Switching (MPLS)
routers. New services enabled by this tool include (1) reconfiguration
of an existing switching center to increase the number of available
switch ports and (2) efficient green field design for migrating to new
hardware. Given the set of external trunks and the traffic demands
between them, MASCOT searches for a switching center topology
that minimizes the traffic carried on internal trunks. MASCOT handles
a wide variety of switch types with hierarchical constraints imposed by
components such as interface cards, processor cards, and slots.

© 2005 Lucent Technologies Inc.

Introduction

Network optimization has always been an impor-
tant part of the business of building and upgrading
communication networks. In a capacity deployment
scenario, the network operator would like to mini-
mize capital expenditures and operating expenses,
while satisfying capacity and quality of service require-
ments. Capacity recovery services take the comple-
mentary approach of performing network optimization
as part of the maintenance of an existing communi-
cation network. Here, the capital infrastructure is
constrained, and the goal is to maximize the commu-
nication capacity and quality of service within the
existing network.

On the face of it, capacity recovery and capacity
deployment services could be seen as competing, since
a successful capacity recovery service could postpone a
network provider’s need for new equipment. However,
they should more properly be seen as complementary
and synergistic. Capacity recovery provides a beneficial
service to network providers who are unable or un-
willing to make significant capital purchases. Applying
similar optimization tools and expertise for capacity
recovery and capacity deployment can increase cus-
tomers’ confidence that they are receiving the great-
est possible return on their capital and operational
investment.

Bell Labs Technical Journal 9(4), 83-100 (2005) © 2005 Lucent Technologies Inc. Published by Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). ¢ DOI: 10.1002/bltj.20063

In this paper, we focus on a class of physical topol-
ogy optimization that is applicable to capacity deploy-
ment and capacity recovery services: optimizing the
connectivity between switches within a single switch-
ing center. The need for these services arises when
network switching centers contain multiple collocated
switches. Such switching centers are able to handle
more traffic than any individual switch could, but
the aggregate capacity is always less than the sum of
the individual switch capacities due to internal switch-
ing overhead. To understand the proposed services, it
is helpful to consider a simple example. Figure 1 de-
picts a switching center (A) connected to four neigh-
boring centers (B, C, D, and E) under two different
physical topologies. The light gray circles represent
switching centers and the dark gray circles are
switches. The brown arrows represent large traffic
flows, while the tan arrow represents a smaller flow.
Black lines represent trunks. In Figure 1(a), switching
center A contains two switches (A.1 and A.2), con-
nected to each other by two trunks; these trunks are
called internal trunks because both endpoints are in
the same switching center. The four trunks that con-
nect A.1 and A.2 to switches in other switching centers
are referred to as external trunks. The brown arrows
represent large aggregate traffic flows between cen-
ters B and C, and between centers D and E, which tra-
verse both local switches and use the internal trunks.
The tan arrows represent a smaller aggregate flow
between centers B and D that only traverses switch
A.1.1In Figure 1(b), the external A-D trunk terminates

Panel 1. Abbreviations, Acronyms, and Terms

ATM—Asynchronous transfer mode

CGl—Common gateway interface

GUI—Graphical user interface

IP—Internet Protocol

MASCOT—Multiple ATM Switch Configuration
Optimization Tool

MPLS—Multiprotocol Label Switching

OC—Optical carrier; OC12, OC48, and 0OC192
are optical carrier digital signal rates of
622.08 Mb/s, 2.488 Gb/s, and 9.953 Gb/s,
respectively, in a SONET system.

PC—Processor card

PIC—Physical interface card

POS—Packet over SONET

PVC—Permanent virtual connection

SDH—Synchronous Digital Hierarchy

SONET—Synchronous Optical Network

UBR—Unspecified bit rate

on switch A.2 rather than switch A.1, and the external
A-C trunk terminates on switch A.1 rather than switch
A.2. In this configuration, the large flows pass through
single local switches, and only the smaller tan flow
must pass through both A.1 and A.2. The net effect is
areduction of load on A.1 and A.2, reduced traffic be-
tween A.1 and A.2, and the ability to remove one of
the internal trunks. Other benefits could include a
reduction in end-to-end average delay.

In a true switching center, the situation is much
more complicated. There may be several switches of

(a) Before optimization

(b) After optimization

Figure 1.
Switching center configurations.

84 Bell Labs Technical Journal

Server

Software modules

Web server | _
-CGl/Perl -~

-Input processing
-Optimization engine
-Report generator

Y

Client
Design
choice GUI
—>| (Browser) [[< >
\
Input files

1. Switch description
2. Demand
3. Current configuration

CGl—Common gateway interface

GUIl—Graphical user interface

"Output files

1. Summary stats
2. Flows
3. Final configuration

Figure 2.
MASCOT software architecture.

different types terminating dozens of external trunks
of many types, which in turn carry thousands of
flows. We have developed a switching center opti-
mization tool for solving problems of this type.
Depending on the service, the optimization can be
used to make an existing switching center more
efficient, to deploy an efficient switching center in the
first place, or to explore the consequences of different
switch designs.

In the next section, we describe the optimization
tool. In subsequent sections, we give examples of how
this tool has already been used to support capacity
deployment services and describe how it could be
used in capacity recovery applications.

Switching Center Optimization Tool

The Web-based client-server tool we have imple-
mented to address the problem of switching center
topology optimization is the Multiple ATM Switch
Configuration Optimization Tool (MASCOT). The core
optimization engine uses a local search heuristic to
try to minimize the total traffic on internal trunks or,
equivalently, to minimize the total switching load.
The tool can also compute the hardware costs associ-
ated with any configuration and choose the least-cost
solution among candidates produced by the core
optimization engine. The software architecture of the
system consists of a Web browser-based user interface
client and a back-end server consisting of a Web server

and software modules. The back-end software mod-
ules comprise a core optimization engine, an input
parsing and validation module, and a report generator.
On the server side, common gateway interface (CGI)-
driven Perl language scripts are used to glue the back-
end software modules to the Web server. Figure 2
illustrates the MASCOT architecture.

There are two types of optimizations that MAS-
COT performs: a green field design, to design a new
switching center, and a brown field design, to perform
re-optimization of an existing center. Apart from
specifying the optimization, the client graphical user
interface (GUI) also allows the user to upload input
data files and to browse and download optimized
configurations. For a green field design, MASCOT
requires two input files: a Switch Specification file and a
Demand file. In case of re-optimization, an additional
input file, called Current Configuration, specifying the
existing switch configuration is needed. MASCOT
produces outputs in three files: the Summary file, the
Flows file, and the Final Configuration file.

Input and Output Data
The input and output files, which are ASCII text
based, are described in detail in the subsections below.
Switch model. The Switch Specification file is used to
define the types of switches available in the switching
center and how they may be used. Specifically, the
file must define which interfaces are supported by the

Bell Labs Technical Journal 85

| switch

C C
Slot
- T
D D
Processor
card

Physical interface
card

A
\B_T_| \B_T_|
D D E
Figure 3.

Hierarchy of switch components.

switch, what combinations of interface ports are pos-
sible, and what minimal cost is required to support a
particular combination of ports. Rather than requiring
an explicit description of the set of valid combinations
of ports, the tool uses a hierarchical model to implic-
itly define this set. A hypothetical switch described
by the model is illustrated in Figure 3. At the bottom
of the hierarchy are physical interface cards (PICs),
each of which contains a fixed number of ports of a
single interface type. In Figure 3, there are seven PICs
of four types. The PICs of type G have three ports,
while the others each contain one port; the varying
sizes and shapes of the ports indicate different data
rates, protocols, and so on. At the next level are
processor cards (PCs). Each PC can service one or
more PICs from a specified set. Each PC has a fixed
limit on the total number of PICs it can take, as well
as a limit on the total data rate of all ports connected
to it. In Figure 3, a PC of type E can accept one PIC of
type I, while each PC of type D can accept up to two
PICs of types F, G, and H, in various combinations.
At the top level of the model, the switch consists of
a number of slots of various types. The number of
slots of each type is considered to be fixed for any
given switch type. Each slot can accept processor cards
from a given set, up to a specified maximum number
of cards. In Figure 3, a switch of type A comes with
two slots of type B and two slots of type C. Slots of the
latter type can accept PCs of type E or D, while

86 Bell Labs Technical Journal

type B slots are restricted to PCs of type D. The
information needed to specify the model parame-
ters is simple and usually readily available from the
manufacturer. By contrast, an explicit description of
the set of all possible port combinations can be quite
complicated.

Because the model relates to the actual architec-
ture of most switches, it is flexible enough to apply to
a wide range of switch types. Panel 2 illustrates the
syntax used to specify the model parameters for each
switch type in the Switch Specification file, and Panel 3
gives an example of such a file. The file consists of an
optional User_Defined_Interface object, followed by one
or more SWITCH objects. A number of common
generic interface types and their corresponding trans-
mission rates are predefined in MASCOT (e.g., OC12
and 622 Mb/s). The User_Defined_Interface object is
used to define any other interfaces that are needed.
Each PIC defined in a SWITCH object is given an
interface type, and each trunk defined in the Demand
file (described below) is also assigned an interface
type. During optimization, trunks can only be assigned
to ports with a matching interface type. In Panel 3, for
example, interfaces called OC12POS and OC12ATM
are defined in order to distinguish between ports
designed for packet-over-SONET (POS) transmission
and those designed to use asynchronous transfer mode
(ATM). The user-defined interfaces could also be used,
for example, to distinguish between short-range and

Panel 2. Syntax of Switch Specification Objects

Object User_Defined_Interface
{<InterfaceName string>}+
end

{ Object SWITCH
<Vendor string>
<SwitchName string>
<Capacity real>
<SwitchCost real>
<NumSlots integer>
<LoadFactor real>
Object PIC
end
Object PC
end

Object SLOT

end
end }"

{<PIC_Label PIC_ID NumberOfPorts CapPerPort Cost>}+

{<PC_Label PC_ID MaxNumPICs PICAllowed MaxProcessingCapacity Cost>}+

{<SLOT_Label SLOT_ ID MaxNumPCs PCAllowed Cost>}+

long-range optical interfaces on SONET equipment,
or between native ATM ports and frame relay ports on
an ATM switch.

Each SWITCH object consists of a Basic Switch
Information section followed by a PIC object, a PC object
and a SLOT object. Each line of the PIC object defines
a different type of physical interface card, including
the interface type, number of ports, and cost for each
card. Similarly, the PC object defines the parameters of
each PC type. Because each switch comes with specific
slots built in, the SLOT object includes one line for
each slot provided on the switch, rather than just for
each slot type; multiple slots may have the same
parameters, in which case we may say that they are of
the same slot type. Panel 3 provides an example
Switch Specification file defining a router with eight
slots, two types of processor cards, and four types
of physical interface cards. This router model will
be referred to again in the “Capacity Deployment
Services” section below.

Traffic flows. The Demand file is used to list the
flows that pass through or terminate in a given
switching center and to specify which external trunks
they are routed on. An example file is depicted in
Panel 4. The first section lists the flows: for each flow,
the file identifies a source trunk, a destination trunk,
and a bandwidth. Each trunk has a text label and an
integer identifier (e.g., “ATM-APOP1” and “101").
Multiple flows with identical parameters can be in-
cluded on one line using a count field; in Panel 4 each
flow is listed separately with a count of one. The
aggregate bandwidth demand between each pair of
external trunks is determined by summing over ap-
propriate flows. The second section of the file defines
the trunks for the switching center, which fall into
three categories. External trunks are those that carry
traffic to and from remote switching centers, while
internal trunks connect two switches within the local
switching center. Access trunks are used to carry flows
that are dropped locally in the switching center.

Bell Labs Technical Journal 87

Panel 3. Example Switch Specification File

Object UserDefinedInterfaces

label DataRate (Mpbs)

0OC12POS 622

OC12ATM 622

end

Object Switch

Base switch information

SwitchName A-Router

Capacity 320.0

SwitchCost 200

NumSlots 8

LoadFactor 1.0

Object PIC

label ID NumPorts Interface Cost
PIC-1pOC192P0OS 1 1 0C192 200
PIC-4p0OC48P0OS 2 4 oc4s 300
PIC-4p0OC12POS 3 4 0C12POS 50
PIC-2pOCl12ATM 4 2 OC12ATM 25
end

Object PC

label ID MaxNumPICs PICAllowed MaxProcCap Cost
PC-fast 1 4 1,2 40 100
PC-slow 2 4 3,4 16 25
end

Object Slot

label ID MaxNumPCs PCAllowed Cost
Slot-1 1 1 All 0.0
Slot-8 8 1 All 0.0

end

end

External trunks are part of the problem definition,
and each trunk is defined on its own line. The line
identifies the trunk by the same integer identifier used
in the previous section of the file and specifies an in-
terface type and fill factor. The fill factor is a multiplier
applied to nominal trunk capacity to obtain the avail-
able capacity; a factor of 0.9, for example would force
the optimization tool not to use more than 90% of the
nominal capacity. Because internal and access trunks

88 Bell Labs Technical Journa

are created as part of the solution to the problem,
these trunks are not explicitly listed in the Demand
file. Instead, two lines are used to specify the interface
types and fill factors to be used when creating internal
and access trunks.

Switching center configuration. The Current Configu-
ration file contains a description of the existing switch
configurations and is used as the starting point for the
brown field optimization runs. It contains an explicit

Panel 4. Example Demand File

List of flows between external trunks

from trunkID to trunkID bandwidth count comment
ATM-APOP1 101 CORELl 1 1.03667e+08 1 NA
ATM-APOP1 101 CORE2 2 1.03667e+08 1 NA
ATM-APOP2 102 CORE3 3 1.03667e+08 1 NA
ATM-APOP2 102 CORE4 4 1.03667e+08 1 NA
ATM-APOP2 102 CORE5 5 1.03667e+08 1 NA
ATM-APOP3 103 CORE4 4 1.03667e+08 1 NA
ATM-APOP3 103 CORE5 5 1.03667e+08 1 NA
IP-APOP1 501 CORE3 3 2.49259e+07 1 NA
IP-APOP1 501 CORE4 4 2.49259e+07 1 NA
IP-APOP3 503 CORE5 5 2.49259e+07 1 NA
IP-APOP3 503 CORE6 6 2.49259e+07 1 NA
IP-APOP4 504 COREL 1 2.49259e+07 1 NA
IP-APOP4 504 CORE2 2 2.49259e+07 1 NA
IP-APOP4 504 CORE3 3 2.49259e+07 1 NA
CORE1L 1 COREb 2.06667e+08 1 NA
CORE3 3 CORE4 4 5.01250e+08 1 NA

#Specify interface to be used for internal and access trunks

Type D Interface FillFactor
Trunk T All 0oCc48 1.0
Trunk A All OC12P0OS 1.0

#Define the interfaces for the external trunks

Type D Interface FillFactor
Trunk E 1 0C192 1.0
Trunk E 6 0C192 1.0
Trunk E 101 OC12ATM 1.0
Trunk E 102 OC12ATM 1.0
Trunk E 501 0C12POS 1.0
Trunk E 502 0C12POS 1.0
Trunk E 635 0C12POS 1.0

list of all of the equipment in use, including switches,
slots, PCs, PICs, and trunks. In addition, the file spec-
ifies how all of the pieces are connected to each other.
The syntax of the seven sections in the file is shown in
Panel 5, and an example configuration, with three
instances of a single switch type, is shown in Panel 6.
Each component is described by an identifier and a
type. The type is a reference to the different object

types defined in the switch specification file in Panel 3
above. The identifier uniquely specifies each com-
ponent and its relationship to other components. For
example, S1 refers to a particular switch, S1.1 refers
to the first slot on that switch, S1.1.2 is the second
PC on S1.1, and so on. Assuming that components
are numbered from left to right in Figure 3, the PIC of
type H would have the identifier S1.2.1.2, as it is the

Bell Labs Technical Journal 89

Panel 5. Syntax of Configuration Files
SWITCH id description
{<SWITCH_ID Type>}+

SLOT configuration description
{<SLOT_ID Type>}+

PC configuration description
{<PC_ID Type>}+

PIC configuration description
{<PIC_ID Type>}+

External Trunk (E-Trunks) configurations
{<TRUNK_ID Type Port_ID Fill Factor>}+

Access Trunk (A-Trunks) configurations
{<TRUNK_ID Type Port_ID Fill Factor>}+

Internal Trunk (I-Trunks)

configurations
{<TRUNK_ID Type Port ID 1 Port_ID 2 Fill Factor>}+

second PIC on the first PC on the second slot of the
first switch. The trunks are described using additional
information such as the ports to which they are con-
nected and their fill factor. For example, in Panel 6,
external trunk E502 is connected to portid S2.2.1.1.2,
meaning the second port on PIC S2.2.1.1. Each inter-
nal trunk uses a switch port on two local switches
while the external and access trunks use only one
local port. The same format is used to describe the
state of the system after optimization in the Final
Configuration file.

Results. At the end of a run, MASCOT produces
outputs in three different files. A high-level summary
of the design is produced in the Summary file. This
includes information such as the number of switches
needed for the final configuration and their type; a
count of the number of external, access, and internal
trunks; ports needed on each switch; a list of PCs, PICs
and slots required; cost information; aggregate load
on switches; and statistics on switch overhead. The
Final Configuration file, whose format is same as that
of the Current Configuration file, is generated to give
detailed information about how various elements on
each switch should be configured. The Flows file is the

90 Bell Labs Technical Journa

third output file generated by MASCOT. Its format is
similar to the Demand file, except that the Flows file
also specifies a route that each flow should take
through the switching center. The route is specified by
listing, in order, all of the switches and trunks that
the flow passes through.

Optimization Algorithm

The problem faced in switching center optimiza-
tion is essentially a partitioning problem. Given a par-
ticular set of external trunks, the goal is to form
clusters of trunks with traffic in common such that the
amount of traffic between clusters is small. Each cluster
is then assigned to a different switch, so that a large
amount of traffic need only pass through a single
switch in the switching center. The problem can be
considered to be a variant of the min k-cut problem in
graph theory. In that problem, a graph has several
nodes (external trunks) connected by edges, and each
edge has a non-negative weight (the amount of traf-
fic between corresponding trunks). In the min k-cut
problem, the goal is to divide the graph into k disjoint
clusters while minimizing the weight of inter-cluster
edges (i.e., minimizing traffic on internal trunks). For

Panel 6. Example Configuration File for a Switching Center with Three Routers

#Switches

#ID type

S1 A-Router
S2 A-Router
S3 A-Router
#Slots

#ID type

S1.1 Slot-1
S1.2 Slot-2

S53.8 Slot-8

#PCs

#ID type

S1.1.1 PC-FAST

S1.2.1 PC-SLOW

S3.7.1 PC-SLOW

#PICs

#ID type

S1.1.1.1 PIC-1p0OC192PO0OS
S1.1.1.2 PIC-1p0OC192PO0OS
S1.1.1.3 PIC-1p0OC48P0OS
S1.1.1.4 PIC-1p0OC48P0OS
S1.2.1.1 PIC-2pOCl12ATM
S1.2.1.2 PIC-2pOCl12ATM
S3.7.1.1 PIC-4p0OC12P0OS
s3.7.1.2 PIC-4p0OC12P0OS
s3.7.1.3 PIC-4p0OC12P0OS

#External Trunks

#ID type Port fillFactor
ELl 0C192 S1.1.1.1.1 1
E6 0C192 S2.1.1.4.1 1
E101 OCl12ATM S2.2.1.3.1 1
E102 OCl12ATM S1.2.1.1.1 1
E501 OC12POS S2.2.1.1.1 1
E502 O0OC12POS S2.2.1.1.2 1

#Internal Trunks

#ID type Portl Port2 fillFactor
I1 oc48 s1.1.1.3.2 S2.1.1.3.1 1
I8 oc48 s3.2.1.1.2 S2.1.1.3.2 1

Bell Labs Technical Journal

91

fixed k, the optimal solutions can be found in polyno-
mial time, and there is a fairly simple 2-approximation
algorithm [3, 5]. The key distinction in switching
center optimization is that there are complex con-
straints specifying which combinations of nodes can
fit into the same cluster. These constraints include
switch capacity constraints as well as configuration
constraints implied by the hierarchy of switch com-
ponents.

Given a particular set of switches fitting into the
hierarchical model, the problem may be formulated as
an integer program and, in principal, solved to opti-
mality. When individual flows are small relative to the
trunk size, some of the integer variables can be relaxed
to take continuous values. Even so, this approach does
not scale well to problems with several switches and
tens to hundreds of external trunks. The MASCOT
algorithm instead uses a heuristic technique similar
to the search algorithm of Lin and Kernighan [4]. The
latter algorithm was used to partition large graphs
having limits on the number of nodes in each cluster.
In its simplest form, that algorithm involved sequen-
tially swapping pairs of nodes between clusters, choos-
ing at each step the pair of nodes that produces
the maximum benefit. The MASCOT algorithm also
makes a sequence of incremental perturbations,
choosing in each step to swap a pair of external trunks
or transfer a single external trunk from one switch to
another. It is straightforward to compute the benefit
of each such perturbation, but relatively difficult to
determine if a given perturbation satisfies all switch
constraints. The key to making the algorithm scalable
is to make this determination as fast as possible. This
involves pre-processing the hierarchical switch con-
straints in order to extract relatively simple approxi-
mate constraints to be used in interior loops. As with
any greedy algorithm, the core optimization algorithm
is prone to becoming trapped in local minima. To find
better local minima and increase the likelihood of
finding the global minimum, the algorithm is repeated
for several random initial configurations, and the best
solution is retained.

Pseudo-code for an implementation of the MAS-
COT algorithm is shown in Panel 7. The core of
the algorithm is the local optimization subroutine

92 Bell Labs Technical Journal

improve_config(). This subroutine takes a switching
center configuration as input, generates a set of can-
didate perturbations of the configuration, and com-
putes the improvement that would result from each
perturbation. Here improvement is measured in terms
of a reduction in switching load. The feasibility of per-
turbations is checked in order of decreasing benefit,
and the first feasible perturbation is applied to create
an improved configuration. The process of generat-
ing and evaluating perturbations continues until no
feasible and beneficial perturbation is found, at which
point improve_config() returns the improved configu-
ration and its cost. Depending on the user’s prefer-
ence, the cost can be the switching load or the total
hardware cost of the configuration. The overall algo-
rithm is embodied in the optimize_configuration() rou-
tine, which controls the optimization process based
on the design choice selected by the user. In case of
the brown field design (improving an existing design),
the existing switching center configuration is used as
the starting point for improve_config(). In the case of a
green field design, random initial designs generated by
the gen_random_config() are fed into the improve_config()
subroutine. The best configuration seen so far and
its cost are updated after each call to improve_config().
The program halts when a terminal condition is
reached: either the total number of iterations exceeds
a limit or the number of successive iterations with-
out improving the best solution exceeds a limit. The
gen_random_config() routine begins with a single switch
and attempts to assign all trunks to it. If this fails,
additional switches are added one at a time, and all
external trunks are randomly divided between the
switches, in proportion to the switch capacity. The
process of adding switches and assigning external
trunks continues until a feasible initial assignment
is found.

Simulation

The degree of optimization obtained and the num-
ber of iterations required can vary greatly from one
scenario to another. Results from two representative
scenarios are shown in Figure 4. The first scenario
involved ATM switches connecting 16 external trunks
under a dense traffic matrix derived from a proposed

Panel 7. Switching Center Optimization Algorithm

optimize_configuration (design, demand,
gain = 0;
if (design == brown_field) then {
Cy
(c

= current_config;

}

else {/* Green field design */
cost = infinity;
do

_cost,
if (t_cost <= cost) then {
cost = t_cost;
best_C = t_C;
}
until (term_condition) ;

}

gen_reports (cost, best_C);

sub improve_config (CC) {
do
no_further_improvement = 1;
T; = gen_trades (CC) ;

sort (U;, S;)
for each U; such that U,>0 {
if feasible(S;) then {
CC = apply_trade(CC,S;);

break;
}
}
until (no_further_improvement) ;
return(cost_config (CC) ,CC) ;
}

switch_spec,

ost, best_C) = improve_config(C;) ;

C; = gen_random_config (switch_spec,
(t_C) = improve_config(C;) ;

for each S; in T; { U; = compute_gain(S;); 1}
in order of decreasing U;;

no_further_improvement = 0;
/* to beginning of do..until */

current_config) {

demand) ;

national network design. The second scenario involved
optical cross connects connecting over 100 trunks,
using a sparse traffic matrix taken from an operating
switching center. In each scenario, the improve_config
subroutine was run 80 times, using randomly gener-
ated initial conditions. The total switching load was
recorded after each perturbation step to obtain an im-
provement profile for each run. We refer to the lowest
switching load observed in 80 trials to be the sup-
posed optimal. Figure 4 shows the average switching

load observed in each step, expressed as percentage
excess relative to the supposed optimal. The ATM
example improves by about 5%, coming very close
to the supposed optimal on average within 10 per-
turbation steps. In the optical example, the excess is
reduced from 40% to 5% on average. The number of
perturbations required is much larger, simply because
the number of trunks is larger. Generally speaking,
the difference between random and optimal designs is
largest when the elements of the trunk traffic matrices

Bell Labs Technical Journal 93

45

40 ,\
35

—— 100 Trunks, sparse traffic matrix | |
—— 16 Trunks, dense traffic matrix

30 \

RN
20 \‘

15 \

% from supposed optimal

o T

.,

400009900000 00009

01— reepespenpany
1T 4 7

10 13 16 19 22 25 28 31
Number of steps

L BaEnh Baiu Suiul Buint Hamnd B Suia B
34 37 40 43 46 49

Figure 4.
Progress of MASCOT optimization algorithm.

are highly variable and is smallest when the traffic
matrices are relatively uniform.

Capacity Deployment Services

In capacity deployment scenarios, internal over-
heads or constraints are sometimes overlooked in the
initial design phase, resulting in unrealistic switching
center designs. In later design phases, in the absence
of a switching center optimization tool, there is a
tendency to over-engineer the switching center. In
this section, we first illustrate how MASCOT can be
used to accurately find a feasible and efficient design
between these two extremes. Secondly, we show
how this accuracy was used in a network evolution
study to compare the cost of deploying different
routers.

Improved Accuracy Compared with Simple Estimates

In one Multiprotocol Label Switching (MPLS)
network design scenario, there was a need for a
switching center that connected to the core network
via six OC192 POS trunks and that also connected to
regional networks using 166 OC12 POS trunks and
28 OC12 ATM trunks. The traffic matrix primarily
consisted of traffic flows between the six core trunks
and the regional trunks, with a total bandwidth of
108 Gb/s over all flows. Table I illustrates the results

94 Bell Labs Technical Journal

of designing the switching center via three methods:
an optimistic estimate, a conservative estimate, and
the MASCOT design tool. The optimistic estimate is
based on ignoring switching overhead and internal
trunks; equivalently, it assumes that all flows can pass
through the switching center using only a single
switch. To make the optimistic estimate, one first
computes the number of PICs and PCs needed to
terminate all of the external trunks, and then com-
putes M;, the number of switch chassis needed to
terminate the set of PCs previously computed. Next,
M, is computed by rounding up the ratio of total
traffic bandwidth to the switch capacity. Finally, the
number of chassis needed is the maximum of M, and
M,. In the present example, M, = 1 since the total
traffic load of 108 Gb/s would easily fit onto one
router with 320 Gb/s capacity. On the other hand,
M, = 2 since the trunk terminations require two fast
processor cards and fourteen slow processor cards,
hence 16 slots and two routers.

A conservative estimate is made by assuming that
each of the flows may need to pass through two
switches in the switching center. This immediately
doubles the total switching load to 216 Gb/s in this
case. The extra switching load of 108 Gb/s, carried on
0C48 internal trunks with transmission rate 2.5 Gb/s,

Table I. Results of designing switching center via three methods.

Optimistic MASCOT Conservative
estimate design estimate
0C192 POS 6 6 6
0C48 POS 0 6 11
PICs
0C12 POS 42 42 42
0C12 ATM 14 14 14
PC-fast 2 4 5
PCs
PC-slow 14 15 14
Chassis 2 3 3
Absolute ($M) 6.9 8.9 10.1
Cost
Relative error —22% — 13%
Absolute (Gb/s) 108 159 216
Switching load
Percentage error —32% — 35%

would require 11 four-port physical interface cards,
which in turn would require 3 additional fast proces-
sor cards, 3 additional slots, and create the need for an
additional switch chassis. Note that the conservative
and optimistic estimates differ by a factor of two
in switching load, and in this case by a factor of 1.5
in terms of hardware cost. The design produced by
MASCOT finds a feasible design that in this case is
approximately halfway between the optimistic and
conservative estimates. Since trunks are clustered
intelligently on the switches, only 6 OC48 PICs are
necessary, and the switching overhead is reduced
to about 51 Gb/s. Note that the hardware costs used
to compute values in Table I are not the same as
the costs depicted in Panel 3. Although the “optimal”
design falls roughly halfway between the two esti-
mates in this example, in general it could vary in a
wide range. While the optimistic estimate is a true
lower bound, in fact, the conservative estimate may
fail to be an upper bound, particularly when the
number of switches is large. For all of these reasons,
an accurate design tool is preferable to the simple
estimates.

Router Comparison in Network Evolution Study
In this section, we illustrate the important role of
switching center optimization as part of a network

evolution study. The study was done for a North
American service provider, currently having separate
ATM and Internet Protocol (IP) networks, which is
planning to migrate to next-generation MPLS and is
faced with the challenge of selecting the most cost-
effective solution from a number of available MPLS
evolution scenarios.

A network modeling and business case study was
conducted to quantify the cost of ownership—i.e.,
capital expenditures and operational expenses—asso-
ciated with these alternative evolution scenarios over
five years. At the heart of this study was a green field
network design that determined a least-cost capacity
deployment for the MPLS network. Here MASCOT
was used to accurately quantify least-cost switching
center designs. This accuracy was especially impor-
tant in evaluating one of the evolution scenarios
containing a converged MPLS core where an MPLS
switching center carries large converged ATM and
IP traffic flows, as well as in the later years of the
evolution period when yearly traffic growth added
up to a high traffic load in the switching center. In
both cases there was a need to deploy a large number
of switches with potentially high overhead that
needed to be minimized realistically. In this exam-
ple, we focus on the efficiency of two different router

Bell Labs Technical Journal 95

Edge nodes

0C12 ATM

0C12 POS

Ingress traffic from
Core ATM switches

Ingress traffic from
IP access

8Gbls

26 X OC12 POS

ATM—Asynchronous transfer mode
MPLS—Multiprotocol Label Switching
OC—Optical carrier

10Gbls, 20 X OC12 ATM -~

Multiple core routers connected by internal trunks

POS—Packet over SONET
SONET—Synchronous Optical Network

Core nodes

0C48 POS
('04-'06) or
0C192 POS
('07-'08)

Egress traffic to other
core nodes

36Gb/s

10 X OC48 POS

Figure 5.
Core node in an MPLS backbone network.

designs, referred to as A-Router and C-Router, in a
typical core node in the proposed MPLS backbone
network. The node and its network context are illus-
trated schematically in Figure 5. Here the switching
center is defined to be a group of one or more MPLS
routers inside the core node. The routers connect to
other core nodes via high-rate POS interfaces, to edge
nodes via low rate POS interfaces, and they connect
to local ATM switches via low rate ATM interfaces.
Designs based on the two routers are compared over
a five-year period with a yearly traffic growth rate of
15% for ATM and 80% for IP; the numbers depicted
in Figure 5 are representative of the first year of the
study. Figure 6 depicts some of the results of the
study.

Throughout this particular study, A-Router rep-
resents a much more cost effective solution than
C-router with less equipment space, less switching

96 Bell Labs Technical Journal

overhead, and a lower total equipment cost. Although
the two routers are outwardly similar in many re-
spects, the key difference turns out to be that the port
density of OC12 ATM interface cards on C-Router is
much lower than that of the corresponding cards on
A-Router. In 2004, for example, constraints on the
OC12 ATM ports force the use of three C-Routers as
opposed to a single A-Router. As the number of
switches increases, the internal switching overhead
increases super-linearly as more and more switch
pairs require internal trunks. By the end of the five-
year period, it is no longer feasible to build a C-router
switching center, unless the flows are allowed to take
more than two hops within the center. By using
MASCOT the service provider is able to accurately
measure the switching overhead inside a core node
and assess the cost effectiveness and scalability of two
alternative routing platforms.

2004 2005 2006 2007 2008
Base load (Gb/s) 36.00 51.80 78.29 123.73 202.94
A-Router | C-Router | A-Router | C-Router | A-Router | C-Router | A-Router | C-Router | A-Router | C-Router
CAPEX ($M) 2.56 3.82 3.34 5.66 6.07 8.76 8.19 14.08 14.70 N/A
A-Router savings 33% 41% 31% 42% N/A
CAPEX OH ($M) 0.00% | 41.65% 0.00% | 77.84% | 18.11% | 87.86% | 29.38% | 134.47% | 51.31% N/A
SW OH -Load 0.00% | 54.50% 0.00% | 68.80% | 31.00% | 76.40% | 50.50% | 82.70% | 67.70% N/A
SW OH -0C192 0 6 0 10 4 18 8 34 20 N/A
Switch Chasses 1 3 1 4 2 5 2 10 4 N/A
Switch Racks 0.5 3.0 0.5 4.0 1.0 5.0 1.0 10.0 2.0 N/A
0C192 0 0 0 9 14
0cC48 10 14 21 0 0
0C12 26 47 84 101 181
0C12 ATM 20 23 26 30 35
No feasible solution
for C-Router in 2008
5-year CAPEX /* 5-year CAPEX overhead
16.00 160%
14.00 -2 140% -
' / e /
__12.00 & 120%
E / < ") /
S 10.00 / / s 100% /
X 8.00 3 80%
% 6.00 — S 60% /
< . [(
“ 400 — < 40% /// —
: J
2.00 — 20% //
0.00 T T T T T 0% * T T T
2004 2005 2006 2007 2008 2004 2005 2006 2007 2008
—— A-Router —= C-Router
ATM—Asynchronous transfer mode CAPEX—Capital expenditure OH—Overhead SW—Switch

Figure 6.
Router comparison: five-year analysis.

Capacity Recovery Services

Although capacity recovery services have some
principles in common with capacity deployment, they
are also different in a number of ways. The most
salient difference is that capacity recovery operates
on an existing network carrying live traffic so that the
adage “First, do no harm” applies. Secondly, the ben-
efit of the capacity recovery is limited by the degree to
which the existing network is inefficient. In order for
the service to be beneficial, the costs of reconfigura-
tion have to be small relative to the expected benefits.
For this reason, capacity recovery services are usually
targeted at the logical layer of the network. Examples

include adapting optical layer wavelengths to match
IP layer demands [1] or rerouting virtual circuits to
relieve bottlenecks in ATM networks [2]. Switching
center optimization is an exceptional case in which it
can be cost effective to change the physical topology,
because the affected switches and trunk terminations
all share the same physical location. Another partic-
ular feature of capacity recovery is that the service
must include an incremental series of steps to get
from the existing configuration to the desired con-
figuration. Because of the need to keep costs low, the
number of steps and complexity of each step must
be kept reasonably small. A fourth important feature

Bell Labs Technical Journal 97

of capacity recovery is the need to obtain accurate
data about the existing network. Network inventory
services enable and can be motivated by capacity
recovery services.

Procedures

Regardless of the type of network involved, a
capacity recovery service based on switching center
reconfiguration would be performed in the four basic
steps described in the subsections below. The nature of
the work involved in each step could vary depending
on the underlying technology.

Data collection. The purpose of this step is to
gather an accurate picture of the current state of the
switching center. This includes an inventory of the
relevant switching center hardware such as switches,
processor cards, interface cards, and cables. The capa-
bilities of each switch must be described in a switch
configuration file. The internal and external trunks
need to be identified. It is also important to list all
flows traversing the center, to identify the local route
of each flow, and to determine the capacity used by
each flow. The definition of a flow and the difficulty
of each of these items will vary depending on the un-
derlying technology and on the network management
system. For example, in a SONET/SDH network, a flow
is a circuit. The capacity used by the flow is known
and fixed, regardless of the amount of data actually
on the circuit. In an ATM network, a flow consists
of a permanent virtual connection (PVC), which may
belong to one of several service categories. For a con-
nection in the constant bit rate category, the capacity
is given, but this is not the case for a connection in
the unspecified bit rate (UBR) category. In practice,
the vast majority of ATM connections fall into the UBR
category, and hence the data collection in an ATM net-
work must include a method for estimating the traffic
load on groups of UBR connections. One such method
was developed for the work described in [2].

Analysis. The first step in the analysis process is to
choose metrics that will be used to compare the ben-
efits obtained by proposed changes. Some natural
metrics for switching center optimization include the
capital costs (e.g., switches and interfaces), operating
costs (e.g., power and footprint), and system load (e.g.,
switching capacity consumed, number of occupied

98 Bell Labs Technical Journal

ports). Next, optimization tools are used to identify
new physical topologies that are close to the existing
topology and that have improved performance under
the chosen metrics. Currently the MASCOT tool uses
switching capacity consumed as an optimization
metric; many of the other performance metrics are
correlated with this basic one. MASCOT also produces
a sequence of steps which may be used to produce
the new topology. The third analysis step consists of
estimating the cost and effort required to perform
each transition step and comparing these costs with
the resulting benefits. The transition costs include tan-
gible elements such as time and labor as well as in-
tangibles such as the risk of network disruption. In the
end, the analysis either produces a sequence of bene-
ficial transition steps or concludes that no reconfigu-
ration is warranted.

Transition. Network technicians at the switching
center take a series of steps to rearrange the switch
connectivity at the switching center, normally with-
out interrupting the processing of the live traffic. At
the physical level, the rearrangements involve un-
plugging external trunks from ports on a given switch
and installing them on ports of another switch, as
well as adding or removing internal trunks. At the
management level, the operator must switch all of
the flows on the affected trunk to alternate routes.
Once the trunk has been moved and advertised to
the network management system, a set of flows can
be routed back onto the trunk. The number of flows
moved in each step can be very large: in ATM net-
works for example, there may be tens of thousands of
flows on a given trunk. For this reason, and to avoid
errors, automated tools for moving connections are
required.

Evaluation. The final step is to quantify the results
of the reconfiguration. The data collection procedures
are repeated to determine the new network state,
and performance metrics are recomputed and com-
pared with the initial and predicted values. For ex-
ample, this step would confirm that certain switch
ports have been freed, that the switch loads have
been reduced by a given amount, and that conges-
tion or other undesirable conditions have not been
introduced.

Switching Center Optimization and Global Routing

In this work we have taken a local view of switch-
ing center optimization. This approach helps to keep
the complexity of the optimization problem and data
collection manageable and scalable. Complexity aside,
it would clearly be preferable to take the entire net-
work into account and to use a model that allows
global rerouting of flows as well as switching center
reconfiguration. Consider for example the network
reconfiguration depicted in Figure 1, and assume that
all flows initially used least-weight routing in the
network depicted on the left side. Suppose also that
the weight of each link has a fixed component in
addition to any distance-based component—i.e., in-
ternal trunks have a non-negligible weight based on
the real costs of the switch ports they use. Under the
new configuration, the cost of the tan flow’s route
increases because it now traverses an internal link
at center A. However, it may be possible to move it
onto another route, not involving switching center A,
whose cost is less than the new route (B.1, A.1, A.2,
D.1), though necessarily still greater than the cost
of the original (B.1, A.1, D.1). Conversely, some
flows which originally did not use switching center A
may now find it advantageous to do so because of
the reduced cost of the path (B.1, A.1, C.1) relative
to the original cost of the path (B.1, A.1, A.2, C.1).
The overall effect in this example is that the match
of the traffic to the physical topology is further
increased.

One scalable approach to switching center opti-
mization in a network context would be to alternate
switching center steps with global rerouting steps. In
the first step, current routing information provides
the input data for improving the topology of a single
switching center. In the second step, the routing is
improved to take advantage of the new topology. The
two steps are iterated, potentially cycling among dif-
ferent sets of switching centers, until no further im-
provement is possible. Convergence can be assured by
requiring that a single metric (e.g., the total load on all
network switches) is improved at each step. Note that
the iteration procedure would be applied as part of the
analysis phase. In the transition phase, the goal would
be to move to the final solution as economically as

possible, without necessarily visiting the intermedi-
ate stages generated by the analysis.

Conclusions

Switching center optimization can be used to
improve the existing capacity of existing switching
centers and to design new centers. The MASCOT
switching center optimization tool has been used suc-
cessfully in design applications, and it shows promise
for capacity recovery applications.

The analysis phase of switching center capacity
recovery requires good information about the current
hardware and traffic, while the implementation phase
requires the ability to safely move traffic flows from
one trunk to another. For this reason, network in-
ventory services and capacity recovery services based
on rerouting can be thought of as prerequisites to
switching center capacity recovery. By the same
token, switching center optimization can help to
extract the full benefit from those services.

Acknowledgments

We would like to acknowledge valuable contri-
butions by Iraj Saniee and Mohcene Mezhoudi from
Bell Labs and Naeem Asghar, Colin Corcoran, Joseph
Karwisch, Stephen Zlatos, and Michael Siesta from
Lucent Worldwide Services.

References

[1] S. Acharya, Y. Chang, B. Gupta, P. Risbood, and
A. Srivastava, “Architecting Self-Tuning Optical
Networks,” Proc. European Conference on
Optical Commun., (Copenhagen, Den., 2002).

[2] N. Asghar, R. Bhatia, R. Chandwani, C.
Corcoran, F. Hao, J. Karwisch, P. Koppol, T. V.
Lakshman, S. Zlatos, and M. Siesta, “iOptimize:
A Software Capability for Analyzing and
Optimizing Connection-Oriented Data Networks
in Real Time,” Bell Labs Tech. J., 9:4 (2005),
67-81.

[3] O. Goldschmidt and D. S. Hochbaum, “A
Polynomial Algorithm for the Kappa-Cut
Problem for Fixed Kappa,” Mathematics of
Operations Research, 19:1 (1994), 24-37.

[4] B. W. Kernighan and S. Lin, “An Efficient
Heuristic Procedure for Partitioning Graphs,”
Bell Sys. Tech. J., 49:2 (1970), 291-308.

[5] H. Saran and V. V. Vazirani, “Finding k-Cuts
Within Twice the Optimal,” SIAM J. Computing,
24:1 (1995), 101-108.

Bell Labs Technical Journal 99

(Manuscript approved September 2004)

NACHI K. NITHI is a member of technical staff in the
Mathematics of Networks and Systems
Department within the Mathematical
Sciences Research Center at Bell Labs in
Murray Hill, New Jersey. He earned a B.E.
in electrical engineering from Madras

University in Chennai, India, an M.E. in computer

science from Anna University, also in Chennai, and a

Ph.D. in computer science from Colorado State

University in Fort Collins. Dr. Nithi’s current interests

are in design tools and algorithms for network

optimization and switching center design. He is also
interested in simulations, data analysis, and Web
technologies.

CARL J. NUZMAN is a member of technical staff in the
Mathematics of Networks and Systems
Department at Bell Labs in Murray Hill,

y New Jersey. He received B.S. degrees in
. electrical engineering and mathematics
from the University of Maryland in College

Park and a Ph.D. in electrical engineering from

Princeton University in New Jersey. Dr. Nuzman has

broad research interests in the areas of network

optimization, optical network modeling, traffic
characterization, and stochastic processes.

BENJAMIN Y. C. TANG is a distinguished member of
technical staff in the Data and Broadband
Access Network Modeling Group at Bell

1| Labs in Holmdel, New Jersey. He has a B.S.
degree from the National Taiwan University
in Taipei, an M.S. from the University of
Florida in Gainesville, and Ph.D. from Purdue University
in West Lafayette, Indiana, all in electrical engineering.
Currently, Dr. Tang’s work focuses on next-generation
packet core, broadband access and converged network
solutions, network evolution planning, ATM, and
IPIMPLS network design and optimization. Many of his
works involve joint study and development of network
evolution strategy for major carriers in China, Asia
Pacific, and North America. His areas of interest include
all aspects of data networking, broadband access,
network design and optimization algorithms, and
economic analysis. ®

100 Bell Labs Technical Journal

