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17.1 Introduction

Artificial Neural Networks (or, simply Neural Networks) are a computational metaphor inspired
by studies of the brain and nervous systems in biological organisms. They are highly idealized
mathematical models of the essence of our present understanding of how simple nervous systems
work. Neural networks operate on the principle of learning from examples; no model is specified
a priori. Neural networks are likened to non-parametric models in the statistical literature.
Recent development in neural networks has shown that they can be applied in a variety of
problem domains. For example, neural networks are used to solve complex nonlinear function
approximation problems, difficult linearly inseparable pattern classification problems, speech
recognition and control problems, and complex time-series modeling problems. Though the

neural network technology has been applied in various fields, its utility in software engineering



has not been completely explored.

The purpose of this chapter is to introduce how this newly emerging technology can be used
in software reliability engineering applications. In particular, we demonstrate the utility of
neural networks models for solving two problems in the area of software reliability engineering.
In the first example, we illustrate how a neural network can be used as a general reliability
growth model. We validate the utility of this general model by learning to predict the cumulative
faults for several software projects. Our results suggest that neural network models can provide
a better predictive accuracy than some of the analytic models. In the second example, we
illustrate how a neural network can be used as a classifier to identify fault-prone (or change
prone) software modules from their static complexity metrics. We demonstrate the applicability
of this approach using metrics data from a Medical Imaging System software. Our results
suggest that the neural network classifier may provide an edge over simple classifiers in certain

categories.

17.2 Neural Networks

Neural networks are computational systems based on mathematical idealization of our present
understanding of biological nervous systems. However, the present neural network models do
not take into consideration all scientific knowledge about biological nervous systems; rather they
model only a few rudimentary characteristics that can be expressed in simple mathematical
equations. In general, neural networks can be characterized in terms of the following three

entities[Kar92d]:

e models of neurons, i.e., characteristics of the processing unit;

e models of interconnection structure, i.e., the topology of the architecture and the strength

of the connections that encode the knowledge; and

e a learning algorithm, i.e., the steps involved in adjusting connection weights.



The neural network research community has introduced a variety of models for these entities.
Consequently, there exists a variety of neural network models and learning algorithms. We

review here some of the relevant neural network models and their characteristics.

17.2.1 Processing Unit

There exist many mathematical idealizations for the processing unit (or, artificial neuron). A
typical processing unit is described in terms of: 1) a distinct set of fan-in connections, which
specifies a set of weighted connections through which the unit receives input either from other
units in the network or the external world; 2) a distinct set of fan-out connections, which
specifies a set of weighted connections through which the unit sends its output either to other
units in the network or to the external world; 3) a fan-in function, which integrates inputs to
produce a net input to the processing unit; and 4) an activation function, which acts on the

current net input to produce an output. A typical processing unit is illustrated in Figure 17.1.
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Figure 17.1: A typical processing unit.

Fan-in Function: The purpose of the fan-in function is to integrate inputs received from
other units or the external world, and then produce a “net input” to the processing unit. One
of the most widely used fan-in functions is the dot-product function. Assume that w;; is the
fan-in weight vector of unit j from unit ¢, sum; is the net input to the unit, and z; is the input

from unit 7,1 <7 < n. Then the dot-product function is expressed as,

n

sum; = Zwijxi —0; (17.1)

1=1



where —8; represents the threshold, which is usually created by an adjustable weight from a

special unit called bzas unit whose output is always 1.
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Figure 17.2: Output of typical activation functions.

Activation Function: The purpose of the activation function is to produce an activation
value a; for the unit j from the net input sum;. The general form of an activation function is

expressed as,

a; = F(sum;) (17.2)

The activation function can be linear or nonlinear. However, neural network models often
employ a nonlinear activation function. There are several nonlinear functions that can be used

in a neural network. We give a brief overview of some of the commonly used functions here.



The simplest function is the linear threshold function. The output response of the linear

threshold function is defined as

0 if sum; <0
F(sumj) =1 Csum; if 0 <sum; <L (17.3)
1 if sum; > L

where C' > 0 is the slope constant and L, the threshold. Figure 17.2(a) depicts a linear threshold

function with L = 1.

Another simplest nonlinear function is the hard-limiting threshold function. The hard-
limiting threshold function is given by
1 if sum; >0

F(sum;) = B (17.4)
0 otherwise

The output behavior of this function is given in Figure 17.2(b).

The most widely used nonlinear activation function is the logistic function. The logistic

function is defined as

F(sum;)=1/(1+e*wm/T) (17.5)

where T is the so called “temperature coefficient”, which controls the slope of the sigmoidal
characteristics. The inverse of T is usually known as the “gain factor” of the activation function.
The response of a sigmoid function is shown in Figure 17.1(c). One of the interesting features of
the logistic function is that it produces a continuous output. A processing unit that incorporates
a logistic activation function is often referred to as “sigmoidal unit”. The output of the sigmoidal

unit is bounded between 0.0 and 1.0.

Another widely used nonlinear activation function is the Gaussian function. A Gaussian

function with unit normalization is defined as
Fy(sum;) = el=(sum; /9)°] (17.6)

where ¢ is a parameter which can be used to control the width of the bell-shaped response

curve. The output of a typical Gaussian function is illustrated in Figure 17.2(d).



17.2.2 Architecture

We can characterize the architecture of a neural network in terms of two attributes: 1) number

of layers in the network, and 2) the type of network topology used.

Number of Layers: The units that act as an interface between the external input and the
network constitute the input layer. Typically, the input layer is not involved in any useful
computation; rather, each unit in the input layer acts as a distribution point for the external
inputs. The units that output the network’s response to the external world constitute the output
layer. The layers that do not have direct communication with the external world are called
hidden layers. The number of layers in a network may vary from a lower limit of 2 (one input
and one output layer) to any higher positive integer. In the neural network literature, some
authors do not consider the input units as a layer. Thus, a network is often called a “single
layer network” if it does not have a hidden layer. On the other hand, networks with one or more
hidden layers are called “multilayer networks” network. Hidden layers of a multilayer network
allow the network to develop its own internal representation of the problem. Each hidden layer
produces an internal representation from the input it receives. The number of hidden units
in a hidden layer represents the dimensionality of the internal representation space. Thus, by
controlling the number of hidden units in a hidden layer, one can expand or shrink the internal

representation of a problem.

Type of Connectivity: Based on the connectivity and the direction in which links propagate
activation values, we can classify a multilayer network into one of two well known classes of

models: feedforward networks and recurrent networks.

If a network employs only forward feeding connections then it is called feedforward network.
A feedforward network can be either a “single layer” or a “multilayer”. Historically, a single
layer network with a hard-limiting threshold output is known an “perceptron”. However, a
single layer network with sigmoidal unit is also commonly referred to as a “perceptron”. Per-
ceptrons have limited applicability because they are capable of solving only linearly separable
classification problems. Multilayer networks, on the other hand, are highly suited for problems

that require nonlinear function mappings and linearly inseparable classification boundaries. A
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Figure 17.3: (a) A Standard Feedforward Network and (b) a modified Jordan Network.

three layer feedforward network is shown in Figure 17.3(a). This feedforward network has one
unit each in the input and output layers, and three (hidden) units in the hidden layer. An ad-
ditional unit called the “bias unit” is always used to supply threshold values (using adjustable
links) to all hidden and output units in the network. For simplicity we have not included the
bias unit in Figure 17.3(a). For a given problem, the number of units required for the input
and the output layers are dictated by the dimensionality of the problem space. For example, if
a problem has two independent variables and a dependent variable, then the network will have
two input units and one output unit. However, for a given problem, both the number of hidden
layers needed in the network and the number of units needed within each hidden layer of the

network are dictated by its complexity and size.

In addition to feedforward connections, we can also use recurrent connections to feed the
previous time-step output values (i.e., the states of the units corresponding to the previous input
pattern or the time-step) of units either to the units in preceding layer(s) or back to the units
themselves. Multilayer networks that employ feedback connections are referred to as recurrent
networks. Based on how recurrent connections are established, we can classify a recurrent

network into one of three categories: 1) simple recurrent network proposed by Elman [Elma90],



2) semi-recurrent networks proposed by Jordan [Jord86] and 3) fully recurrent networks [Will89].
In a fully recurrent network every unit receives input from all other the units in the network.
In the simple recurrent network (or Elman network), the recurrent connections originate from
the hidden units. In a standard semi-recurrent network (also known as Jordan network) there
is one-to-one feedback from the output units to “state units”, and all these feedback links have
a fixed weight of 1.0. Apart from the output feedback, each state unit receives a self-feedback
through a learnable link. Thus, the activation of a state unit is a function of the output of
the network as well as its own activation at the previous time step. The state units, like the
input units, propagate their activations in the forward direction to all the hidden units. For
illustration, we show a modified Jordan style recurrent network without self-feedback links
of the state units in Figure 17.3(b). Our experience shows that both feedforward networks
and the modified Jordan style recurrent network are useful in software reliability engineering

applications.

17.2.3 Learning Algorithms

To solve a problem using a neural network, the network must first be taught solutions using a
set of typical instances of input-output pairs known as the training set. The procedure by which
the network is taught is known as the learning algorithm. During the training (or learning)
phase, the strength of the interconnection links of the network are adjusted so as to reduce
the residual error resulting from the training set. A variety of algorithms exist for training
multilayer networks. Among them, the backpropagation algorithm is the most widely used.
The backpropagation algorithm was proposed independently by several researchers [Werb74,
Park82, Rume86]. In mid eighties, Rumelhart, Hinton and Williams [Rume86] popularized the
backpropagation algorithm by training multilayer networks to solve several interesting problems.
Thus, the backpropagation algorithm has become one of the main driving forces behind the
recent surge both in multilayer neural networks research and development of several variants of
multilayer neural network training algorithms. A brief review of the backpropagation algorithm
can be a valuable first step towards understanding other training algorithms and neural network

models. Hence, we provide an overview of the backpropagation algorithm in the next section.



17.2.4 Backpropagation Learning

The backpropagation learning algorithm is a class of supervised learning! algorithms in which
the network weights are iteratively adapted using errors propagated back from the output
layer. For the purpose of illustration, let us consider a simple three-layer feedforward network

constructed using sigmoidal units and trace how the backpropagation algorithm works.

Algorithm: (1) To start with, initialize the network weights with a set of random values.
This step is called the initialization phase. Typically, a set of random values drawn from a
small interval (for example, between -1.0 and 1.0) are used. However, one can also initialize
the network weights with a set of values from a known distribution. (2) Next, in the weight
adjustment phase, adjust the network weights incrementally using several iterations. In each
iteration, adjust the weights in the direction of steepest decreasing gradient of the error surface
(i.e., the surface formed by the sum of the square of the error between the desired output and
the actual output for all patterns in the training set). This iterative adjustment continues until
either a minimum is reached in which the error is less than a prespecified tolerance limit, or
until a set number of iterations has been reached. During each iteration, the sum-square-error

is calculated as follows:

1 P M
E = 3 DN (o) (17.7)

p=1j5=1

where y? is the desired output for the input vector in,, o” is the actual output of the network,
M is the number of output units, and P is the number of patterns in the training set. This error
is propagated back through the network to adjust weights using a gradient descent procedure.
The gradient descent procedure changes the weights by an amount proportional to the partial
derivative of the error with respect to each weight w;;. Thus, the change in the weight of a link

from unit ¢ to unit 5 at the ¢-th iteration is given by

Awg(t) =n- 65 in; + a- Awg(t — 1) (17.8)

where 7, a proportionality constant called the learning rate, o, the momentum term, Aw;;({—1),

weight change during the previous iteration, ¢n;, the output activation of the unit ¢, and 4;,

YA training algorithm is a “supervised learning” if it requires actual outputs for each input pattern in the

training set.



partial derivative of the error with respect to the net input (sum;) to the unit j. The error

derivative ¢; for the j-th unit in the output layer is given by

é; = 0;(1 —0;)(y; — 0;) (17.9)

and for the k-th unit in the hidden layer is given by

8 = hi(1 — hy)

M=

(6, - wij) (17.10)

J

Il
—

where hy is its activation.

Though the backpropagation algorithm can be used to train any multilayer network, one
must be aware of several practical issues that could affect its efficiency. Since the backpropa-
gation algorithm is a gradient descent optimization procedure, it is vulnerable to the problem
of premature convergence. Premature convergence occurs whenever the algorithm gets stuck
in a local minimum and the value of F is still higher than the allowed tolerance limit. Though
several solutions have been proposed to improve/avoid premature convergence of the backprop-
agation algorithm [Jaco88], none of the solutions have been proved to work consistently across

all error surfaces.

The second issue is specifying an optimum network architecture for a given problem. A
network architecture is considered optimum if it has the minimum number of hidden units (and
hence the minimum number of interconnection links) with which it can successfully learn the
training set. If the network architecture is too small, then it may not be able to learn the
entire training set. On the other hand, if the network architecture is too large, it may have
too many degrees of freedom (weight or parameters) to learn the training set. Thus, if the
network has too many weights, then it will memorize the training set rather than generalize it.
Furthermore, an inappropriate network may consume an unreasonable amount of simulation
resources. The backpropagation algorithm is applied to train the network with the assumption
that the architecture of the network is specified either ahead of time by the user, or experimen-
tally determined by trail-and-error. In the trial-and-error approach, the user may waste time

in experimenting with different architectures to find an appropriate architecture.

To address the limitations of the standard backpropagation algorithm, Scott Fahlman and
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colleagues [Fahl90] developed an efficient constructive training algorithm known as Cascade-
Correlation Learning Architecture for feed-forward networks. We demonstrate the use of neural
networks for software reliability applications using this algorithm. To understand how this

algorithm works, we provide an overview of the algorithm next.

17.2.5 Cascade-Correlation Learning Architecture

The Cascade-Correlation algorithm combines two important ideas in its learning method: the
cascade architecture, to add hidden units one at a time, and a learning algorithm (typically,
Fahlman’s “quickpropagation” [Fahl88]) to create, train, and install new hidden units. The
Cascade-Correlation algorithm in effect “grows” a neural network. In the first stage of learning,
the Cascade-Correlation uses no hidden units; this means that initially the net applies a simple
perceptron type network to account for as many patterns as possible. When the algorithm can
no longer reduce the error, a hidden unit, which is separately optimized so as to maximize the
correlation between the outputs of the new hidden unit and the residual error of the network
over the entire training set, is added. When hidden units are trained, the weights connecting
the output units are kept unchanged. After the hidden unit is connected to the output, training
updates all the weights that directly go to the output layer. Once installed, each hidden unit
becomes a new hidden layer in the network and its incoming weights remain frozen for the rest
of the training period. When subsequent hidden units are added, the outputs of the previously
added hidden units become as additional inputs to the new hidden unit. This dynamic expansion

of network architecture continues till the problem is solved.
The Cascade-Correlation algorithm consists of the following steps.
1. Initialize the Network: Create a network architecture consisting of only input and

output units. Establish links from the input layer to the output layer and initialize them

with random values.

2. Train Output Layer: Adjust weights feeding the output units. If the learning is com-
plete (i.e, the error is below a preset limit) then stop; else if the error has not been

reduced significantly for a certain number of consecutive epochs or the maximum number
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of epochs allowed has been reached, then go to the next step.

3. Initialize a Candidate Unit: Create and initialize a candidate unit with random

weights from all input units and all pre-existing hidden units.

4. Train the Candidate Unit: Adjust candidate unit’s weight so as to maximize the
correlation between activation, v., of the candidate unit ¢ and the residual error e; at

each output unit j.

(a) Compute correlation: The correlation is computed in terms of co-variance,

M P . L
cor, = Z | E(vf — V)(e? - FE;) | (17.11)

j:

P P P P
p— v, —_ €
Ep:l < i szl J
where V = =P — and £; = =

(b) Update candidate unit’s weights using gradient ascent to maximize cor.,

Jdcor,
Awy = a - -1 17.12
w a D i ( )

(c) If the correlation at the current epoch is not significantly better than the previous

epoch, then go to step 5, else go back to step 4.a.

5. Install the Candidate Unit: Install the candidate unit by establishing weights to
output units and initializing them with the negative of the correlation values. Now f{reeze

the incoming weights of the candidate unit and go to step 2.

The Cascade-Correlation learning algorithm has many advantages over the standard back-
propagation algorithm. Three of the major advantages are: i) the user need not specify the
architecture; rather it is evolved automatically, ii) its learning speed is 1 or 2 orders of mag-
nitude faster than the standard backpropagation algorithm, and iii) it is highly consistent in
converging during training. Because of these advantages and our experience with the backprop-
agation algorithm, we use the Cascade-Correlation algorithm for all example demonstrations in

this chapter.

12



17.3 Application of Neural Networks for Software Reliability

The problem of developing reliable software, at a low cost, still remains an open challenge. To
develop a reliable software system, one must address several issues. These include specifica-
tions for reliable software, reliable development methodologies, testing methods for reliability,
reliability growth prediction modeling, and accurate estimation of reliability. Two of the prob-
lem areas in which the neural network is applicable are developing a general-purpose reliability
growth model, and identifying change/fault-prone software modules early during the develop-
ment cycle. This section reviews some of the limitations of the traditional modeling approaches
used to solve these problems and argues why we need to try the neural network approach as an

alternative.

17.3.1 Dynamic Reliability Growth Modeling

In current software-reliability research, one of the concerns is how to develop general prediction
models. Existing models typically rely on a priori assumptions about the nature of failures,
and the probability of individual failures occurring. Furthermore, these models, referred to as
“parametric models”, attempt to capture in 2 or 3 explicit parameters all the assumptions made
about the software development process and environment. Because all of these assumptions
must be made before the project begins, and because many projects are unique, the best that
one can hope for is statistical techniques that predict failure on the basis of failure data from
similar project histories. Though there is evidence to suggest that certain analytic models are
better suited to certain types of software projects than other models, the issue of finding a

common model for all possible software projects is yet to be solved.

Selection of a particular model is very important in software reliability growth prediction be-
cause both the release date and the resource allocation decision can be affected by the accuracy
of predictions. Several solutions have been proposed to address the issue of model selection.
For example, in Chapter 5 we suggest two alternatives: 1) try several software reliability growth
models and select the one that gives highest confidence, and 2) use a recalibration method to

compensate for the bias of a model. The second alternative can be used either alone or in com-
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bination with the first solution. Alternatively, in Chapter 7 we propose a linear (or a weighted
linear) combination of prediction results from models with opposite bias. Li and Malaiya [Li93]
show that an adaptive prediction, combined with pre-processing can enhance the predictive ca-
pability of the analytic models. All these solutions can broadly be termed as “postprocessing”
methods. Nevertheless, the issue of generalization of prediction models still remains open. An
alternate approach is to use an adaptive model building system that can develop its own model
of the failure process from the actual characteristics of the given data set. In this Chapter we
demonstrate that such a general-purpose reliability growth model can be developed using the

neural network approach.

17.3.2 Identifying Fault-Prone Modules

Another concern in software reliability engineering is to identify potentially fault/change prone
modules early during the development cycle. This concern is motivated by the developers’ need
to improve the overall reliability of the product by allocating more test efforts to potentially
troublesome modules. Intrinsic complexity of the program texts, measured in terms of static
complexity metrics, is often used as an indicator of troublesomeness of program modules. By
controlling the complexity of software program modules during development, one can produce
software systems that are easier to maintain and enhance (because simple modules are easier to
understand). As seen in Chapter 13, static complexity metrics are measured from the passive
program texts early during the development cycle and can be used as valuable indicator for

allocating resources in future development efforts.

Several statistical regression and classification models have been suggested to predict the
fault-proneness of software modules [Shen85, Craw85, Muns92, Rodr87]. However, existing
statistical models make simple assumptions that are often violated in practical measures. Fur-
thermore, there are numerous metrics that are either redundant or that have some linear (or
nonlinear) dependence among other metrics. High redundancy in the metric space and multiply-
related metric dimensions may often result in unreliable predictive models. In this chapter, we
demonstrate that neural networks can also be used as a classifier for identifying fault-prone

software modules.
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17.4 Software Reliability Growth Modeling

In this section we illustrate how neural networks can be used for predicting software reliability
growth process. As pointed out earlier, the predictive capability of a neural network can be
affected by what neural network model is used to model the failure data, how the input and
output variables are represented to it, the order in which the input and output values are
presented during training, and the complexity of the network. We address these issues in this
section, and empirically show that neural networks can give accurate predictions across different
software projects. Furthermore, we also perform an analysis to show how neural networks are

capable of adapting their complexity to match the complexity of the training data set.

To illustrate how neural networks can be used as a prediction system, the following defini-

tions are introduced [Kar91, Kar92a, Kar92b].

Definition 1 Sequential Prediction: Given a sequence of inpuls ((i1,...,%¢) € 1) and a corre-
sponding sequence of outputs ((01,...,0;) € O) up to the present time t and an input (is4q € I)

belonging to a future instant t + d, predict the output (0444 € O).

For d = 1 the prediction is called the next-step prediction (or short-term prediction) and
for d = n(> 2) consecutive intervals it is known as the n-step-ahead prediction (or long-term
prediction). A special case of long-term prediction is end-point prediction, which involves pre-
dicting an output for some future fixed point in time. In end-point prediction, the prediction

horizon becomes shorter as the fixed point of interest is approached.

We can represent a neural network as a mapping NN : I — O where [ is an n dimensional
input space and O is the corresponding M dimensional output space. Generally this mapping
is accomplished using a multilayer network. The training procedure is a mapping operation
T : Iy — Oy where (I,0r) = {(i,0) | t € I and 0o € O} is a subset of k input-output pairs
sampled from the actual problem space (I,0). The function 7 represents an instance of NA

which has learned to compute (or approximate) the actual mapping of the problem.

Definition 2 Neural Network Mapping: Sequential prediction can be formulated as a neural
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network mapping

P ((Im Ot)7 it+d) —— O¢4d

in which (I;,0;) represents a sequence of t consecutive samples used for training and o¢yq the

predicted oulput corresponding to a fulure input t44q.

Definition 3 Neural Network Software Reliability Growth Model: Software reliability growth

prediction can be expressed in terms of a neural network mapping as

P ATr, Fr), tryn ) — Hktn

where, T}, is a sequence of cumulative execution time ({1, ...,1x), F is the corresponding observed
accumulated failures (p1, ..., i) up to the present time ty used to train the network, tyyn = tp+A
1s the cumulative execution time at the end of a future test session k + h and pgyp is the

prediction of the network.

In the above definition A = Zfi,};ﬂ A; represents the cumulative execution time of A consec-
utive future test sessions. Note that each test session A; can be either a fixed duration or a

random interval.

17.4.1 Training Regimes

A neural network’s predictive ability can be affected by what it learns and in what sequence it
learns. The notion of a training regime is introduced to distinguish the order in which data are
presented during training. Two training regimes can be used in software reliability prediction:

Generalization Training and Prediction Training. Figure 17.4 illustrates these training regimes.

Generalization training is the standard way of training feed-forward networks. During
training, each input ¢; at time ¢ is associated with the corresponding output o;. Thus the
network learns to model the actual functionality between the independent and the dependent

variables.

Prediction training, on the other hand, is an approach often employed in training recurrent

networks. Under this training, the value of the input variable #; at time ¢ is associated with the
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Figure 17.4: Two Network-training Regimes: (a) Generalization Training and (b) Prediction

Training.

actual value of the output variable at time ¢ + 1. Here the network learns to predict outputs

anticipated at the next time step.

If we combine these two training regimes with the feed-forward network (FFN) and the
modified Jordan network (JN), we get four neural network prediction models. Let us denote

these models as FFN-Generalization, FFN-Prediction, JN-Generalization and JN-Prediclion.

17.4.2 Data Representation Issue

The issue of data representation is concerned with the format used to represent the input-output
variables of the problem to the neural network. If a sigmoidal unit is used as the output unit,
then its output response will be bounded between 0.0 and 1.0. Since the output variable of
the software reliability growth model may vary over a large numerical value, it is necessary to
scale the output variable to a range that conforms within the operational range of the output
units. A simple representation is to use a direct scaling, which scales cumulative faults from
0.0 to 1.0. On the other hand, the input variables, in theory, need not be scaled to this range
because the weights feeding the hidden units from the input layer can scale them appropriately.
But for practical reasons, it is a reasonable heuristic to scale also the input variables to an
appropriate range. For the purpose of our illustration, we scaled both cumulative faults and
cumulative execution time from 0.1 to 0.9 because our experience shows that (1) the network is

less accurate in discriminating inputs whose scaled values are close to the boundary values 1.0
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or 0.0, and (2) the sigmoidal unit’s error derivative, which affects the rate of weight adaptation
during training, becomes inconsequential when its output is close to 1.0 or 0.0. To scale the
data, however, it is necessary to guess the appropriate maximum values for both the cumulative

faults and the cumulative execution time [Kar92c]|.

17.4.3 A Prediction Experiment

To illustrate the predictive accuracy of neural network models, five well-known analytic software
reliability growth models and failure history data sets from several different software projects
were considered. These models include the Fzponential model proposed by Moranda [Mora75],
the Logarithmic model proposed by Musa and Okumoto [Musa87], the Delayed S-shaped model
proposed by Yamada et al. [Yama83], the Inverse-Polynomial model proposed by Littlewood
and Verrall [Litt74], and the Power model proposed by Crow [Crow74]. All these models have
two parameters and are Non-Homogeneous Poisson Process except for the inverse-polynomial

model. Details of these models appear in Chapter 3.

The data sets used for illustration were collected from several different software systems
including data 1 - 12 in Appendix C. These data sets represent the observed failure history
of those systems. Each data point within a set consists of two observations: the cumulative

execution time, and the corresponding accumulated number of defects disclosed.

17.4.3.1 Measures for Evaluating Predictability

In order to compare the predictive accuracy of different models, we have to use some meaningful
quantitative measures. The software reliability research community uses a verity of metrics for
comparison of models. We review three distinct approaches that are very common in software

reliability research[Mal90a] and point out which one is relevant for our comparison.

Let the data be grouped into n points (¢;, D;), ¢ = 1 to n, where D; is the cumulative
number of defects found at time ¢; and ¢; is the accumulated execution time (i.e, the time spent
for testing the software) in disclosing D; defects. Let u; be the projected number of defects at

time ¢; by a model.
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1. Goodness-of-fit: In this approach, first a curve corresponding to a selected model is
fitted to all the data points {t;,u;}, ¢ = 0,1,...,n; then, the deviation between the observed

and the fitted values is evaluated by using the Chi-Square test or Kolmogorov-Smirnov test.

2. Next-Step-Predictability: In this approach a partial data set corresponding to, say,
{t;; D;}, i=1,...,(I—1)is used to predict the value of y; (cumulative number of defects after I,

test interval). The predicted and the observed values of cumulative defects are then compared.

3. Variable-Term-Predictability: In actual practice, the need to predict the behavior at
a distant future of the test phase using present failure history is very important. This approach,
used by Musa et al. [Musa87], makes projections of the final value of p, using a partial data
set {t;, D;}, 1 =0,...,1, where [ < n. The percentage prediction error in these projections can

then be plotted against time.

A Two-Component Predictability Measure consisting of Average Error (AE) and Average
Bias (AB) was used by Malaiya et al. [Mal90a] to compare predictive capabilities of parametric
models at different fault density ranges. These measures are as follows. For a specific model m,
let ;7 be the projected total number of the defects to be detected at a future time ¢;, where
7 = t+ d. Using the projected value at each point ¢, we can calculate the model’s prediction

error (;LZ” —D;)/D;, i = 1ton—1. Then predictability measures for a given data set s are

given by
LS| m - D,
AE™ = Y 17.13
5 n—1e= D; ( )
1 &g =D
AB™ = 2 17.14

Two extreme prediction horizons of interest are: j = ¢+ d = i + 1, the next-step prediction
and j = ¢ +d = n, the end-point prediction. AE is a measure of how well a model predicts
throughout the test phase and AB is the general bias of the model. AB can be either positive
or negative depending on whether the model is prone to overestimation or underestimation.
Note that the above AE measure can be used to compare the predictive accuracy of models
only within a single data set. However, what we need is a normalized AE measure (normalized

within each data set) with which competing models can be ranked across different software
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projects.

Let m = M4, be the competing model that has the maximum average error measure for
the data set s. Let AE7Tmes be its average error measure. Then the normalized AE measure is
given by

AET

NAET = ——2— 17.15
S AEgnma.r ( )

Thus NAE?T" = 1.0 when m = myy,q; (i.e, for the model which has the highest prediction error)
and 0.0 < NAET < 1.0 for m # my,4,. Note that more than one model may have the same

value if their AE" values are equal.

Let v5 be the weighting (importance) factor of a data set s. Now, an over all rank metric

of the model m can be calculated as

ND
Ry =Y 7s- NAE] (17.16)

s=1
where N D is the number of data sets used in comparing models. If we give equal weight to all
data sets, then the above rank metric reduces to a simple sum

ND
R, =) NAET (17.17)

s=1

We can apply these metrics for both end-point predictions and next-step predictions.

17.4.3.2 Prediction Results

We trained neural networks with the execution time as the input and the observed fault count
as the target output. The training ensemble at time ¢; consists of the complete failure history of
the system since ¢;—o (i.e., since the beginning of testing). Any prediction of a neural network
without proper training is equivalent to the network making a random guess. So we took care to
see that the neural network was trained with at least some initial portion of the failure history.
In all the experiments, we set the minimum size of the training set as it would contain at least
the first 3 observed data points. We then increased the training set in steps of one point from
this minimum set to all but the last point in the data set. At the end of each training, the

network was fed with future inputs to measure its prediction of the total number of defects.
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Table 17.1: Summary of Normalized AE Measure.

Model End-Point Predictions | Next-Step Predictions
R, rank R, rank

FFN-Generalization | 2.86 4 11.79 9
FFN-Prediction 2.64 3 10.09 7
JN-Generalization 2.09 1 9.81 )
JN-Prediction 2.23 2 8.00 1
Logarithmic 6.29 5 8.78 2
Inverse Polynomial 7.60 6 9.54 4
Exponential 8.20 7 8.96 3
Power 11.39 8 11.43 8
Delayed S-shape 11.59 9 9.95 6
Average 6.10 9.82

Std 3.85 1.21

Table 17.1 summarizes the predictive accuracy of models in terms of the rank metric R,
defined earlier. This metric provides simple summary statistics. In order to find their relative
accuracies, we also calculated the average and the standard deviation of R,,. The R,, values
for end-point predictions of neural networks are well below the overall average of 6.10. This
suggest that neural networks are better suited for end-point predictions than analytic models.
Jordan nets have R,, values 2.09 and 2.23, which are 1 standard deviation below that of the
overall average 6.10, and suggest that the Jordan net models are better at end-point predictions
than all other models. One reason the Jordan nets exhibit such a low end-point prediction error
may be that they are able to capture the correlation among points that are in the immediate
past. In comparison, the analytic models have R,, values that are well above the average.
This suggests that analytic models are either too pessimistic or too optimistic. Columns under

“rank” represent the rank of these models based on their overall prediction accuracy.

Note that, except for JN-Prediction model, all other models seem to have almost similar

next-step prediction accuracy. This observation is further supported by the fact that all other

21



Table 17.2: Overall Average of AE Measure.

Model End-Point Predictions | Next-Step Predictions
FFN-Generalization 6.67 6.62
FFN-Prediction 6.12 5.38
JN-Generalization 4.75 5.47
JN-Prediction 4.94 4.46
Logarithmic 14.23 5.04
Inverse Polynomial 17.93 5.64
Exponential 18.45 5.19
Power 26.42 7.44
Delayed S-shape 25.61 5.80

models have R,, values that are bounded between one standard deviation above and below the
average. The JN-Prediction model has R,, = 8.00, which is one standard deviation below the
overall average of 9.82, and suggests that this model has better next-step predictive accuracy

than the other models compared.

In order to check whether the above observations have statistical significance, we performed
a further analysis using the analysis of variance (ANOVA) approach. In this approach we viewed
the AE measures as outcomes of randomized block experiments in which the projects (or data
sets) were randomly selected and software reliability growth prediction models as “treatments”
applied to each of the projects. Note that this approach accounts for the data-set peculiarities

which could affect performance of these competing models.

The overall average of AE values (i.e., the average of AE measures over all 14 data sets) are
shown in Table 17.2. These values represent the predictive accuracy of models across different
projects. The resulting F-statistics for projects and models are highly significant at the 1%
level, and show that models have significantly different predictive accuracy. Since the models
have significant F-statistics, we can use the Least Significant Difference (LSD) procedure to

differentiate among them in terms of their overall AE measure. Under LSD, two competing
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models are considered significantly different if their means in Table 17.2 differ by an amount
equal to or greater than the value given by the LSD procedure. On the other hand, if the
difference is less than the value given by the LSD procedure then we can interpret that two
models have similar predictive accuracy across all projects. Thus if a model X has an AE which
is significantly lower than that of another model Y then we can interpret, using > to denote

significantly better, that { X } > { Y }.

The resulting LSD for the end-point prediction is 4.52 (T5¢ 104 = 1.98). Thus, based on
the averages in Table 17.2 we can conclude that { FFN-Generalization, FFN-Prediction, JN-
Generalization, JN-Prediction } > { Logarithmic, Inv. Polynomial, Exponential } > { Power,
Delayed S-shape }. Thus our analysis suggests that the neural network models are significantly

better than analytic models in predicting end-points.

The corresponding LSD value for the next-step prediction is 1.39 (T5¢ 104 = 1.98). Based
on this LSD value and the overall average of AE in Table 17.2, we can interpret that { JN-
Prediction, Logarithmic, Exponential } > { FFN-Generalization, Power }. Since the remaining
4 models do not show any significant difference in the next-step prediction accuracy, we can
conclude that neither of these two competing approaches (neural network models versus analytic
models) taken alone have a distinct advantage. However, it should be noted that the JN-

Prediction model has a higher next-step prediction accuracy than all other models.

Since we used two different network architectures, we performed an additional ANOVA
analysis to find out whether there is any significant difference among neural network models.
The resulting LSD values (with a critical value of T = 2.02) are 1.16 for end-point predictions
and 1.11 for next-step predictions respectively. The LSD of 1.16 and the overall averages in
Table 17.2 suggest that the Jordan network models are significantly better end-point predictors
than the feed-forward network models. Furthermore, based on the LSD value of 1.11 for next-
step predictions we conclude that the JN-Prediction model is a better next-step predictor than
the other neural network models. Thus, the Jordan network models are better predictors than

the feed-forward network models.

In summary, our statistical analyses show that: (a) on the average, neural networks models

have better end-point prediction accuracy than analytic models, and (b) the type of neural
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network architecture can influence the predictive accuracy.

17.4.4 Complexity of Neural Network Models

So far we have seen how we can use neural networks constructed using the Cascade-Correlation
algorithm to accurately predict cumulative faults. As pointed out earlier, the number of hidden
units added to the final network by the Cascade-Correlation algorithm may vary as the size and
the complexity of the training set are changed. This is especially true in our reliability growth
modeling problem because the number of points in the training set increased according to the
time horizon that we took into consideration. Also the number of hidden units varied from one
data set to another because of their inherent peculiarity. Most of the time the networks were
constructed with 0, 1, or 2 hidden units and occasionally with 3 or 4 hidden units. Thus, the
models developed by the neural network approach is more complex than most analytic models

which have 2 or 3 parameters.

17.5 Identification of Fault-Prone Software Modules

In this section, we demonstrate how neural networks can be used as a pattern classifier to identify
fault-prone software modules early during the development cycle. There are two reasons for this
demonstration: (1) to show that neural network classifiers can be developed as a complement to
existing statistical classifiers, and (2) to demonstrate that classifiers can be developed without
the usual assumptions about the input metrics. The idea of using a neural network for classifying
fault-prone software modules was first demonstrated by Koshgoftaar et al.[Kosh93], using a
multilayer network trained using a standard backpropagation algorithm. Here, we expand and
evaluate the neural network approach using a perceptron network and a multilayer feedforward
network developed using a modified Cascade-Correlation algorithm [Kar93b, Kar93c]. We also
address other issues such as selection of proper training samples and representation of software

metrics.
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17.5.1 Identification of Fault-Prone Modules Using Software Metrics

We can relate static complexity measures of program texts with faults found (or program
changes made) during testing using two broad modeling approaches. In the estimative approach,
regressions models are used to predict the actual number of faults that will be disclosed during
testing [Shen85, Craw85, Kosh90, Muns92]. Regression models assume that the metrics that
constitute the input variables are independent and identically distributed normals. However,
most practical measures often violate the normality assumption. This in turn results in poor

fit of the regression models and inconsistent predictions.

In the classification approach, software modules are categorized into two or more fault-
prone classes. A special case of the classification approach is to categorize software modules
into either low-fault (simple) or high-fault (complex) classes. The main rationale behind the
two-class classification approach is that software managers are more often interested in getting
an approximate classification from this type of model rather than an accurate prediction of
the residual faults. Existing two-class categorization models are based on linear discriminant
principle [Rodr87, Muns92]. Linear discriminant models assume that the metrics are orthogonal
and that they follow a normal distribution. However, it is often true that some of the real
metrics are variants of an existing metric and they tend to exhibit strong collinearity among
themselves. We can reduce multicollinearity among metrics using either principle component
analysis or some other dimensionality reduction techniques. However, the reduced metrics may

not explain all the variability if the original metrics have nonlinear relationship.

17.5.2 Data Set Used

The metrics data used in this section were obtained from research conducted by Lind and Vaira-
van [Lind89] for a Medical Imaging System software. The complete system consists of approxi-
mately 4500 modules amounting to about 400,000 lines of code written in Pascal, FORTRAN,
and PL/M assembly language. From this set, a random sample of 390 high-level language
routines was selected for the analysis. For each module in the sample, program changes were

recorded as an indication of software faults. The number of changes in the program modules var-
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ied from zero to 98. In addition to changes, 11 software complexity metrics were extracted from
each module. These metrics include [Lind89]: 1) Total number of lines (code, comments, and
declarations inclusive), 2) Number of executable lines (comments and declarations excluded),
3) Total number of characters, 4) Number of comments, 5) Number of comment characters,
6) Number of code characters, 7) Halstead’s length measure which counts the total number
of operators and operands, 8) Halstead’s estimated length measure (calculated from an equa-
tion derived using the number of unique operands and operators), 9) Jensen’s estimated length
measure (calculated using the number of unique operands and operators), 10) McCabe’s cyclo-
matic complexity (counts the number of paths through the code), and 11) Belady’s bandwidth

measure (computes the average nesting level of instructions).

For the purpose of our classification study, these metrics represent 11 input (both real and
integer) variables of the classifier. We consider a software module as a low fault-prone module
(Category I) if there are zero or 1 changes and as a high fault-prone module (Category II) if
there are 10 or more changes. We consider the remaining modules as medium fault category.
For the purpose of this study we consider only the low and high fault-prone modules. Our
extreme categorization and deliberate discarding of program modules is similar to the approach
used in other studies [Rodr87, Muns92]. After discarding medium fault-prone modules, there
are 203 modules left in the data set. Of 203 modules, 114 modules belong to the low fault-prone

category while the remaining 89 modules belong to the high fault-prone category.

17.5.3 Classifiers Compared

We demonstrate the utility of both statistical and neural network classifiers. We consider
different classifiers because it could be useful in evaluating their relative merits and limitations.
We use a simple Gaussian classifier from the traditional statistical family, and both a perceptron
and a multilayer feedforward network from the neural network family. The perceptron classifier
represents the simplest model of the neural network family, while the feedforward network is a
typical realization of complex nonlinear classifier. Since we are interested in assigning modules
into two extreme categories, we can use two output units in our neural nets corresponding to

these categories. Thus, a given arbitrary vector X is assigned to Category I if the value of the
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output unit 1 is greater than the output of the unit 2, and to Category Il otherwise.

17.5.3.1 A Perceptron Classifier

A perceptron with a hard-limiting threshold can be considered as a realization of a simple
non-parametric linear discriminant classifier. If we use a sigmoidal unit, then the continuous
valued output of the perceptron can be interpreted as a likelihood or probability with which
inputs are assigned to different classes. To train a perceptron network we can use any of
backpropagation, quickpropagation procedure, or a simple optimization procedure. We chose
the quickpropagation procedure, which is part of the Cascade-Correlation algorithm, as our
training algorithm. In almost all our experiments, the perceptron learned about only 75% to
80% of the training set. This implies that the rest of the training samples may not be linearly

separable.

17.5.3.2 A Multilayer Network Classifier

To evaluate whether a multilayer network can perform better than the other two classifiers,
we repeated the same set of experiments using feed-forward networks constructed using the
Cascade-Correlation algorithm [Fahl90]. Our initial results suggested that the multilayer net-
works constructed by the Cascade-Correlation algorithm are not capable of producing a better
classification accuracy than the other two classifiers. An analysis at the end of the training
suggested that the resulting networks have too many free variables (i.e., due to too many hid-
den units). A further analysis of the rate of decrease in the residual error versus the number of
hidden units added to the networks revealed that the Cascade-Correlation algorithm is capable
of adding more hidden units to learn individual training patterns at the later stages of the
training phase than in the earlier stages. This happens if the training set contains patterns
that are interspersed across different decision regions or what might be called “border patterns”
[Ahmd89]. Such an unrestricted growth of the network can be a disadvantage in certain ap-
plications. The larger the size of the network the less likely that the network will be able to

generalize. Thus, it is necessary to constrain the growth of the network during training.
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17.5.3.3 Minimal Network Growth Using Cross-Validation

One standard approach used in statistical model fitting is to incorporate a cross-validation
during parameter estimation. (See Stone [Ston74] and Efron [Efro79] for the basic theory and
details.) The idea of using cross-validation to construct minimal networks have been extended
to neural networks by several researchers within the context of the standard backpropagation
algorithms [Morg89, Weig90]. Here, we demonstrate the utility of cross-validation within the
context of the Cascade-Correlation algorithm. The modified Cascade-Correlation algorithm
incorporates the cross-validation check during the output layer training phase to constrain the
growth of the size of the network. The specific method that we employ is to divide each training
set S into two sets: a training set, used both to add hidden units and to determine weights,
and a cross-validation set which is used to decide when to stop the algorithm. To stop the
network construction, the performance on the “cross-validation set” is monitored during the
output training phase. We stop training as soon as the residual error of the cross-validation set
stopped decreasing from the residual error at the end of the previous output layer training phase.
Another issue that needs to be addressed in using cross-validation is selecting an appropriate
cross-validation set. As a rule of thumb, for each training set of size S, we randomly pick
one third for cross-validation and the remaining two third for training. The resulting network
learned about 95% of the training patterns. However, as shown in Table 17.3 and Section 17.5.7,
the cross-validated construction considerably improved the classification performance of the

networks on the test set.

17.5.3.4 A Minimum Distance Classifier

In order to compare neural network classifiers with statistical linear discriminant classifiers we
also implemented a simple minimum distance based two-class Gaussian classifier of the form
[Nils90]:

IX = Ci £ (X — C)(X = Cy)H)H/? (17.18)
where C;, ¢ = 1,2 represent the prototype points for the Categories I and II, X is a 11 dimen-
sional metrics vector, and ¢ is the transpose operator. The prototype points C; and Cy are

calculated from the training set based on the normality assumption. In this approach a given
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arbitrary input vector X is placed in Category I if |[X — Cy| < |X — Cs| and in Category II

otherwise.

17.5.4 Data Representation

All raw component metrics had distributions that are asymmetric with a positive skew (i.e., long
tail to the right) and they had different numerical ranges. Note that asymmetric distributions do
not conform to the normality assumption of a typical Gaussian classifier. First, we transformed
each metric using a natural logarithmic base to remove the extreme asymmetry of the original
distribution of the individual metric. Next, we divided each metric by its standard deviation
of the training set to mask the influence of individual component metric on the distance score,
These transformations considerably improved the performance of the Gaussian classifier. To be
consistent in our comparison, we used the same (log) transformation and scaling of inputs for

other classifiers.

17.5.5 Training Data Selection

We had two objectives in selecting training data: 1) to evaluate how well a neural network
classifier will perform across different sized training sets and 2) to select the training data
that are as much unbiased as possible. The first objective was motivated by the need to
evaluate whether a neural network classifier can be used early in the software development

cycle. Thus, the classification experiments were conducted using training sets of increasing size

§—1112339

= 1:3:3:35s 1> 36 Iraction of 203 samples belonging to Categories I and II. The remaining

(1-S) fraction of the samples were used for testing the classifiers. In order to avoid bias in
the training data, we randomly selected 10 different training samples for each fraction S. This

resulted in 60 ( i.e., 6 X 10) different training and test sets.

17.5.6 Experimental Approach

Since a neural network’s performance can be affected by the weight vector used to initialize

the network, we repeated the training experiment 25 times with different initial weight vectors
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for each training set. This resulted in a total of 250 training trials for each value of S. The
results reported here for the neural network classifiers represent a summary statistics for 250
experiments. The performance of the classifiers are reported in terms of classification errors.
There are two type of classification errors that a classifier can make: a Type I error occurs when
the classifier identifies a low fault-prone (Category I) module as a high fault-prone (Category II)
module; a Type Il error is produced when a high fault-prone module is identified as a low fault-
prone module. From a software manager’s point of view, these classification errors will have
different implications. Type I misclassification will result in waste of test resources (because
modules that are less fault-prone may be tested longer than what is normally required). On
the other hand, Type II misclassification will result in releasing products that are of inferior
quality. From reliability point of view, a Type II error is a more serious error than a Type I

€ITOrI.

17.5.7 Results

Table 17.3: A Comparison of Nets With and Without Cross-Validation.

Training Without Cross-Validation With Cross-Validation
Set Size | Hidden Units | Type I Error | Type II Error | Hidden Units | Type I Error | Type II Error
Sin% | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std
25 5.1 15 | 2464 | 7.2 | 1638 | 6.4 1.9 1.3 | 20.19 | 5.4 | 12.11 4.7
33 6.2 1.8 | 2024 | 84 | 1727 | 5.5 2.2 1.0 | 1824 | 5.5 | 1240 | 4.1
50 7.4 1.8 | 1830 | 7.4 | 1865 | 6.4 2.0 0.9 | 1741 | 5.6 | 15.04 | 5.2
67 9.7 1.7 | 1578 | 6.5 | 18.05 | 7.1 2.7 1.1 14.32 | 5.8 | 14.08 5.5
75 10.4 1.8 | 1454 | 76 | 1685 | 7.3 2.7 1.3 | 1327 | 7.0 | 13.84 | 54
90 11.2 1.6 | 1033 | 7.2 | 17.73 | 8.3 2.9 1.2 9.77 9.4 | 1547 | 5.1

First, we provide a comparison between the multilayer networks developed with and without
cross-validation. Table 17.3 compares the complexity and the performance of the multilayer

networks developed with and without cross-validation. Columns 2 through 7 represent the
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size and the performance of the networks developed by the Cascade-Correlation without cross-
validation. The remaining six columns correspond to the networks constructed with cross-
validation. Hidden unit statistics for the networks suggest that the growth of the network can
be considerably constrained by adding cross-validation during the output layer training. With
cross-validation, the rate of growth of the network is not severely affected by the increase in
the size of the training set. Networks without cross-validation, on the other hand, may grow
linearly depending on the size and the nature of the classification boundary of the training
set. The corresponding error statistics for both the Type I and Type II errors suggest that
an improvement in classification accuracy can be achieved by cross-validating the size of the
networks. Another side benefit with cross-validation is that the training time of the Cascade-
Correlation algorithm can be reduced significantly (because the algorithm adds only a few

hidden units).

Table 17.4: A Summary of Type I Error.

No. of Patterns Test Patterns Error Statistics
S | Training | Test Category 1 Gaussian Perceptron | Multilayer Nets
Set Set in % Mean | Std | Mean | Std | Mean Std
25 50 153 86 13.16 | 4.7 | 16.17 | 5.5 | 20.19 5.4
33 66 137 7 1144 | 4.0 | 11.74 | 3.9 | 18.24 5.5
50 101 102 57 1245 | 3.2 | 11.58 | 3.2 | 1741 5.6
67 136 67 37 9.46 | 4.1 | 10.14 | 3.9 | 14.32 5.8
75 152 51 28 857 | 54 | 9.15 | 5.8 | 13.27 7.0
90 182 21 12 1417 | 7.9 | 4.03 | 4.3 | 9.77 9.4

Next, we compare the classification accuracy of classifiers in terms of Type I and Type 11
errors. Table 17.4 illustrates the comparative results for Type I error. The first three columns in
Table 17.4 represent the size of the training set in terms of S as a percentage of all patterns, the
size of the training set in terms of number of patterns and the size of the test set respectively.
Column 4 represents the number of test patterns belonging to Category I. The remaining

six columns represent the Type I error for the three classifiers in terms of percentage mean
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error and standard deviation. The percentages errors were obtained by dividing the number
of misclassifications by the total number of test patterns belonging to the Category I. These
results show that the Gaussian and the perceptron classifiers may provide better classification
than multilayer networks at the early stages of the software development cycle. However, the
difference in performance of the Gaussian classifier is not consistent across all values of S. For
example, the Gaussian classifier did not improve its accuracy when S = 90%. The neural
network classifiers, on the other hand, seem to improve their performance with an increase in
the size of the training set. Among neural networks, the perceptron classifier seems to do better

classifications than a multilayer net.

Table 17.5: A Summary of Type II Error.

No. of Patterns Test Patterns Error Statistics
S | Training | Test | Category II Gaussian Perceptron | Multilayer Nets
Set Set in % Mean | Std | Mean | Std | Mean Std
25 50 153 67 15.61 | 4.2 | 1598 | 7.8 | 12.11 4.7
33 66 137 60 1546 | 4.6 | 15.78 | 6.6 | 12.40 4.1
50 101 102 45 16.01 | 5.1 | 16.97 | 6.8 | 15.04 5.2
67 136 67 30 16.00 | 5.4 | 16.11 | 7.6 | 14.08 5.5
75 152 51 23 1739 | 5.8 | 18.39 | 6.3 | 13.84 5.4
90 182 21 9 21.11 | 6.3 | 19.11 | 5.6 | 15.47 5.1

Table 17.5 illustrates the comparative results for Type II error. Column 4 represents the
number of Category Il patterns in the test set. The remaining six columns represent the error
statistics for Type II error. The mean values of the error statistics suggest that a multilayer
network classifier, on the average, may provide a better classification of Category II modules
than the other two classifiers. This is an important results from the reliability perspective.
Furthermore, the difference in performance between the multilayer network and the other two
classifiers is consistent across all training sets. Unlike in Category I classification, both the
neural networks and the Gaussian classifiers seem not to improve their classification accuracy

as the training set size is increased. This may partly be attributed to the fact that the number
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of test inputs for the Category II is lower than the Category I.

In summary, the multilayer neural networks classifiers may provide better classification of
Category II modules than other classifiers and the perceptron (or the Gaussian) classifier may

be a useful candidate for classifying Category I modules.

17.6 Summary

We demonstrated the applicability of neural networks for modeling software reliability growth
and to classify error-prone software modules. In both applications, the neural network offers an
alternative to conventional analytic models which are obtained using either empirical methods,

or developed using some a priori assumptions.

THough we have demonstrated the application of neural nets in the context of two problems
related to software reliability engineering, their applicability need not be restricted only to
these problems in software reliability engineering. With the availability of public-domain and
commercial neural network software, the neural network approach may be used as a tool in other
software engineering problems such as identification of software resue components, document

understanding, test case generation, and partitioning of test cases.
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Problems

1. Obtain the public domain Cascade-Correlation algorithm simulator from the following
Internet ftp address.
pt.cs.cmu.edu (128.2.254.155), login: anonymous, password: your address, and di-
rectory: /afs/cs/project/connect/code.
Get familiarize with the simulator by running the example XOR problem that comes
with the simulator. Also observe how the training and test data are represented, how the
initial network is specified, what are the important parameters of the simulator, and how

various parameters are set.

2. Obtain the data set Data2 in Appendix A, scale it, and construct a training set for
the Generalization training regime (refer to Figure 17.4) with the entire data set. Train
a neural network using the Cascade-Correlation simulator and observe the following.
(a) How many hidden units did the simulator add to successfully train the network?
(b) What is the number of weights in the network?
(c) What are the values of the final weight vector?
(Hint: To scale the data, first separate the cumulative execution time and cumulative
faults, and then scale them between 0.1 and 0.9 such that the highest value corresponds

to 0.9 while the lowest value corresponds to 0.1.)

3. For the trained network in Problem 2, use the training set as the test set and record
the network outputs. Rescale the recorded outputs back to the original scale and plot a
fitness curve with execution time on the X-axis and cumulative faults on the Y-axis. Now
plot a similar curve with the original data. Visually observe the deviation between these

two curves.

4. For the data set Data2 in Problem 2, construct a training set for the Prediction Training
regime (refer to Figure 17.4 for details). Repeat the experiments of Problems 2 and 3

with this training set.

5. In Problem 3, a feedforward neural network was trained using Data2. In this exercise, use

the same procedure, data set, and the steps outlined below to test the next-step prediction
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10.

11.

accuracy of the FFN-Generalization model. First, construct a training set with the first
three pairs of Data2. The corresponding test set will contain one input representing the
execution time of the 4th observation. After training the network, test the network by
feeding the 4th execution time as input. Record the network output. Next, construct
another training set by including the 4th pair of the data into the previous training set.
The corresponding test will consist of the 5th observation of the execution time. Again
train and test a network. Repeat this step by incrementally adding all but the last
observation to the training set. Thus, there will be n — 3 predicted values (where n is
the number of points in Data2). Finally, evaluate the predictive accuracy of the network
using:

(a) A graph similar to the one in Problem 3.

(b) The Average Error (AE) and the Average Bias (AB).

. Repeat the steps used in Problem 5 and evaluate the end-point prediction accuracy of

the FFN-Generalization model using Data2. Note that the training set will have to be
expanded as in Problem 5 while the test set will always contain the last observation of

the data set.

Repeat the steps used in Problem 6 and evaluate the JN-Prediction model using the data

set Data2.

. Collect software complexity metrics data from a project in your organization and associ-

ated failure history.

. Use the date set obtained in Problem 9 and conduct a two-class classification experiments

performed in 17.5 of this chapter.

Use the date set obtained in Problem 9 and conduct a three-class classification experiment
by including the medium-fault category that we have omitted in Section 17.5. Observe
the following;:

(a) classification accuracy of the network,

(b) increase/decrease in complexity of the network.
Multilayer neural network models solve problems by creating an internal representation
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12.

of the input variables. It is a useful exercise to analyze their internal representations
and understand how such internal representations can be related to external inputs. For
example, in our application involving identification of fault-prone software modules, it
was not obvious what type of associations the neural network classifier created among the
input metrics. Provide an analysis of the internal representation of the neural network in
terms of a) its association with inputs metrics, b) the final weight vector of the network,

and c) its association with the output categories.

We used neural network models to associate static complexity metrics with the number
of faults (and hence fault-prone categories). Instead, develop models to associate a)
software complexity metrics to maintenance metrics, and b) design metrics with quality

and maintainability objectives.
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