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Software reliability prediction research focuses mainly on developing analytic models
that require a prior assumptions about the software development environments, the nature
of software failures and the stochasticity of individual software failure occurrence. These
analytic models exhibit different predictive capabilities at different phases of testing within
a project as well as across different projects. Thus, developing an universal analytic model

for accurate predictions in all circumstances may not be practical.

One possible approach to improve the adaptability of software reliability growth pre-
diction models is to develop models that are free of both a prior: assumptions about the
software development environment and external parameters. This paper illustrates an adap-
tive modeling approach based on “Artificial Neural Networks” and demonstrates how this
new approach can be applied to predict software reliability. Given only the past failure
history of a software system, the artificial neural network models automatically develops its
own internal model of the failure process and predicts future failures with a better accuracy

than some of the well-known analytic models.

Artificial Neural Networks are a computational metaphor which has been inspired by
studies of brain and nervous system in biological organisms. Recent advances in this field
have shown that this new approach can be used in applications that involve predictions. An
interesting and difficult application is time series prediction. Prediction of software reliability

growth can be considered analogous to predicting a complex sequential process.

In this paper we illustrate how artificial neural networks can be used both to learn to
model the underlying failure process of a software system and to predict future failures. The

illustration uses a data set from a real software project.

1 Neural Network Models

In this section we provide a background on artificial neural networks. Also we discuss the

issue of network architecture and the problem of training data presentation.



1.1 Neural Networks: A Background

Informally, neural networks can be defined as highly idealized mathematical models of our
present understanding of simple biological nervous systems. Basic characteristic entities of

a neural network are:

1. a large number of simple processing units called neurons that perform a local compu-

tation on their input to produce an output;

2. alarge number of weighted interconnections among neurons that encode the knowledge

of the network;

3. a learning algorithm that can lead to automatic development of internal representa-

tions.

One of the most widely used processing unit model is based on the logistic function. The
resulting sigmoidal transfer function is given by:

Output = ————
utpu 1+e—sum

where sum is the aggregate of weighted inputs. The actual input/output response of a
sigmoidal unit is shown in Figure 1. Figure la shows how the sum is computed as a weighted

sum of inputs. Note that the sigmoidal unit is non-linear and continuous.

There exists a variety of neural network models and learning procedures. (Readers not

4 or an introductory book on neural networks

familiar with this field may refer to Lippmann
for more details). Two well-known classes of neural networks that can be used for prediction
applications are: feed-forward networks and recurrent networks. In this paper we restrict our

descriptions to feed-forward networks and a variant of recurrent networks known as Jordan

Networks. We selected these two neural network models because in our previous research



we found them to be more accurate in software reliability predictions than other network

models.? 3

A typical feed-forward neural network consists of three types of layers: an wnput layer
of neurons that receive inputs (suitably encoded beforehand) from the outside world, an
output layer of neurons that send outputs to the external world, and one or more hidden
layers of neurons that have no direct communication with the external world. The function
of hidden layer neurons is to receive inputs from the previous layer and convert them to
an activation value that can be passed on as inputs to the neurons in the next layer. The
input layer neurons do not perform any computation; they merely copy the input values
and associate them with weights feeding the neurons in the (first) hidden layer. One of the
important architectural constraints imposed on the feed-forward networks is that their links
can propagate activations only in the forward direction. On the other hand, the Jordan
networks have both forward connections as well as feedback connections. A typical 3-layer
feed-forward network and a Jordan network are shown in Figure 2. Note that the feedback
connection in Figure 2b is from the output layer to the hidden layer through a “dummy
input” unit. The dummy input unit receives as input at time ¢ the actual output of the
output unit at time t — 1. That is, the output of the additional input unit is the same
as the output of the network corresponding to the previous input pattern. In Figure 2b
the dashed line represents a fixed connection of strength 1.0 and solid lines represent the
trainable connections. Thus, the Jordan network in Figure 2b is equivalent to a special case
of the feed-forward network in Figure 2a with an additional input. However, it a network
has multiple output units then the number of dummy units required will be equal to the

number of output units.



1.2 Training of Neural Networks

Before we can use a neural network to predict future failures the network must be trained us-
ing part of the failure history of the software system. In our case, each cumulative execution
time and the corresponding cumulative faults represent a training pair. Training of a neural
network involves adjusting its connection strengths. Most feed-forward networks and recur-
rent networks are trained using a class of training algorithm known as a supervised learning
algorithm. Under supervised learning, the network weights are adjusted using a quantified
error feedback. Among supervised learning algorithms the back-propagation algorithm® is
one of the most widely used algorithms. The Back-propagation training algorithm is an
iterative procedure in which the network weights are adjusted by propagating the error back
into the network. Typically, training a neural network involves several iterations (also known
as epochs). At the beginning of training, the network weights are initialized with a set of
small random values (between +1.0 and -1.0). During each epoch the network is presented
with a sequence of training pairs; next a sum squared error between the training outputs
and the network’s outputs is calculated. Then the gradient of the sum squared error (with
respect to weights) is used to adapt the network weights in such a fashion that the error
measure gets reduced in future epochs. The training terminates when the sum squared error

is reduced below a specified tolerance limit.

1.3 How to Specify a Suitable Architecture?

With the standard back-propagation learning algorithm the architecture of the network must
be fixed a priori. Both the accuracy of predictions and computational resources needed for
simulation can be affected if the architecture is not a suitable one. Thus, for any given
application the problem of specifying a suitable network architecture must be addressed

first. A possible solution for this problem is discussed next.



Cascade-Correlation Algorithm: Recently Fahlman et al! developed an efficient
constructive algorithm known as the “Cascade-Correlation learning architecture” for dy-
namically constructing feed-forward neural networks. This algorithm combines the idea of
incremental architecture and learning into a single training algorithm. In brief, this al-
gorithm starts with a minimal network (consisting of an input and an output layer) and
dynamically trains and adds new hidden units one by one, until it builds a suitable multi-
layer architecture. We use this algorithm for constructing both feed-forward networks and
Jordan networks. A typical feed-forward network developed by the Cascade-Correlation al-
gorithm is shown in Figure 3. Architecturally, the cascade network is different from the
standard feed-forward networks in that the former has additional feed-forward connections
between the input /output layers as well as among hidden units. In the experiments reported
here all neural networks use one output unit. On the input layer the feed-forward nets use

one input unit whereas the Jordan nets use two units.

1.4 How to Present Training Data?

The predictive capability of a neural network can be affected by what the network learns
and in what sequence it learns. Here we illustrate two training regimes that can used
in software reliability prediction. They are called Generalization Training and Prediction
Training. These training regimes differ from each other depending on the way in which

training data are presented. Figure 4 shows these training regimes.

Generalization Training: This is the standard way in which most feed-forward networks
are trained. During training, each input z; at time ¢ is associated with the corresponding out-
put o;. Thus the network learns to model the actual functionality between the independent

(or input) variable and the dependent (or output) variable.



Prediction Training: This is the general approach employed in training recurrent net-
works. Under this training, the value of the input variable z; at time ¢ is associated with the
actual value of the output variable at time ¢ 4+ 1. Here the network learns to predict outputs

anticipated at the next time step.

Thus if we combine these two training regimes with the feed-forward network and the
Jordan network we can obtain four different neural network prediction models. We de-
note these models as FFN-Generalization, FFN-Prediction, JordanNet-Generalization and
JordanNet-Prediction.

2 Neural Network as a Predictor

The problem of software reliability prediction can be stated as follows: given a sequence of
cumulative execution time ((¢1,...,7;) € Ix(t)) and the corresponding observed accumulated
faults ((o1,...,0r) € Ok(t)) up to the present time ¢, and (ix44(t + A)) representing the
cumulative execution time at the end of a future test session k4 h, predict the corresponding
cumulative number of faults oxin(t + A). For the prediction horizon h = 1, the prediction
is called the next-step prediction (or short-term prediction) and for h = n(> 2) consecutive
test intervals, it is known as the n-step ahead prediction (or long-term prediction). Here

A= E?i,f_i_l Aj represents the cumulative execution time of & consecutive future test sessions.

We can formulate our software reliability prediction problem in terms of a neural network
mapping:
P {Le(t), Ok(t))s than(t + A)} — 0ppn(t + A)

where, (I;(t), Or(t)) represents the failure history of the software system at time ¢ used in
training the network and og4n(t + A) the network’s prediction. After a neural network is
successfully trained, the network can be used to predict the total number of faults to be

detected at the end of a future test session k + h by feeding i41(t + A) as its input.



3 Prediction Experiment

Data Set Used: In order to illustrate the predictive accuracy of neural networks we
have chosen a real test/debug data set reported in Table 4 in Tohma et al.? In this data the
execution time was reported in terms of days and the faults in terms of cumulative faults at
the end of each day. The total test/debug time was 46 days and there were 266 faults at the

end.

Data Representation: If we use sigmoidal units to construct a network then the actual
output of the network will be bounded between 0.0 and 1.0. So before we attempt to use a
neural network it may be necessary to represent the input/output variables of the problem
in a range that is suitable for the neural network. In the simplest representation we can use
a direct scaling so that the execution time and cumulative faults are scaled over a 0.0 to 1.0
range. Instead, we scale both the execution time and the cumulative faults over a 0.1 to 0.9
range for the following reasons: i) the network’s ability to discriminate inputs that are close
to the boundary values (i.e, inputs whose scaled values are close to 1.0 or 0.0) tend to be less
accurate and ii) the error derivative of the sigmoidal unit, which affects the rate of weight
adaptation during training, becomes inconsequential when the output of the sigmoidal unit
is close to 1.0 or 0.0. However it should be noted that our direct scaling requires either the
complete failure history of the system or guessing an appropriate maximum values for both

the cumulative execution time and the cumulative faults.

Training Ensemble Size: The neural networks cannot predict future faults without
learning the failure history (or at least some part of the history) of the software system. Any
prediction without training is equivalent to making a random guess. In our experiment we
restricted the minimum size of the training ensemble to three data points. We incremented

the training set size from three to 45 in steps of two.

Monte-Carlo Experiment: In most training methods, the neural network weights are
initialized with random values at the beginning of training. This results in the network
converging to different sets of weights at the end of each training session. Thus, it is possible

to get different prediction results at the end of each training session. We can compensate



such variations in predictions by taking an average over a large number of Monte-Carlo trials.
In our experiment we trained the network with 50 different random seeds for each training

set size and averaged their predictions.

Prediction Results: After training the neural network with a failure history up to
time ¢ (where ¢ is less than the total test/debug time of 46 days), we can use the network to
predict the cumulative faults at the end of a future test/debug session. To evaluate the neural
networks we can use the following extreme prediction horizons: the neat-step prediction (i.e,
at t =t + 1) and the end-point prediction (i.e, at ¢t = 46). Since we already have the actual
cumulative faults for those two future test/debug sessions we can compute the network’s
prediction error at time ¢. Then the relative prediction error is given by (predicted faults -
actual faults)/actual faults. Figures 5 and 7 show the relative prediction error curves of the
neural network models. In these figures the percentage prediction error is plotted against

the percentage normalized execution time ¢/46.

Figures 5 and 6 show the relative error curves for end-point predictions of neural networks
and five well-known analytic models. Results from the analytic models are included because
they can provide a better basis for evaluating neural networks. (Refer to Malaiya et al.®
for details about the analytic models and model fitting procedures.) Note that both figures
have the same scale. These graphs suggest that the neural networks are more accurate than

the analytic models.



Table 1. Average and Maximum Errors in End-Point Predictions

Model Average Error Maximum FError
Used Ist Half | 2nd Half | Overall | 1st Half | 2nd Halt | Overall
Neural Network Models
FFN-Generalization 7.34 1.19 3.36 10.48 2.85 10.48
FFN-Prediction 6.25 1.10 2.92 8.69 3.18 8.69
JordanNet-Generalization 4.26 3.03 3.47 11.00 3.97 11.00
JordanNet-Prediction 5.43 2.08 3.26 7.76 3.48 7.76
Analytic Models

Logarithmic 21.59 6.16 11.61 35.75 13.48 35.75
Inverse Polynomial 11.97 5.65 7.88 20.36 11.65 20.36
Exponential 23.81 6.88 12.85 40.85 15.25 40.85
Power 38.30 6.39 17.66 76.52 15.64 76.52
Delayed S-shape 43.01 7.11 19.78 54.52 22.38 54.52

A summary of Figures 5 and 6 in terms of average and maximum error measures are
given in Table 1. The columns under “Average Error” represent the following: Ist half, the
average prediction error of a model in the first half of the test/debug session; 2nd half, the
average prediction error of a model in the second half of the test/debug session; and overall,
the average prediction error for the entire test/debug period. These average error measures
also suggest that neural networks are more accurate than the analytic models. The first half
results are interesting because the neural network models have average prediction errors that
are less than 8% of the total defects disclosed at the end of the test/debug process. This an
important result from software managers point of view because such reliable predictions at

early stages of testing can be very helpful for making long-term planning.

Among the neural network models the difference in accuracy is not significant, whereas
the analytic models exhibit considerable variations. Among the analytic models the Inverse
Polynomial model and the Logarithmic model seem to perform reasonably well. The other
three columns in Table 1 represent the maximum prediction errors. The maximum predic-

tion errors give an indication of how unrealistic a model can be. These values also suggest
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that the neural network models have less worst case predictions than the analytic models at

various phases of the test/debug process.

Figure 7 represents the next-step predictions of both the neural networks and the analytic
models. These graphs suggest that the neural network models have only slightly less next-

step prediction accuracy than that of the analytic models.

Table 2. Average and Maximum Errors in Next-Step Predictions

Model Average Error Maximum FError

Used 1st Half | 2nd Half | Overall | 1st Half | 2nd Half | Overall
Neural Network Models

FFN-Generalization 8.61 2.40 4.59 17.51 4.95 17.51

FFN-Prediction 8.02 3.05 4.80 17.74 6.64 17.74

JordanNet-Generalization 6.92 3.73 4.86 12.11 8.24 12.11

JordanNet-Prediction 6.59 3.35 4.50 11.11 7.30 11.11

Analytic Models

Logarithmic 4.94 2.31 3.24 5.95 7.56 7.56
Inverse Polynomial 4.76 2.24 3.13 6.34 7.83 7.83
Exponential 5.70 2.33 3.52 10.17 7.42 10.17
Power 4.59 2.44 3.20 8.59 7.12 8.59
Delayed S-shape 6.17 2.12 3.55 13.24 7.98 13.24

Table 2 shows the summary of Figure 7 in terms of average and maximum errors. Since
average errors of the neural network models in the first half are above the analytic models by
only 2 to 4 percentage and the difference in the second half are less than 2% it suggests that

these two competing approachs are not significantly different. But the worst case prediction
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errors may suggest that the analytic models have a slight edge over the neural network
models. However, the difference in overall average errors is less than 2%, which suggests that
both the neural network models and the analytic models have a similar next-step prediction

accuracy.

4 How different are Neural Network models?

So far we have seen how neural networks can be used for software reliability predictions and
how superior their performances are. Now let us look into the neural networks to understand
what the underlying computations are and how they can be related to equivalent analytic
models. In order to compare competing models we can use the number of parameters as a
measure of complexity. Thus, a model is considered more complex if it has more parameters

than its competitor.

Since we have used the Cascade-Correlation algorithm for evolving network architecture,
the number of hidden units used to learn the problem varied depending on the size of the
training set. On an average, the neural networks used 1 hidden unit when the normalized
execution time is below 60% to 75% and zero hidden unit afterwards. However, occasionally

2 or 3 hidden units were used before the training was complete.

Models developed by the FFN-Generalization method can be expressed as shown below.
With no hidden unit, the actual computation performed by the network is equivalent to a

simple sigmoidal expression.

B 1
- 1 + e—(wo-l-wrti)

0y

where wg and w; are weights from the bias unit and the input unit respectively. This is

equivalent to a two parameter sigmoidal model, whose p(t;) is given by,

t;) = —1
M( 2) ] + e(Bo+br-t:)

where t; is the cumulative execution time at the end of ith test session, and £y and [; are

parameters. We can easily see that fy = —wy and f; = —w;. Thus training of neural
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networks (finding weights) is equivalent to estimating these parameters.

Now consider the case where the network used one hidden unit. The model developed

by the network is equivalent to a three parameter model of the form,

B 1
pu(t:) = 1 + e(BotBrtitharha)

where g, 31 and 35 are parameters of the model determined by weights feeding the output
unit. In this model By = —wy, fi = —w; and Bz = —wy (the weight from the hidden
unit). However, the activation of the hidden unit A; is an intermediate value computed using

another two parameter sigmoidal expression,

B 1
o 1 + e—(w3+w4'ti)

hi

Thus there are five parameters in the model corresponding to the 5 weights in the network.

Similarly, we can express the models developed by the FFN-Prediction model as follows.

For the network with no hidden unit the equivalent two parameter model is,

t) = !
'M( Z) - 1 + e(ﬁo+ﬁ1'ti—1)

where the ¢;_; is the cumulative execution time at (¢ — 1)y, instant. And for the network

with 1 hidden unit the equivalent five parameter model is,

t;) = !
:u( 2) - 1 + e(BotBr-tica+P2-hi)

Though we have not shown a similar comparison between Jordan network models and
equivalent analytic models, it is quite straight forward to extend the above expressions.
However, the models developed by the Jordan network can be more complex because of the

feedback connection and the weights from the additional input unit.

The above expressions imply that the neural network approach develops models that can
be relatively complex. These expressions also suggest that the neural networks used models
of varying complexity at different phases of testing. In contrast, the analytic models have
only 2 or 3 parameters and their complexity remain static. Thus the main advantage in
neural networks approach is that the complexity of the models are automatically adjusted

to match the complexity of the failure history.
13



5 Final Remarks

We have demonstrated how different neural network models and training regimes can be
used for software reliability prediction. Results obtained with a real test/debug data suggests
that the neural network models are better at end-point predictions than the analytic models.
Though the results presented here are for only a single data set, the results are consistent

with 13 other data sets that we have tested.?

The major advantages in using the neural network approach are: i) it is a “black box”
approach and the user need not know much about the underlying failure process of the
project, i) easy adaptation of models of varying complexity at different phases of testing
within a project as well as across different software projects, and ii) simultaneous construction
of a model and estimation of its parameters if we use a training algorithm such as the
Cascade-Correlation. On the other hand, one main drawback with the neural network models
is that we may not be able to ascribe physical interpretations to their weights. In contrast, it
is seldom possible to find an analytic model whose parameters lack physical interpretation.
Thus, we want to remind the readers that this is a new approach and further research is

needed to gain more insights.
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Figure 1: A typical sigmoidal unit (a), and its input/output response (b).
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Figure 2: Typical neural networks: (a) A feed-forward network and (b) A Jordan network.
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Figure 3: A typical feed-forward network developed by the Cascade-Correlation algorithm.
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Figure 4: Different training regimes: (a) Generalization Training and (b) Prediction Training.
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