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Abstract — For software projects it is critical to be able to achieve a minimum quality level
before they are released. It is often important to meet a target release date. To be able to
estimate the testing efforts required, it is necessary to use a software reliability growth model.
While several different software reliability growth models have been proposed, few guidelines
exist about which model should be used. Here a two-component predictability measure is
presented that characterizes the long term predictability of a model. The first component,
average predictability, measures how well a model predicts throughout the testing phase.
The second component, average bias, is a measure of the general tendency to overestimate
or underestimate the number of faults. Data sets for both large and small projects from
diverse sources have been analyzed. Results presented here indicate that some models tend

to perform better than others.
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1 INTRODUCTION

Establishing the quality of software systems has become one of the major challenges in
all software production environments. A software product can be released only after some
threshold reliability criterion has been satisfied. It is necessary to use some heuristics to
estimate the required test time so that available resources can be efficiently apportioned.
The most useful reliability criteria are residual fault density or the failure intensity. One of
the best approaches to determine the required testing time is to use a time based Software
Reliability Growth Model (SRGM). In recent years researchers have proposed several differ-
ent SRGMs. A comprehensive survey and classification of software reliability models can be

found in [?, 7, 7].

All software reliability models are based on some key assumptions about the environment
and they model different failure processes. There is evidence to suggest that they have
different prediction capabilities, specially during early phases of testing. This is the duration
when better predictability is required to estimate the release date and the additional test
effort required. Hence selection of a particular model can be important for a reliable estimate

of reliability of software systems.

Notation
A(t) failure intensity (i.e, fault detection rate), at time ¢, derivative of p(t)
w(t) is the ezpected number of failures experienced in (0, )
A;  observed value of A\ at instant ¢;
i; observed value of y at instant ¢,
n number of observation points
Bo, B1  parameters characterizing a fault model
M, a model € { LOGM, POWM, INPM, EXPM, DSSM}
D; actual total number of faults detected in data set j
ij predicted total number of faults to be detected by using
model £, and part of the data set j corresponding to o, ..., ;.

T; time between (i-1) and ith failures.



2 SOFTWARE RELIABILITY GROWTH MODELS

Here five different fault count models are considered. The most common approach is to use
a grouped data. The testing duration is divided into a number of periods. For each period,
one item of the data set (¢;, \;), or equivalently (¢;, y1;) is obtained. The major objective of
using a model is to be able to estimate the time ¢z when the failure intensity A(¢r) would

have fallen below an acceptable threshold.

Five of the most commonly used execution time SRGMs have been examined here. The
exponential model [?, ?] with its variations is one of the most commonly used models. The
logarithmic model proposed by Musa and Okumoto [?] is one of the more recent models.
The Delayed S-shaped model proposed by Yamada et al.[?] is one of the recent addition to
the family of Gamma distribution models. In addition, we have also examined the inverse-
polynomial model proposed by Littlewood and Verrall [?] and the power model by Crow [?].
All these models are two parameter models. This allows a fair comparison among the models.
It was felt that these models do represent a sufficiently wide range of presumed behavior.
All the models considered are NHPP (Non-Homogeneous Poisson Process) models with the

exception of inverse-polynomial model.

The fault models are described below. For some models, the parameters have a specific
interpretation. We first describe the important steps involved in parameter estimation of the
logarithmic model. Since the same steps can be applied for other models we only show their
basic equations. Since the number of data points is not large we have used the least squares
technique in our experiments. The mazimum likelihood method has been found to perform

similarly in this application [?].

Logarithmic Model (LOGM): This model was proposed by Musa and Okumoto [?].
Here the underlying software failure process has the characteristics of a logarithmic poisson
process and it assumes the total number of failures in the system to be equal to infinity in

infinite time. It has an intensity function that decreases exponentially with the number of



failures experienced. The mean value function and the failure intensity are [?]:

u(t; B) = BoIn(1 + Bit)

A(t; ) = £25%

It should be noted that the failure intensity can also be expressed as:

s B) = BoBrexp(—4).

The square of the sum of the errors, S is given by:

S(Bo, B1) = iy [Inry — In GoBy + In(1 + fit)]

where r; is the actual failure intensity at ¢;, calculated from the input data. Minimizing

this expression results in the least square estimation of the parameters (3, and ;.

It is easily seen that (3, represent the initial failure intensity at time 0. This model
belongs to the infinite-fault category [?], and thus the concept of an initial number of faults

does not exist.

Inverse Polynomial Model (INPM): This model was proposed by Littlewood and
Verrall [?]. This model is more general and flexible enough where one can choose different
reliability growth functions. In our experiment we have considered the model with a second
degree polynomial. The main characteristic feature of this model is that the program hazard
rate decreases with time and experiences discontinuities of varying heights at each failure.

The mean value function and failure intensity equations are [?]:
p(t; B) = 360(Q1 + Q2)
Mt 3) = —2 1—Q2
(t; B) \/—(Q Q2)

2441

where,

QU= {/t + (2 + 51) /2 and Q2 = [t — (& + ) \/?

Although this is not a popular model, it was chosen for examination, because in [?], it

has been shown to have good predictability for one data set.

Exponential Model (EXPM): This model was originally proposed by Moranda [?]



and Musa [?] reformulated it in terms of execution time. Several models can be shown to
be variations of this model[?]. Here the important assumption is that the per fault hazard

rate is a constant. The mean value function and failure intensity equations are:
pu(t; B) = Bo[l — exp(—pit)]
A(t; B) = BoBrexp(—pit)

This is a finite-failures model. The parameter 3, represents the initial number of faults

and ([, is the initial failure intensity. Techniques exists to estimate [, and (3; empirically
7]

Power Model (POWM): This model was proposed by Crow [?] to estimate reliability
of hardware systems during development testing. This model models the failure events as a
nonhomogeneous Poisson process whose failure intensity function is a power function of time.
However, it is possible to apply this model to estimate software reliability by controlling the
failure intensity range. For the purpose of our experiment we have kept the value of 3; <

1.0. The basic equations of the mean value function and the failure intensity are:
p(t; B) = Bot™
A(t; B) = Bofrt™ !

This is a infinite-failures model.

Delayed S-Shaped Model (DSSM): This model was proposed by Yamada, Ohba, and
Osaki [?]. This model characterizes software failure process as a delayed S-shaped growth.
Here software error detection process can be regarded as a learning process in which test-
team members improve their familiarity and skill gradually. This is regarded to be the best
of the several S-Shaped models[?]. The basic equations for the mean number of failure value

and the failure intensity are:
pu(t; B) = Bo[l — (1 4 fut)e= "]
A(t; B) = BofBite

This is a finite-failures model. The total number of faults is Gy and 1//; is the time when

the maximum failure intensity occurs. Most other models assume that the failure intensity



starts declining from the beginning. However the S-Shaped models can represent an initial

rise in failure intensity that is sometimes observed.

Figures 1 and 2 show the typical behavior of these models in terms of p and A.



3 A NEW PREDICTABILITY MEASURE

Even though a large number of models are available in the literature, no clear guidelines have
been presented for selection of a particular model. Characterization of a model requires its
application to a number of data sets and evaluating its predictive capabilities. Applicability

of a model can be measured using one of the three distinct approaches considered below.

1.Goodness-of-fit: This may be termed as an end-point approach because evaluation
can be done only after all the data points {¢;, \;}, i = 0,1, ...,n, or equivalently {¢;, u;}, i =
0,1,...,n are available. After a curve corresponding to a selected model M, is fitted to the

data, the deviation between observed and the fitted values is evaluated by using the Chi-
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Square test or Kolmogorov-Smirnov([?] test. The Kolmogorov-Smirnov test is considered
to be more effective compared with the Chi-Square test. The goodness-of-fit approach has
low computational requirements and is the one used most widely. For example, it has been
used by Matsumoto et al. to compare the Exponential, Hyperexponential and the S-Shaped

models [?].

The disadvantage with goodness-of-fit measures is that they do not measure predictabil-
ity. It is possible to have a model which fits the later behavior but not earlier. Such a model

can have a good overall fit while providing poor predictability in the early phases.

2.Next-Step-Predictability: In this approach a partial data set, say, {t;}, i =1, ..., (I—
1), is used to predict the value of 7;. The predicted and the observed values of T} are then
compared. This approach has been used by Abdel-Ghaly et al.[?] and Brocklehurst et al.[?].
This method can also be used for grouped data. This approach allows predictability to be
measured with a partial data set, while testing is still in progress. However it only measures

short-term predictability.

3.Variable-Term-Predictability: Short-term predictability can be an appropriate mea-
sure near the end of the test phase. However in actual practice, the need to predict the
behavior near the end of the test phase by using data available near the beginning of the
test phase, is very important. This approach, used by Musa, Tannino and Okumoto [7]
and Malaiya et al.[?], makes projections of the final value of y at each ¢;, using the partial
data set {t;,i;}, ¢ = 0,...,1. The error in these projections can then be plotted against
time. This method requires n different curve-fitting for each data set. The effectiveness of
the weighted-parameter estimation has been examined by Verma and Malaiya[?]| using the
same approach. Sukert [?] has empirically validated Jelinski-Moranda, Schick-Wolverton,
and modified Schick-Wolverton models using data sets from four DOD projects. However he

has not presented any formal comparison.

In this paper the variable-term predictability approach has been used to compare some
of the major SRGMs. Actual data from a wide spectrum of software projects, corresponding

to different initial fault densities have been used.



Our proposed two-component predictability measure consists of Average Error (AE) and
Average Bias (AB). The AE is a measure of how well a model predicts throughout the test
phase. The AB indicates the general bias of the model. The AB can be either positive or

negative depending on whether the model is prone to overestimation or underestimation.

More formally, let the data be grouped into n points (¢;,\;), i = 1 to n, where \; is
the failure intensity at time ¢;. Using a specific model M}, and data set j, let ij be the
projected total number of the faults to be detected. Thus

le] = f{Mk (tla )‘1)7 (tQa )‘2)’ B (t“ )\Z)}

Taking the variable-term approach[?], we can make plots of prediction error (Df] —

D;)/D;, i =1 to n, for each model k. Then predictability measures are given by

Dk —D;

> k — l n i J

() ABE = Ly ij—Dj
1 ] T n i=1 Dj

The use of these measures is illustrated in Figure 3. The total shaded area under the
curve is used for computing AE]’-“. On the other hand, calculating ABJ’-C requires use of the

appropriate sign.



The different data sets used correspond to various fault density ranges. To have a proper
comparison, we have trimmed some of the data so that they correspond to one of a few
selected ranges. Let ¢, and ¢, be the time corresponding to lower and upper bound fault
densities. Our lower limits correspond to a point where the relative error is significantly
high. Our upper limits correspond to a point where sufficient faults have been detected
(and corrected) and the system has achieved a high reliability. In our comparison scheme
we calculate ABs and AEs only within these limits. These limits are specific to each data
set and do not depend on the model used. Let m; be the total number of points between ¢
and t, for each data set j. Hence,

) AEF — L yu | Di=D;
(4) AEj = m; i:l‘ D;

7 k— 1 sy Di=Dj
(17) AB} = e il 5

Our observations show that the omission of end-points do not affect the generality of the

conclusions drawn here.

For the purpose of comparison, the data sets examined (Table 1) can be classified into
one of the following ranges: 1) High Fault Density Range in which the initial fault density
is more than 10.0 faults/KLOC, 2) Medium Fault Density Range in which the initial fault
density is between 1.0 and 10.0 faults/KLOC, and 3) Low Fault Density Range in which
the initial fault density of the systems is less than 1.0 faults/KLOC. The first range is
commonly encountered at the beginning of unit test or the system test phase[?]. The middle
range corresponds to systems that are either in system test phase or in some cases, in the
operational phase. The last range corresponds to software which has very low fault density
to start with and is normally encountered in operational mode. Comparison of these models
in these ranges would allow us to see if the predictability of a model has any significant
dependence on fault density. Since the data sets are for diverse projects from diverse teams,

observations are more useful. If the data sets are from a single environment, the general
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applicability of the results may be less reliable.
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TABLE 1. THE DATA SETS USED.

Data | Reference | Code Size Faults Software Type Range Used
Sets Lines | Detected faults/KLOC
1.1 [?] 1000 27 Class Compiler Project 20.0-5.0(H)
1.2 7 1000 24 7 7

1.3 7 1000 21 7 7

1.4 7 1000 27 K 7

2 [?] 21,700 136 | Realtime Command and Control 7

3.1 [?] 40,000 46 On-line Data Entry 1.00-0.05(M)
3.2 [?] 1,317,000 328 | Database Application Software | 0.20-0.05(L)
3.3 [?] 35,000 279 Hardware Control Software 7.0-0.7(M)
4 [?] 180,000 101 Military Application Software 0.20-0.05(L)
5 [?] 240,000 3207 Application Software 13.0-1.3(H)
6 [?] 870,000 535 Realtime Control Application 0.5-0.05(L)
7 [?] 200,000 481 | Monitoring and Realtime Control | 2.0-0.05(M)
8 [?] 14,500 55 Railway Interlocking System 3.0-0.05(M)
9 [?] 90,000 198 | Monitoring and Realtime Control | 2.0-0.05(M)
10.1 (7] 10,000 118 | Flight Dynamic Application 10.0-1.0(H)
10.2 [?] 22,500 180 Flight Dynamic Application 7.0-0.7(M)
10.3 [?] 38,500 213 Flight Dynamic Application 5.0-0.5(M)
11 [?] 1,000,000 231 Not Known 0.20-0.05(L)
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TABLE 2. AVERAGE ERROR OF MODELS(AEs)

AT DIFFERENT FAULT DENSITY RANGES.

Data Set MODELS Data Set
Used Log | Inv Poly | Exponen | Power | S-Shaped | Average
HIGH FAULT DENSITY RANGE
1.1 23.69 | 28.04 36.32 16.31 44.82 29.84
1.2 36.00 | 17.31 44.00 65.27 30.83 38.68
1.3 22.22 | 33.08 31.36 12.26 47.57 29.30
1.4 18.96 | 36.87 24.24 41.87 47.60 33.91
2 10.58 8.11 37.48 34.26 47.60 27.41
5 8.03 8.54 9.06 13.04 22.73 12.28
10.1 1148 | 12.14 17.58 23.68 16.59 16.29
MEDIUM FAULT DENSITY RANGE
3.1 21.58 | 24.77 25.19 24.32 30.48 25.27
3.3 8.80 37.64 13.33 45.50 30.92 27.24
7 13.58 | 25.69 30.87 28.97 14.38 22.70
8 4.95 9.40 20.81 37.18 22.28 18.92
9 14.64 | 31.50 14.98 49.97 33.18 28.85
10.2 10.09 | 24.76 17.84 18.66 25.26 19.32
10.3 13.39 | 19.64 29.12 19.40 35.21 23.35
LOW FAULT DENSITY RANGE
3.2 22.35 | 32.36 30.49 36.83 31.69 30.74
4 33.11 | 47.63 15.66 66.42 31.29 38.82
6 17.43 | 19.10 21.47 34.91 28.00 24.18
11 26.29 | 24.23 33.50 15.29 43.16 28.49
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TABLE 3. AVERAGE BIAS OF MODELS (ABs)
AT DIFFERENT FAULT DENSITY RANGES.

Data Set MODELS Data Set
Used Log | Inv Poly | Exponen | Power | S-Shaped | Average
HIGH FAULT DENSITY RANGE
1.1 -23.69 | -20.41 -36.32 -2.41 -44.82 -25.53
1.2 -36.00 | +17.31 -44.00 | 4+65.27 | -11.41 -1.77
1.3 -22.22 +3.11 -31.36 -4.55 -26.32 -16.27
1.4 -9.14 | 4+26.01 -18.21 | +37.44 | -29.52 +1.32
2 -10.04 | +5.18 -37.48 | +33.57 | -47.60 -11.27
5 +6.34 +4.44 +5.42 | +12.57 | -21.95 +1.36
10.1 -2.32 -5.72 -13.87 | +23.53 | -14.76 -2.63
MEDIUM FAULT DENSITY RANGE
3.1 -21.58 | -23.01 -25.19 -9.54 -30.30 -21.92
3.3 -4.31 +32.68 -12.89 | +45.49 | -17.39 +8.72
7 +11.23 | +24.02 | +20.51 | 42840 | -10.95 +14.64
8 -3.49 +0.97 -13.88 | +37.16 | -10.06 +2.14
9 +14.64 | +31.50 | +12.21 | 44997 | -33.18 +15.03
10.2 -1.67 +7.59 -12.07 | +10.16 | -20.41 -3.28
10.3 -13.39 | -19.64 -29.12 +8.62 -35.21 -17.75
LOW FAULT DENSITY RANGE
3.2 -18.00 | +6.07 -24.94 | +18.71 | -28.70 -9.37
4 +25.86 | +44.54 -14.77 | +61.15 | -31.29 +17.10
6 +14.68 | +9.33 +3.86 | +34.91 | -27.06 +7.14
11 -24.89 | -19.57 -32.12 -12.21 -43.16 -26.39
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TABLE 4a. WEIGHTED AVERAGE ERROR OF MODELS
AT DIFFERENT FAULT DENSITY RANGES.

Fault Density MODELS

Range Log | Inv Poly | Exponen | Power | S-Shaped
HIGH 8.6 8.9 12.0 15.4 24.8
MEDIUM 13.7 26.6 24.6 33.1 23.6
LOw 22.8 27.3 28.3 31.5 34.1
Overall

Average 20.9 26.0 26.8 30.6 32.4

TABLE 4b. WEIGHTED AVERAGE BIAS OF MODELS
AT DIFFERENT FAULT DENSITY RANGES.

Fault Density MODELS

Range Log | Inv Poly | Exponen | Power | S-Shaped
HIGH +4.3 | +4.2 +0.8 +14.8 -23.8
MEDIUM | +44| +16.6 +4.9 +28.4 -20.3
LOW -9.3 +1.4 -19.1 +16.0 -32.7
Overall

Average -6.9 +3.2 -15.2 +17.2 -30.8

4 COMPARISON OF MODELS

In our analysis we have used 18 different data sets collected from a wide variety of software
systems [?, 7,7, 7. 7,2 7,7 7 7] as shown in Table 1. They range from a compiler project
in an academic environment to a set of hardware control modules used in a practical system.
Among them 8 data sets are from Japanese software projects. Note that data sets 3.1, 3.2,
5, 6, 7, 8 and 9 are calendar time based while the remaining data sets are execution time
based. The size of the source code for the data sets 2, 5 and 8 were reported in assembly
instructions whereas for the remaining data sets it was in high level languages. In the last

column of the Table 1 we use the following notations to represent different fault density
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ranges: H for high, M for medium and L for low. While in this study we have used more
data sets than most other studies, there is a need to collect even more extensive number of
data sets from diverse sources and repeat the examination. Performances of these models,
in terms of AE and AB, are shown in Tables 2 and 3, and in Figures 4 and 5. In Table 2,
a smaller value of AE implies a higher accuracy in predictability of a given model. The AB

values in Table 3 indicate whether a model is prone to overprediction or underprediction.

4.1 COMPARISON WITH WEIGHTS

In this section it is assumed that the results from the large projects have more significance,
hence we have included a weighting factor corresponding to the actual size of the software
when averaging. Table 4a represents the weighted average and overall predictive capabilities
of these models. Table 4b summarizes the weighted bias measure of these models. Figure
4 highlights the average error in predictability of models at different fault density ranges
across all data sets. Figure 5 is used to indicate how these models exhibit bias at various

fault density ranges.

16



The logarithmic model, as shown in Tables 2, seems to perform relatively well. Though
it is not the best predictor in all cases, it has projected the remaining faults most accurately
in the medium fault density range. Also in the high and the low fault density ranges its AE
measures are better than other models in majority of the cases. When the best values are
predicted by other models in these two ranges, the LOGM’s AEs are often close. As shown in
Tables 3 its AB values indicate that this model has a mixed bias, sometimes predicting more
and sometimes predicting fewer than actual number of faults. The weighted average AE
measures given in Table 4a and Figure 4 suggest that the LOGM has performed relatively
better than other models. Table 4b indicates that the LOGM exhibited a slight positive

17



bias in high and medium fault density ranges, although the averaged AB measure over all
fault density ranges showed a slight negative bias. Figure 5 summarizes the behavior of the
LOGM in terms of average bias. This suggests that the LOGM may offer good predictability

during different phases, be it testing or field operations.

The inverse polynomial model seems to perform decent predictions. The INPM has the
lowest AE value of 17.31 and 7.11 for the data sets 1.2 and 2 in the high fault density range,
and its AEs are in the middle range in most of the remaining cases. From Figure 4a it
appears that the INPM has the second best predictive capability in the high and the low
fault density ranges. From the overall average AE value in Figure 4, the INPM appears to
be the second best predictor. Results in Table 3 show that the INPM has the tendency of
positive bias in majority of the cases. The values in Table 4b and Figure 5 indicate that
this model is a consistent overpredictor in all fault density ranges. However it should be
noted that its overall bias has the lowest positive value among all models. This may make

it suitable for adaptive implementation or for getting a high estimate.

The ezxponential model’s biased predictive behavior is somewhat similar to that of the
LOGM. Except for data set 4, where EXPM has the lowest value of 15.66, its AE values in
most of the remaining cases are about in the middle. The AEs in Table 4a and Figure 4
indicate that the EXPM is the third best predictor in all fault density ranges. Except for
data sets 5, 6, 7 and 9 where it has positive AE values, its negative AB values lie between
the extreme values predicted by other models. In many of the cases, the EXPM’s relatively
higher AB values imply that the EXPM may underproject more compared to the LOGM.
From Table 4b we can see that the EXPM shows a small positive bias in the high and the
medium fault density ranges and a significant negative bias in the low fault density range.

As shown in Figure 5 the overall bias is negative.

The power model, as shown in Table 2, seems to perform highly inconsistently. Though
the POWM’s AE measure of 16.31, 12.26, and 15.29 are the best for data sets 1.1, 1.3, and
11, it has the highest AEs in eight cases ( data set: 1.2, 3.2, 3.3, 4, 6, 8, 9 and 10.1). As
shown in Table 4a and Figure 4 its average AE is the highest among all models in the medium

fault density range and the second highest value in the low fault density range. Even in the
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high fault density range its prediction errors are close to the highest values given by the
DSSM. This suggests that this model may not be a good predictor once the product reaches
higher reliability. A comparison in Table 3 shows that both the INPM and the POWM seem
to have similar bias in all cases except for data sets 1.3, 10.1, and 10.3. The POWM’s AB
values are the highest positive values when compared to that of other models as shown in

Table 4a and Figure 5.

The delayed S-Shaped model, as shown in Tables 2, seems to be a poor estimator in many
cases. Its AE values are the highest for the data sets 1.1, 1.3, 1.4, 3.1, 5, 10.1, 10.3, 2, and
11. The delayed S-Shaped model performs poorly in the high fault density range as shown in
Table 4a. In the medium fault density range its performance is not significantly better than
that of the worst predictor, the POWM. Overall weighted average AE measure in Figure
4 implies that the DSSM predicts with the highest error among all models. AB values in
Table 3 indicate that the DSSM has consistent negative bias across all data sets. Moreover
its AB values are the highest negative bias for all data sets except for cases 1.2, 1.3 and
8. Its weighted average AB values in Table 4b and Figure 5 show that the DSSM as the
only model that consistently underestimates in all fault density ranges. The DSSM model
is stable in early phases of testing which accounts for why some prefer to use it. Overall it
might be a weak model. Zinnel [?] has shown that a corrective strategy can improve the

performance of this model. This needs to be further investigated.

Our observation from Table 3 suggests that performance of these models may sometimes
be affected by the peculiarities of the data set. For example, data sets 1.1 and 11 forced all
models to exhibit negative bias. One possible approach to overcome this peculiarity can be
to use either an adaptive prediction approach [?] or a non-parametric approach suggested in
[?7, ?]. One more observation from Table 4a suggests that all these models, with the exception
of the DSSM, have decreasing accuracy in prediction when the fault density is decreased.
Further evaluation is needed to verify that this is indeed significant. A possible explanation
can be that at low failure intensity, the information content in the available data may be

lower.
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4.2 COMPARISON WITHOUT WEIGHTS

In the previous section we compared the predictive accuracy of models at different fault
density ranges using weighted average AE measures. In order to make our observations
more stronger we performed further statistical analysis without assigning weights to the
projects. We performed statistical analysis using the ANOVA method. In this approach we
viewed the results as outcomes of randomized block experiment in which the projects were

randomly selected and the SRGMs as “treatments” applied to each of the projects.

In order to make comparison among the SRGMs we performed an “intra-project” com-
parisons in the following way. We classified the AE measures into a projects-by-SRGMs
two-way table and performed ANOVA with projects being the blocks and the SRGMs the
treatments. Note that this approach takes into account the peculiarities in the different

projects which could potentially impact the the performance of these competing models.

Since we are also interested in comparing SRGMs at different fault density ranges we
performed a variant of the two-way classification ANOVA. In this analysis, we treated ob-
servations as outcomes of an unbalanced nested experiment. The results of this ANOVA is

shown in Table 5.

TABLE 5. ANOVA RESULTS WITH
DIFFERENT FAULT DENSITY RANGES.

Source df | MSS | Fsiatistics
FD 2 1307.0

Projects within FD 15 | 242.2

SRGMs 4 |1615.6 5.72
FD * SRGMs 8 | 94.4 0.87
SRGMs * Projects within FD | 60 | 107.6

(Error)

To find whether there is any significant difference among the SRGMs, we used the F

statistic % which takes the value 5.72 with 4 and 60 df and is significant. To check
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whether there are significant interactions between the fault density levels and the SRGMs,
we used the F statistic %‘W which takes the value 0.87 with 8 and 60 df and is
significant. Since the interaction is not significant the performance of a model relative to the
other models is not affected by fault density. The resulting AE are shown in Table 6 and

Figure 6.

TABLE 6. AVERAGE ERROR OF MODELS
AT DIFFERENT FAULT DENSITY RANGES.

Fault Density MODELS

Range Log | Inv Poly | Exponen | Power | S-Shaped
HIGH 18.7 20.6 28.6 29.5 36.8
MEDIUM 12.4 24.8 21.7 32.0 27.4
LOW 24.8 30.8 25.3 38.4 33.5
Overall

Average 17.6 24.5 25.2 32.5 324

figure=. /fig6.ps,height=3.5in

The average AE values for the models are: Log = 17.6, Inv Poly = 24.5, Exp = 25.1,
Power = 32.4 and S-Shaped = 32.4. Since the SRGMs have significant F statistics, the Least
Significant Difference (LSD) procedure can be used to differentiate among them. Using the
LSD method, two SRGMs are significantly different if their means have a difference of 6.9 or
above. The LSD value of 6.9 is calculated using T o5 s critical equal to 2.0. If the difference
is less than 6.9 then we can interpret that the SRGMs have similar predictive accuracy across
all projects. Thus we can conclude, using > to denote significantly better, that { Log } > {
Inv Poly, Exp } > { Power, S-Shaped }. This conclusion agrees with our earlier observations

based on the weighted analysis.

From these graphs we can make the following observations: 1) the performance of these
models may vary at different fault density ranges and 2) the Log model may perform relatively
well across different fault density ranges. However these observations should be verified

further using more data sets and analysis.
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5 CONCLUDING REMARKS

We have presented an approach for evaluating predictability of software reliability growth
models which is related with how the models are actually used. We have evaluated average
error and average bias for different models for data sets for diverse projects with varying
initial fault density ranges. Our results seem to support Musa’s observation[?] that the
logarithmic model appears to have good predictability in most cases. Furthermore, our
overall result suggests that the Inverse Polynomial model can be used as the next alternative.
The delayed S-Shaped model, which in some cases have been shown to have good fit, generally
performed poorly. The statistical analysis also shows that these models have significantly

different predictive capabilities.

However, it should be noted that what we have evaluated is not just the models but
rather the combination of our evaluation scheme as well as models. Thus, whenever our
approach is used for evaluating a (new) model the effectiveness of our scheme should also be

taken into consideration.

Both calendar time and execution time data sets were used in our study. Although one
might expect that the S-shape model would have better predictability for calendar time
based data sets, we did not notice any significant difference in performance. Furthermore,
our results did not indicate any significant difference in the performances of other models
due to the use of either calendar time or execution time. This aspect of the problem needs

further study.

It is found that some models tend to overestimate or underestimate. It seems that the
inverse polynomial model and the power model are prone to consistent overprediction. Our
result also suggests that the delayed S-shaped model is a consistent underpredictor. It has
been argued that a consistent positive bias should be considered as an optimistic prediction
[?]. In addition, some data sets may have peculiarities that may cause most models to have
either positive or negative bias. It may be possible to exploit this fact to do an a priori or
adaptive correction as shown in [?]. An alternative approach to avoid such biased predictions

may be to combine two or more models with opposite biases.
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