
� Network Capacity Recovery and Efficient
Capacity Deployment in Switching Centers
Nachi K. Nithi, Carl J. Nuzman, and Benjamin Y. C. Tang

One way for service providers to reduce their costs is through network
capacity recovery. We describe the problem of recovering capacity by
minimizing the switching overhead incurred by multiple switches in a
switching center. We also describe the Multiple ATM Switch Configuration
Optimization Tool (MASCOT), which addresses this problem. Initially
developed for asynchronous transfer mode (ATM) switches, the tool
applies flexibly to other devices such Synchronous Optical Network
(SONET) cross connects or Multiprotocol Label Switching (MPLS)
routers. New services enabled by this tool include (1) reconfiguration
of an existing switching center to increase the number of available
switch ports and (2) efficient green field design for migrating to new
hardware. Given the set of external trunks and the traffic demands
between them, MASCOT searches for a switching center topology
that minimizes the traffic carried on internal trunks. MASCOT handles
a wide variety of switch types with hierarchical constraints imposed by
components such as interface cards, processor cards, and slots.
© 2005 Lucent Technologies Inc.

Introduction
Network optimization has always been an impor-

tant part of the business of building and upgrading

communication networks. In a capacity deployment

scenario, the network operator would like to mini-

mize capital expenditures and operating expenses,

while satisfying capacity and quality of service require-

ments. Capacity recovery services take the comple-

mentary approach of performing network optimization

as part of the maintenance of an existing communi-

cation network. Here, the capital infrastructure is

constrained, and the goal is to maximize the commu-

nication capacity and quality of service within the

existing network.

On the face of it, capacity recovery and capacity

deployment services could be seen as competing, since

a successful capacity recovery service could postpone a

network provider’s need for new equipment. However,

they should more properly be seen as complementary

and synergistic. Capacity recovery provides a beneficial

service to network providers who are unable or un-

willing to make significant capital purchases. Applying

similar optimization tools and expertise for capacity

recovery and capacity deployment can increase cus-

tomers’ confidence that they are receiving the great-

est possible return on their capital and operational

investment.

Bell Labs Technical Journal 9(4), 83–100 (2005) © 2005 Lucent Technologies Inc. Published by Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). • DOI: 10.1002/bltj.20063

Panel 1. Abbreviations, Acronyms, and Terms

ATM—Asynchronous transfer mode
CGI—Common gateway interface
GUI—Graphical user interface
IP—Internet Protocol
MASCOT—Multiple ATM Switch Configuration

Optimization Tool
MPLS—Multiprotocol Label Switching
OC—Optical carrier; OC12, OC48, and OC192

are optical carrier digital signal rates of
622.08 Mb/s, 2.488 Gb/s, and 9.953 Gb/s,
respectively, in a SONET system.

PC—Processor card
PIC—Physical interface card
POS—Packet over SONET
PVC—Permanent virtual connection
SDH—Synchronous Digital Hierarchy
SONET—Synchronous Optical Network
UBR—Unspecified bit rate

84 Bell Labs Technical Journal

In this paper, we focus on a class of physical topol-

ogy optimization that is applicable to capacity deploy-

ment and capacity recovery services: optimizing the

connectivity between switches within a single switch-

ing center. The need for these services arises when

network switching centers contain multiple collocated

switches. Such switching centers are able to handle

more traffic than any individual switch could, but

the aggregate capacity is always less than the sum of

the individual switch capacities due to internal switch-

ing overhead. To understand the proposed services, it

is helpful to consider a simple example. Figure 1 de-

picts a switching center (A) connected to four neigh-

boring centers (B, C, D, and E) under two different

physical topologies. The light gray circles represent

switching centers and the dark gray circles are

switches. The brown arrows represent large traffic

flows, while the tan arrow represents a smaller flow.

Black lines represent trunks. In Figure 1(a), switching

center A contains two switches (A.1 and A.2), con-

nected to each other by two trunks; these trunks are

called internal trunks because both endpoints are in

the same switching center. The four trunks that con-

nect A.1 and A.2 to switches in other switching centers

are referred to as external trunks. The brown arrows

represent large aggregate traffic flows between cen-

ters B and C, and between centers D and E, which tra-

verse both local switches and use the internal trunks.

The tan arrows represent a smaller aggregate flow

between centers B and D that only traverses switch

A.1. In Figure 1(b), the external A-D trunk terminates

on switch A.2 rather than switch A.1, and the external

A-C trunk terminates on switch A.1 rather than switch

A.2. In this configuration, the large flows pass through

single local switches, and only the smaller tan flow

must pass through both A.1 and A.2. The net effect is

a reduction of load on A.1 and A.2, reduced traffic be-

tween A.1 and A.2, and the ability to remove one of

the internal trunks. Other benefits could include a

reduction in end-to-end average delay.

In a true switching center, the situation is much

more complicated. There may be several switches of

(a) Before optimization (b) After optimization

B.1

A.1

A

A.2

B

D.1
D

C.1 C

E.1 E

B.1

A.1

A

A.2

B

D.1
D

C.1
C

E.1 E

Figure 1.
Switching center configurations.

Bell Labs Technical Journal 85

different types terminating dozens of external trunks

of many types, which in turn carry thousands of

flows. We have developed a switching center opti-

mization tool for solving problems of this type.

Depending on the service, the optimization can be

used to make an existing switching center more

efficient, to deploy an efficient switching center in the

first place, or to explore the consequences of different

switch designs.

In the next section, we describe the optimization

tool. In subsequent sections, we give examples of how

this tool has already been used to support capacity

deployment services and describe how it could be

used in capacity recovery applications.

Switching Center Optimization Tool
The Web-based client-server tool we have imple-

mented to address the problem of switching center

topology optimization is the Multiple ATM Switch

Configuration Optimization Tool (MASCOT). The core

optimization engine uses a local search heuristic to

try to minimize the total traffic on internal trunks or,

equivalently, to minimize the total switching load.

The tool can also compute the hardware costs associ-

ated with any configuration and choose the least-cost

solution among candidates produced by the core

optimization engine. The software architecture of the

system consists of a Web browser-based user interface

client and a back-end server consisting of a Web server

and software modules. The back-end software mod-

ules comprise a core optimization engine, an input

parsing and validation module, and a report generator.

On the server side, common gateway interface (CGI)-

driven Perl language scripts are used to glue the back-

end software modules to the Web server. Figure 2
illustrates the MASCOT architecture.

There are two types of optimizations that MAS-

COT performs: a green field design, to design a new

switching center, and a brown field design, to perform

re-optimization of an existing center. Apart from

specifying the optimization, the client graphical user

interface (GUI) also allows the user to upload input

data files and to browse and download optimized

configurations. For a green field design, MASCOT

requires two input files: a Switch Specification file and a

Demand file. In case of re-optimization, an additional

input file, called Current Configuration, specifying the

existing switch configuration is needed. MASCOT

produces outputs in three files: the Summary file, the

Flows file, and the Final Configuration file.

Input and Output Data
The input and output files, which are ASCII text

based, are described in detail in the subsections below.

Switch model. The Switch Specification file is used to

define the types of switches available in the switching

center and how they may be used. Specifically, the

file must define which interfaces are supported by the

Server

Software modules

GUI
(Browser)

Input files

Design
choice

Client

Output files

CGI—Common gateway interface GUI—Graphical user interface

-Input processing
-Optimization engine
-Report generator

Web server
-CGI/Perl

1. Switch description
2. Demand
3. Current configuration

1. Summary stats
2. Flows
3. Final configuration

Figure 2.
MASCOT software architecture.

86 Bell Labs Technical Journal

switch, what combinations of interface ports are pos-

sible, and what minimal cost is required to support a

particular combination of ports. Rather than requiring

an explicit description of the set of valid combinations

of ports, the tool uses a hierarchical model to implic-

itly define this set. A hypothetical switch described

by the model is illustrated in Figure 3. At the bottom

of the hierarchy are physical interface cards (PICs),

each of which contains a fixed number of ports of a

single interface type. In Figure 3, there are seven PICs

of four types. The PICs of type G have three ports,

while the others each contain one port; the varying

sizes and shapes of the ports indicate different data

rates, protocols, and so on. At the next level are

processor cards (PCs). Each PC can service one or

more PICs from a specified set. Each PC has a fixed

limit on the total number of PICs it can take, as well

as a limit on the total data rate of all ports connected

to it. In Figure 3, a PC of type E can accept one PIC of

type I, while each PC of type D can accept up to two

PICs of types F, G, and H, in various combinations.

At the top level of the model, the switch consists of

a number of slots of various types. The number of

slots of each type is considered to be fixed for any

given switch type. Each slot can accept processor cards

from a given set, up to a specified maximum number

of cards. In Figure 3, a switch of type A comes with

two slots of type B and two slots of type C. Slots of the

latter type can accept PCs of type E or D, while

type B slots are restricted to PCs of type D. The

information needed to specify the model parame-

ters is simple and usually readily available from the

manufacturer. By contrast, an explicit description of

the set of all possible port combinations can be quite

complicated.

Because the model relates to the actual architec-

ture of most switches, it is flexible enough to apply to

a wide range of switch types. Panel 2 illustrates the

syntax used to specify the model parameters for each

switch type in the Switch Specification file, and Panel 3
gives an example of such a file. The file consists of an

optional User_Defined_Interface object, followed by one

or more SWITCH objects. A number of common

generic interface types and their corresponding trans-

mission rates are predefined in MASCOT (e.g., OC12

and 622 Mb/s). The User_Defined_Interface object is

used to define any other interfaces that are needed.

Each PIC defined in a SWITCH object is given an

interface type, and each trunk defined in the Demand

file (described below) is also assigned an interface

type. During optimization, trunks can only be assigned

to ports with a matching interface type. In Panel 3, for

example, interfaces called OC12POS and OC12ATM

are defined in order to distinguish between ports

designed for packet-over-SONET (POS) transmission

and those designed to use asynchronous transfer mode

(ATM). The user-defined interfaces could also be used,

for example, to distinguish between short-range and

E

A

B B C C

Switch

Slot

D

F HG

D

F

D

GG

Processor
card

I
Physical interface

card

D

Figure 3.
Hierarchy of switch components.

Bell Labs Technical Journal 87

Panel 2. Syntax of Switch Specification Objects

Object User_Defined_Interface
{<InterfaceName string>}+

end

{ Object SWITCH
<Vendor string>
<SwitchName string>
<Capacity real>
<SwitchCost real>
<NumSlots integer>
<LoadFactor real>

Object PIC
{<PIC_Label PIC_ID NumberOfPorts CapPerPort Cost>}+
end

Object PC
{<PC_Label PC_ID MaxNumPICs PICAllowed MaxProcessingCapacity Cost>}+

end

Object SLOT
{<SLOT_Label SLOT_ID MaxNumPCs PCAllowed Cost>}+

end
end }+

long-range optical interfaces on SONET equipment,

or between native ATM ports and frame relay ports on

an ATM switch.

Each SWITCH object consists of a Basic Switch

Information section followed by a PIC object, a PC object

and a SLOT object. Each line of the PIC object defines

a different type of physical interface card, including

the interface type, number of ports, and cost for each

card. Similarly, the PC object defines the parameters of

each PC type. Because each switch comes with specific

slots built in, the SLOT object includes one line for

each slot provided on the switch, rather than just for

each slot type; multiple slots may have the same

parameters, in which case we may say that they are of

the same slot type. Panel 3 provides an example

Switch Specification file defining a router with eight

slots, two types of processor cards, and four types

of physical interface cards. This router model will

be referred to again in the “Capacity Deployment

Services” section below.

Traffic flows. The Demand file is used to list the

flows that pass through or terminate in a given

switching center and to specify which external trunks

they are routed on. An example file is depicted in

Panel 4. The first section lists the flows: for each flow,

the file identifies a source trunk, a destination trunk,

and a bandwidth. Each trunk has a text label and an

integer identifier (e.g., “ATM-APOP1” and “101”).

Multiple flows with identical parameters can be in-

cluded on one line using a count field; in Panel 4 each

flow is listed separately with a count of one. The

aggregate bandwidth demand between each pair of

external trunks is determined by summing over ap-

propriate flows. The second section of the file defines

the trunks for the switching center, which fall into

three categories. External trunks are those that carry

traffic to and from remote switching centers, while

internal trunks connect two switches within the local

switching center. Access trunks are used to carry flows

that are dropped locally in the switching center.

88 Bell Labs Technical Journal

Panel 3. Example Switch Specification File

Object UserDefinedInterfaces
label DataRate(Mpbs)
OC12POS 622
OC12ATM 622
end

Object Switch
Base switch information
SwitchName A-Router
Capacity 320.0
SwitchCost 200
NumSlots 8
LoadFactor 1.0

Object PIC
label ID NumPorts Interface Cost
PIC-1pOC192POS 1 1 OC192 200
PIC-4pOC48POS 2 4 OC48 300
PIC-4pOC12POS 3 4 OC12POS 50
PIC-2pOC12ATM 4 2 OC12ATM 25
end

Object PC
label ID MaxNumPICs PICAllowed MaxProcCap Cost
PC-fast 1 4 1,2 40 100
PC-slow 2 4 3,4 16 25
end

Object Slot
label ID MaxNumPCs PCAllowed Cost
Slot-1 1 1 All 0.0
...
Slot-8 8 1 All 0.0
end

end

External trunks are part of the problem definition,

and each trunk is defined on its own line. The line

identifies the trunk by the same integer identifier used

in the previous section of the file and specifies an in-

terface type and fill factor. The fill factor is a multiplier

applied to nominal trunk capacity to obtain the avail-

able capacity; a factor of 0.9, for example would force

the optimization tool not to use more than 90% of the

nominal capacity. Because internal and access trunks

are created as part of the solution to the problem,

these trunks are not explicitly listed in the Demand

file. Instead, two lines are used to specify the interface

types and fill factors to be used when creating internal

and access trunks.

Switching center configuration. The Current Configu-

ration file contains a description of the existing switch

configurations and is used as the starting point for the

brown field optimization runs. It contains an explicit

Bell Labs Technical Journal 89

Panel 4. Example Demand File

List of flows between external trunks
from trunkID to trunkID bandwidth count comment
ATM-APOP1 101 CORE1 1 1.03667e+08 1 NA
ATM-APOP1 101 CORE2 2 1.03667e+08 1 NA
ATM-APOP2 102 CORE3 3 1.03667e+08 1 NA
ATM-APOP2 102 CORE4 4 1.03667e+08 1 NA
ATM-APOP2 102 CORE5 5 1.03667e+08 1 NA
ATM-APOP3 103 CORE4 4 1.03667e+08 1 NA
ATM-APOP3 103 CORE5 5 1.03667e+08 1 NA
...
IP-APOP1 501 CORE3 3 2.49259e+07 1 NA
IP-APOP1 501 CORE4 4 2.49259e+07 1 NA
IP-APOP3 503 CORE5 5 2.49259e+07 1 NA
IP-APOP3 503 CORE6 6 2.49259e+07 1 NA
IP-APOP4 504 CORE1 1 2.49259e+07 1 NA
IP-APOP4 504 CORE2 2 2.49259e+07 1 NA
IP-APOP4 504 CORE3 3 2.49259e+07 1 NA
...
CORE1 1 CORE5 5 2.06667e+08 1 NA
CORE3 3 CORE4 4 5.01250e+08 1 NA
...

#Specify interface to be used for internal and access trunks
Type ID Interface FillFactor
Trunk I All OC48 1.0
Trunk A All OC12POS 1.0

#Define the interfaces for the external trunks
Type ID Interface FillFactor
Trunk E 1 OC192 1.0
...
Trunk E 6 OC192 1.0
Trunk E 101 OC12ATM 1.0
Trunk E 102 OC12ATM 1.0
...
Trunk E 501 OC12POS 1.0
Trunk E 502 OC12POS 1.0
...
Trunk E 635 OC12POS 1.0

list of all of the equipment in use, including switches,

slots, PCs, PICs, and trunks. In addition, the file spec-

ifies how all of the pieces are connected to each other.

The syntax of the seven sections in the file is shown in

Panel 5, and an example configuration, with three

instances of a single switch type, is shown in Panel 6.

Each component is described by an identifier and a

type. The type is a reference to the different object

types defined in the switch specification file in Panel 3

above. The identifier uniquely specifies each com-

ponent and its relationship to other components. For

example, S1 refers to a particular switch, S1.1 refers

to the first slot on that switch, S1.1.2 is the second

PC on S1.1, and so on. Assuming that components

are numbered from left to right in Figure 3, the PIC of

type H would have the identifier S1.2.1.2, as it is the

90 Bell Labs Technical Journal

Panel 5. Syntax of Configuration Files

SWITCH id description
{<SWITCH_ID Type>}+

SLOT configuration description
{<SLOT_ID Type>}+

PC configuration description
{<PC_ID Type>}+

PIC configuration description
{<PIC_ID Type>}+

External Trunk (E-Trunks) configurations
{<TRUNK_ID Type Port_ID Fill_Factor>}+

Access Trunk (A-Trunks) configurations
{<TRUNK_ID Type Port_ID Fill_Factor>}+

Internal Trunk (I-Trunks) configurations
{<TRUNK_ID Type Port_ID_1 Port_ID_2 Fill_Factor>}+

second PIC on the first PC on the second slot of the

first switch. The trunks are described using additional

information such as the ports to which they are con-

nected and their fill factor. For example, in Panel 6,

external trunk E502 is connected to port id S2.2.1.1.2,

meaning the second port on PIC S2.2.1.1. Each inter-

nal trunk uses a switch port on two local switches

while the external and access trunks use only one

local port. The same format is used to describe the

state of the system after optimization in the Final

Configuration file.

Results. At the end of a run, MASCOT produces

outputs in three different files. A high-level summary

of the design is produced in the Summary file. This

includes information such as the number of switches

needed for the final configuration and their type; a

count of the number of external, access, and internal

trunks; ports needed on each switch; a list of PCs, PICs

and slots required; cost information; aggregate load

on switches; and statistics on switch overhead. The

Final Configuration file, whose format is same as that

of the Current Configuration file, is generated to give

detailed information about how various elements on

each switch should be configured. The Flows file is the

third output file generated by MASCOT. Its format is

similar to the Demand file, except that the Flows file

also specifies a route that each flow should take

through the switching center. The route is specified by

listing, in order, all of the switches and trunks that

the flow passes through.

Optimization Algorithm
The problem faced in switching center optimiza-

tion is essentially a partitioning problem. Given a par-

ticular set of external trunks, the goal is to form

clusters of trunks with traffic in common such that the

amount of traffic between clusters is small. Each cluster

is then assigned to a different switch, so that a large

amount of traffic need only pass through a single

switch in the switching center. The problem can be

considered to be a variant of the min k-cut problem in

graph theory. In that problem, a graph has several

nodes (external trunks) connected by edges, and each

edge has a non-negative weight (the amount of traf-

fic between corresponding trunks). In the min k-cut

problem, the goal is to divide the graph into k disjoint

clusters while minimizing the weight of inter-cluster

edges (i.e., minimizing traffic on internal trunks). For

Bell Labs Technical Journal 91

Panel 6. Example Configuration File for a Switching Center with Three Routers

#Switches
#ID type
S1 A-Router
S2 A-Router
S3 A-Router

#Slots
#ID type
S1.1 Slot-1
S1.2 Slot-2
...
S3.8 Slot-8

#PCs
#ID type
S1.1.1 PC-FAST
S1.2.1 PC-SLOW
...
S3.7.1 PC-SLOW

#PICs
#ID type
S1.1.1.1 PIC-1pOC192POS
S1.1.1.2 PIC-1pOC192POS
S1.1.1.3 PIC-1pOC48POS
S1.1.1.4 PIC-1pOC48POS
S1.2.1.1 PIC-2pOC12ATM
S1.2.1.2 PIC-2pOC12ATM
...
S3.7.1.1 PIC-4pOC12POS
s3.7.1.2 PIC-4pOC12POS
s3.7.1.3 PIC-4pOC12POS

#External Trunks
#ID type Port fillFactor
E1 OC192 S1.1.1.1.1 1
...
E6 OC192 S2.1.1.4.1 1
E101 OC12ATM S2.2.1.3.1 1
E102 OC12ATM S1.2.1.1.1 1
...
E501 OC12POS S2.2.1.1.1 1
E502 OC12POS S2.2.1.1.2 1

#Internal Trunks
#ID type Port1 Port2 fillFactor
I1 OC48 S1.1.1.3.2 S2.1.1.3.1 1
...
I8 OC48 S3.2.1.1.2 S2.1.1.3.2 1

92 Bell Labs Technical Journal

fixed k, the optimal solutions can be found in polyno-

mial time, and there is a fairly simple 2-approximation

algorithm [3, 5]. The key distinction in switching

center optimization is that there are complex con-

straints specifying which combinations of nodes can

fit into the same cluster. These constraints include

switch capacity constraints as well as configuration

constraints implied by the hierarchy of switch com-

ponents.

Given a particular set of switches fitting into the

hierarchical model, the problem may be formulated as

an integer program and, in principal, solved to opti-

mality. When individual flows are small relative to the

trunk size, some of the integer variables can be relaxed

to take continuous values. Even so, this approach does

not scale well to problems with several switches and

tens to hundreds of external trunks. The MASCOT

algorithm instead uses a heuristic technique similar

to the search algorithm of Lin and Kernighan [4]. The

latter algorithm was used to partition large graphs

having limits on the number of nodes in each cluster.

In its simplest form, that algorithm involved sequen-

tially swapping pairs of nodes between clusters, choos-

ing at each step the pair of nodes that produces

the maximum benefit. The MASCOT algorithm also

makes a sequence of incremental perturbations,

choosing in each step to swap a pair of external trunks

or transfer a single external trunk from one switch to

another. It is straightforward to compute the benefit

of each such perturbation, but relatively difficult to

determine if a given perturbation satisfies all switch

constraints. The key to making the algorithm scalable

is to make this determination as fast as possible. This

involves pre-processing the hierarchical switch con-

straints in order to extract relatively simple approxi-

mate constraints to be used in interior loops. As with

any greedy algorithm, the core optimization algorithm

is prone to becoming trapped in local minima. To find

better local minima and increase the likelihood of

finding the global minimum, the algorithm is repeated

for several random initial configurations, and the best

solution is retained.

Pseudo-code for an implementation of the MAS-

COT algorithm is shown in Panel 7. The core of

the algorithm is the local optimization subroutine

improve_config(). This subroutine takes a switching

center configuration as input, generates a set of can-

didate perturbations of the configuration, and com-

putes the improvement that would result from each

perturbation. Here improvement is measured in terms

of a reduction in switching load. The feasibility of per-

turbations is checked in order of decreasing benefit,

and the first feasible perturbation is applied to create

an improved configuration. The process of generat-

ing and evaluating perturbations continues until no

feasible and beneficial perturbation is found, at which

point improve_config() returns the improved configu-

ration and its cost. Depending on the user’s prefer-

ence, the cost can be the switching load or the total

hardware cost of the configuration. The overall algo-

rithm is embodied in the optimize_configuration() rou-

tine, which controls the optimization process based

on the design choice selected by the user. In case of

the brown field design (improving an existing design),

the existing switching center configuration is used as

the starting point for improve_config(). In the case of a

green field design, random initial designs generated by

the gen_random_config() are fed into the improve_config()

subroutine. The best configuration seen so far and

its cost are updated after each call to improve_config().

The program halts when a terminal condition is

reached: either the total number of iterations exceeds

a limit or the number of successive iterations with-

out improving the best solution exceeds a limit. The

gen_random_config() routine begins with a single switch

and attempts to assign all trunks to it. If this fails,

additional switches are added one at a time, and all

external trunks are randomly divided between the

switches, in proportion to the switch capacity. The

process of adding switches and assigning external

trunks continues until a feasible initial assignment

is found.

Simulation
The degree of optimization obtained and the num-

ber of iterations required can vary greatly from one

scenario to another. Results from two representative

scenarios are shown in Figure 4. The first scenario

involved ATM switches connecting 16 external trunks

under a dense traffic matrix derived from a proposed

Bell Labs Technical Journal 93

national network design. The second scenario involved

optical cross connects connecting over 100 trunks,

using a sparse traffic matrix taken from an operating

switching center. In each scenario, the improve_config

subroutine was run 80 times, using randomly gener-

ated initial conditions. The total switching load was

recorded after each perturbation step to obtain an im-

provement profile for each run. We refer to the lowest

switching load observed in 80 trials to be the sup-

posed optimal. Figure 4 shows the average switching

load observed in each step, expressed as percentage

excess relative to the supposed optimal. The ATM

example improves by about 5%, coming very close

to the supposed optimal on average within 10 per-

turbation steps. In the optical example, the excess is

reduced from 40% to 5% on average. The number of

perturbations required is much larger, simply because

the number of trunks is larger. Generally speaking,

the difference between random and optimal designs is

largest when the elements of the trunk traffic matrices

Panel 7. Switching Center Optimization Algorithm

optimize_configuration (design, demand, switch_spec, current_config) {
gain = 0;
if (design == brown_field) then {

Ci = current_config;
(cost, best_C) = improve_config(Ci);
}

else {/* Green field design */
cost = infinity;
do

Ci = gen_random_config(switch_spec, demand);
(t_cost, t_C) = improve_config(Ci);
if (t_cost <= cost) then {

cost = t_cost;
best_C = t_C;

}
until (term_condition);

}
gen_reports(cost, best_C);

}

sub improve_config(CC) {
do

no_further_improvement = 1;
TI = gen_trades(CC);
for each Si in TI { Ui = compute_gain(Si); }
sort (Ui, Si) in order of decreasing Ui;
for each Ui such that Ui>0 {

if feasible(Si) then {
CC = apply_trade(CC,Si);
no_further_improvement = 0;
break; /* to beginning of do..until */

}
}

until (no_further_improvement);
return(cost_config(CC),CC);
}

94 Bell Labs Technical Journal

are highly variable and is smallest when the traffic

matrices are relatively uniform.

Capacity Deployment Services
In capacity deployment scenarios, internal over-

heads or constraints are sometimes overlooked in the

initial design phase, resulting in unrealistic switching

center designs. In later design phases, in the absence

of a switching center optimization tool, there is a

tendency to over-engineer the switching center. In

this section, we first illustrate how MASCOT can be

used to accurately find a feasible and efficient design

between these two extremes. Secondly, we show

how this accuracy was used in a network evolution

study to compare the cost of deploying different

routers.

Improved Accuracy Compared with Simple Estimates
In one Multiprotocol Label Switching (MPLS)

network design scenario, there was a need for a

switching center that connected to the core network

via six OC192 POS trunks and that also connected to

regional networks using 166 OC12 POS trunks and

28 OC12 ATM trunks. The traffic matrix primarily

consisted of traffic flows between the six core trunks

and the regional trunks, with a total bandwidth of

108 Gb/s over all flows. Table I illustrates the results

of designing the switching center via three methods:

an optimistic estimate, a conservative estimate, and

the MASCOT design tool. The optimistic estimate is

based on ignoring switching overhead and internal

trunks; equivalently, it assumes that all flows can pass

through the switching center using only a single

switch. To make the optimistic estimate, one first

computes the number of PICs and PCs needed to

terminate all of the external trunks, and then com-

putes M1, the number of switch chassis needed to

terminate the set of PCs previously computed. Next,

M2 is computed by rounding up the ratio of total

traffic bandwidth to the switch capacity. Finally, the

number of chassis needed is the maximum of M1 and

M2. In the present example, M2 � 1 since the total

traffic load of 108 Gb/s would easily fit onto one

router with 320 Gb/s capacity. On the other hand,

M1 � 2 since the trunk terminations require two fast

processor cards and fourteen slow processor cards,

hence 16 slots and two routers.

A conservative estimate is made by assuming that

each of the flows may need to pass through two

switches in the switching center. This immediately

doubles the total switching load to 216 Gb/s in this

case. The extra switching load of 108 Gb/s, carried on

OC48 internal trunks with transmission rate 2.5 Gb/s,

0

5

10

15

20

25

30

35

40

45

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Number of steps

%
 f

ro
m

 s
u

p
p

o
se

d
 o

p
ti

m
al

100 Trunks, sparse traffic matrix

16 Trunks, dense traffic matrix

Figure 4.
Progress of MASCOT optimization algorithm.

Bell Labs Technical Journal 95

Optimistic MASCOT Conservative
estimate design estimate

OC192 POS 6 6 6

PICs
OC48 POS 0 6 11

OC12 POS 42 42 42

OC12 ATM 14 14 14

PCs
PC-fast 2 4 5

PC-slow 14 15 14

Chassis 2 3 3

Cost
Absolute ($M) 6.9 8.9 10.1

Relative error �22% — 13%

Switching load
Absolute (Gb/s) 108 159 216

Percentage error �32% — 35%

Table I. Results of designing switching center via three methods.

would require 11 four-port physical interface cards,

which in turn would require 3 additional fast proces-

sor cards, 3 additional slots, and create the need for an

additional switch chassis. Note that the conservative

and optimistic estimates differ by a factor of two

in switching load, and in this case by a factor of 1.5

in terms of hardware cost. The design produced by

MASCOT finds a feasible design that in this case is

approximately halfway between the optimistic and

conservative estimates. Since trunks are clustered

intelligently on the switches, only 6 OC48 PICs are

necessary, and the switching overhead is reduced

to about 51 Gb/s. Note that the hardware costs used

to compute values in Table I are not the same as

the costs depicted in Panel 3. Although the “optimal”

design falls roughly halfway between the two esti-

mates in this example, in general it could vary in a

wide range. While the optimistic estimate is a true

lower bound, in fact, the conservative estimate may

fail to be an upper bound, particularly when the

number of switches is large. For all of these reasons,

an accurate design tool is preferable to the simple

estimates.

Router Comparison in Network Evolution Study
In this section, we illustrate the important role of

switching center optimization as part of a network

evolution study. The study was done for a North

American service provider, currently having separate

ATM and Internet Protocol (IP) networks, which is

planning to migrate to next-generation MPLS and is

faced with the challenge of selecting the most cost-

effective solution from a number of available MPLS

evolution scenarios.

A network modeling and business case study was

conducted to quantify the cost of ownership—i.e.,

capital expenditures and operational expenses—asso-

ciated with these alternative evolution scenarios over

five years. At the heart of this study was a green field

network design that determined a least-cost capacity

deployment for the MPLS network. Here MASCOT

was used to accurately quantify least-cost switching

center designs. This accuracy was especially impor-

tant in evaluating one of the evolution scenarios

containing a converged MPLS core where an MPLS

switching center carries large converged ATM and

IP traffic flows, as well as in the later years of the

evolution period when yearly traffic growth added

up to a high traffic load in the switching center. In

both cases there was a need to deploy a large number

of switches with potentially high overhead that

needed to be minimized realistically. In this exam-

ple, we focus on the efficiency of two different router

96 Bell Labs Technical Journal

designs, referred to as A-Router and C-Router, in a

typical core node in the proposed MPLS backbone

network. The node and its network context are illus-

trated schematically in Figure 5. Here the switching

center is defined to be a group of one or more MPLS

routers inside the core node. The routers connect to

other core nodes via high-rate POS interfaces, to edge

nodes via low rate POS interfaces, and they connect

to local ATM switches via low rate ATM interfaces.

Designs based on the two routers are compared over

a five-year period with a yearly traffic growth rate of

15% for ATM and 80% for IP; the numbers depicted

in Figure 5 are representative of the first year of the

study. Figure 6 depicts some of the results of the

study.

Throughout this particular study, A-Router rep-

resents a much more cost effective solution than

C-router with less equipment space, less switching

overhead, and a lower total equipment cost. Although

the two routers are outwardly similar in many re-

spects, the key difference turns out to be that the port

density of OC12 ATM interface cards on C-Router is

much lower than that of the corresponding cards on

A-Router. In 2004, for example, constraints on the

OC12 ATM ports force the use of three C-Routers as

opposed to a single A-Router. As the number of

switches increases, the internal switching overhead

increases super-linearly as more and more switch

pairs require internal trunks. By the end of the five-

year period, it is no longer feasible to build a C-router

switching center, unless the flows are allowed to take

more than two hops within the center. By using

MASCOT the service provider is able to accurately

measure the switching overhead inside a core node

and assess the cost effectiveness and scalability of two

alternative routing platforms.

Egress traffic to other
core nodes
36Gb/s
10 � OC48 POS

Ingress traffic from
Core ATM switches
10Gb/s, 20 � OC12 ATM

OC12 ATM

OC12 POS OC48 POS
(‘04-’06) or
OC192 POS
(‘07-’08)

OC12 ATM

Multiple core routers connected by internal trunks

ATM—Asynchronous transfer mode
MPLS—Multiprotocol Label Switching
OC—Optical carrier

POS—Packet over SONET
SONET—Synchronous Optical Network

Core nodes

Edge nodes

Ingress traffic from
IP access

8Gb/s
26 � OC12 POS

MPLS core

OC192 POS

Figure 5.
Core node in an MPLS backbone network.

Bell Labs Technical Journal 97

Base load (Gb/s)

A-Router C-Router A-Router C-Router A-Router C-Router A-Router C-Router A-Router C-Router

CAPEX ($M)
A-Router savings
CAPEX OH ($M)
SW OH -Load
SW OH -OC192
Switch Chasses
Switch Racks
OC192
OC48
OC12
OC12 ATM

2.56
33%

0.00%
0.00%

0
1

0.5

3.82

41.65%
54.50%

6
3

3.0

3.34
41%

0.00%
0.00%

0
1

0.5

5.66

77.84%
68.80%

10
4

4.0

6.07
31%

18.11%
31.00%

4
2

1.0

8.76

87.86%
76.40%

18
5

5.0

8.19
42%

29.38%
50.50%

8
2

1.0

14.08

134.47%
82.70%

34
10

10.0

14.70
N/A

51.31%
67.70%

20
4

2.0

N/A

N/A
N/A
N/A
N/A
N/A

2004

36.00

0
10
26
20

2005 2006

78.2951.80

2007 2008

202.94123.73

0
14
47
23

0
21
84
26

9
0

101
30

14
0

181
35

ATM—Asynchronous transfer mode CAPEX—Capital expenditure OH—Overhead SW—Switch

No feasible solution
for C-Router in 2008

5-year CAPEX

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

2004 2005 2006 2007 2008

C
A

PE
X

 (
$M

)

5-year CAPEX overhead

0%

20%

40%

60%

80%

100%

120%

140%

160%

2004 2005 2006 2007 2008

C
A

PE
X

 o
ve

rh
ea

d

A-Router C-Router

Figure 6.
Router comparison: five-year analysis.

Capacity Recovery Services
Although capacity recovery services have some

principles in common with capacity deployment, they

are also different in a number of ways. The most

salient difference is that capacity recovery operates

on an existing network carrying live traffic so that the

adage “First, do no harm” applies. Secondly, the ben-

efit of the capacity recovery is limited by the degree to

which the existing network is inefficient. In order for

the service to be beneficial, the costs of reconfigura-

tion have to be small relative to the expected benefits.

For this reason, capacity recovery services are usually

targeted at the logical layer of the network. Examples

include adapting optical layer wavelengths to match

IP layer demands [1] or rerouting virtual circuits to

relieve bottlenecks in ATM networks [2]. Switching

center optimization is an exceptional case in which it

can be cost effective to change the physical topology,

because the affected switches and trunk terminations

all share the same physical location. Another partic-

ular feature of capacity recovery is that the service

must include an incremental series of steps to get

from the existing configuration to the desired con-

figuration. Because of the need to keep costs low, the

number of steps and complexity of each step must

be kept reasonably small. A fourth important feature

98 Bell Labs Technical Journal

of capacity recovery is the need to obtain accurate

data about the existing network. Network inventory

services enable and can be motivated by capacity

recovery services.

Procedures
Regardless of the type of network involved, a

capacity recovery service based on switching center

reconfiguration would be performed in the four basic

steps described in the subsections below. The nature of

the work involved in each step could vary depending

on the underlying technology.

Data collection. The purpose of this step is to

gather an accurate picture of the current state of the

switching center. This includes an inventory of the

relevant switching center hardware such as switches,

processor cards, interface cards, and cables. The capa-

bilities of each switch must be described in a switch

configuration file. The internal and external trunks

need to be identified. It is also important to list all

flows traversing the center, to identify the local route

of each flow, and to determine the capacity used by

each flow. The definition of a flow and the difficulty

of each of these items will vary depending on the un-

derlying technology and on the network management

system. For example, in a SONET/SDH network, a flow

is a circuit. The capacity used by the flow is known

and fixed, regardless of the amount of data actually

on the circuit. In an ATM network, a flow consists

of a permanent virtual connection (PVC), which may

belong to one of several service categories. For a con-

nection in the constant bit rate category, the capacity

is given, but this is not the case for a connection in

the unspecified bit rate (UBR) category. In practice,

the vast majority of ATM connections fall into the UBR

category, and hence the data collection in an ATM net-

work must include a method for estimating the traffic

load on groups of UBR connections. One such method

was developed for the work described in [2].

Analysis. The first step in the analysis process is to

choose metrics that will be used to compare the ben-

efits obtained by proposed changes. Some natural

metrics for switching center optimization include the

capital costs (e.g., switches and interfaces), operating

costs (e.g., power and footprint), and system load (e.g.,

switching capacity consumed, number of occupied

ports). Next, optimization tools are used to identify

new physical topologies that are close to the existing

topology and that have improved performance under

the chosen metrics. Currently the MASCOT tool uses

switching capacity consumed as an optimization

metric; many of the other performance metrics are

correlated with this basic one. MASCOT also produces

a sequence of steps which may be used to produce

the new topology. The third analysis step consists of

estimating the cost and effort required to perform

each transition step and comparing these costs with

the resulting benefits. The transition costs include tan-

gible elements such as time and labor as well as in-

tangibles such as the risk of network disruption. In the

end, the analysis either produces a sequence of bene-

ficial transition steps or concludes that no reconfigu-

ration is warranted.

Transition. Network technicians at the switching

center take a series of steps to rearrange the switch

connectivity at the switching center, normally with-

out interrupting the processing of the live traffic. At

the physical level, the rearrangements involve un-

plugging external trunks from ports on a given switch

and installing them on ports of another switch, as

well as adding or removing internal trunks. At the

management level, the operator must switch all of

the flows on the affected trunk to alternate routes.

Once the trunk has been moved and advertised to

the network management system, a set of flows can

be routed back onto the trunk. The number of flows

moved in each step can be very large: in ATM net-

works for example, there may be tens of thousands of

flows on a given trunk. For this reason, and to avoid

errors, automated tools for moving connections are

required.

Evaluation. The final step is to quantify the results

of the reconfiguration. The data collection procedures

are repeated to determine the new network state,

and performance metrics are recomputed and com-

pared with the initial and predicted values. For ex-

ample, this step would confirm that certain switch

ports have been freed, that the switch loads have

been reduced by a given amount, and that conges-

tion or other undesirable conditions have not been

introduced.

Bell Labs Technical Journal 99

possible, without necessarily visiting the intermedi-

ate stages generated by the analysis.

Conclusions
Switching center optimization can be used to

improve the existing capacity of existing switching

centers and to design new centers. The MASCOT

switching center optimization tool has been used suc-

cessfully in design applications, and it shows promise

for capacity recovery applications.

The analysis phase of switching center capacity

recovery requires good information about the current

hardware and traffic, while the implementation phase

requires the ability to safely move traffic flows from

one trunk to another. For this reason, network in-

ventory services and capacity recovery services based

on rerouting can be thought of as prerequisites to

switching center capacity recovery. By the same

token, switching center optimization can help to

extract the full benefit from those services.

Acknowledgments
We would like to acknowledge valuable contri-

butions by Iraj Saniee and Mohcene Mezhoudi from

Bell Labs and Naeem Asghar, Colin Corcoran, Joseph

Karwisch, Stephen Zlatos, and Michael Siesta from

Lucent Worldwide Services.

References
[1] S. Acharya, Y. Chang, B. Gupta, P. Risbood, and

A. Srivastava, “Architecting Self-Tuning Optical
Networks,” Proc. European Conference on
Optical Commun., (Copenhagen, Den., 2002).

[2] N. Asghar, R. Bhatia, R. Chandwani, C.
Corcoran, F. Hao, J. Karwisch, P. Koppol, T. V.
Lakshman, S. Zlatos, and M. Siesta, “iOptimize:
A Software Capability for Analyzing and
Optimizing Connection-Oriented Data Networks
in Real Time,” Bell Labs Tech. J., 9:4 (2005),
67–81.

[3] O. Goldschmidt and D. S. Hochbaum, “A
Polynomial Algorithm for the Kappa-Cut
Problem for Fixed Kappa,” Mathematics of
Operations Research, 19:1 (1994), 24–37.

[4] B. W. Kernighan and S. Lin, “An Efficient
Heuristic Procedure for Partitioning Graphs,”
Bell Sys. Tech. J., 49:2 (1970), 291–308.

[5] H. Saran and V. V. Vazirani, “Finding k-Cuts
Within Twice the Optimal,” SIAM J. Computing,
24:1 (1995), 101–108.

Switching Center Optimization and Global Routing
In this work we have taken a local view of switch-

ing center optimization. This approach helps to keep

the complexity of the optimization problem and data

collection manageable and scalable. Complexity aside,

it would clearly be preferable to take the entire net-

work into account and to use a model that allows

global rerouting of flows as well as switching center

reconfiguration. Consider for example the network

reconfiguration depicted in Figure 1, and assume that

all flows initially used least-weight routing in the

network depicted on the left side. Suppose also that

the weight of each link has a fixed component in

addition to any distance-based component—i.e., in-

ternal trunks have a non-negligible weight based on

the real costs of the switch ports they use. Under the

new configuration, the cost of the tan flow’s route

increases because it now traverses an internal link

at center A. However, it may be possible to move it

onto another route, not involving switching center A,

whose cost is less than the new route (B.1, A.1, A.2,

D.1), though necessarily still greater than the cost

of the original (B.1, A.1, D.1). Conversely, some

flows which originally did not use switching center A

may now find it advantageous to do so because of

the reduced cost of the path (B.1, A.1, C.1) relative

to the original cost of the path (B.1, A.1, A.2, C.1).

The overall effect in this example is that the match

of the traffic to the physical topology is further

increased.

One scalable approach to switching center opti-

mization in a network context would be to alternate

switching center steps with global rerouting steps. In

the first step, current routing information provides

the input data for improving the topology of a single

switching center. In the second step, the routing is

improved to take advantage of the new topology. The

two steps are iterated, potentially cycling among dif-

ferent sets of switching centers, until no further im-

provement is possible. Convergence can be assured by

requiring that a single metric (e.g., the total load on all

network switches) is improved at each step. Note that

the iteration procedure would be applied as part of the

analysis phase. In the transition phase, the goal would

be to move to the final solution as economically as

100 Bell Labs Technical Journal

(Manuscript approved September 2004)

NACHI K. NITHI is a member of technical staff in the
Mathematics of Networks and Systems
Department within the Mathematical
Sciences Research Center at Bell Labs in
Murray Hill, New Jersey. He earned a B.E.
in electrical engineering from Madras

University in Chennai, India, an M.E. in computer
science from Anna University, also in Chennai, and a
Ph.D. in computer science from Colorado State
University in Fort Collins. Dr. Nithi’s current interests
are in design tools and algorithms for network
optimization and switching center design. He is also
interested in simulations, data analysis, and Web
technologies.

CARL J. NUZMAN is a member of technical staff in the
Mathematics of Networks and Systems
Department at Bell Labs in Murray Hill,
New Jersey. He received B.S. degrees in
electrical engineering and mathematics
from the University of Maryland in College

Park and a Ph.D. in electrical engineering from
Princeton University in New Jersey. Dr. Nuzman has
broad research interests in the areas of network
optimization, optical network modeling, traffic
characterization, and stochastic processes.

BENJAMIN Y. C. TANG is a distinguished member of
technical staff in the Data and Broadband
Access Network Modeling Group at Bell
Labs in Holmdel, New Jersey. He has a B.S.
degree from the National Taiwan University
in Taipei, an M.S. from the University of

Florida in Gainesville, and Ph.D. from Purdue University
in West Lafayette, Indiana, all in electrical engineering.
Currently, Dr. Tang’s work focuses on next-generation
packet core, broadband access and converged network
solutions, network evolution planning, ATM, and
IP/MPLS network design and optimization. Many of his
works involve joint study and development of network
evolution strategy for major carriers in China, Asia
Pacific, and North America. His areas of interest include
all aspects of data networking, broadband access,
network design and optimization algorithms, and
economic analysis. �

