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1 INTRODUCTIONEstablishing the quality of software systems has be
ome one of the major 
hallenges inall software produ
tion environments. A software produ
t 
an be released only after somethreshold reliability 
riterion has been satis�ed. It is ne
essary to use some heuristi
s toestimate the required test time so that available resour
es 
an be eÆ
iently apportioned.The most useful reliability 
riteria are residual fault density or the failure intensity. One ofthe best approa
hes to determine the required testing time is to use a time based SoftwareReliability Growth Model (SRGM). In re
ent years resear
hers have proposed several di�er-ent SRGMs. A 
omprehensive survey and 
lassi�
ation of software reliability models 
an befound in [?, ?, ?℄.All software reliability models are based on some key assumptions about the environmentand they model di�erent failure pro
esses. There is eviden
e to suggest that they havedi�erent predi
tion 
apabilities, spe
ially during early phases of testing. This is the durationwhen better predi
tability is required to estimate the release date and the additional teste�ort required. Hen
e sele
tion of a parti
ular model 
an be important for a reliable estimateof reliability of software systems.Notation�(t) failure intensity (i.e, fault dete
tion rate), at time t, derivative of �(t)�(t) is the expe
ted number of failures experien
ed in (0; t)�i observed value of � at instant ti�i observed value of � at instant tin number of observation points�0; �1 parameters 
hara
terizing a fault modelMk a model 2 f LOGM, POWM, INPM, EXPM, DSSMgDj a
tual total number of faults dete
ted in data set jDkij predi
ted total number of faults to be dete
ted by usingmodel k, and part of the data set j 
orresponding to t0; :::; ti.Ti time between (i-1) and ith failures. 2



2 SOFTWARE RELIABILITY GROWTH MODELSHere �ve di�erent fault 
ount models are 
onsidered. The most 
ommon approa
h is to usea grouped data. The testing duration is divided into a number of periods. For ea
h period,one item of the data set (ti; �i), or equivalently (ti; �i) is obtained. The major obje
tive ofusing a model is to be able to estimate the time tF when the failure intensity �(tF ) wouldhave fallen below an a

eptable threshold.Five of the most 
ommonly used exe
ution time SRGMs have been examined here. Theexponential model [?, ?℄ with its variations is one of the most 
ommonly used models. Thelogarithmi
 model proposed by Musa and Okumoto [?℄ is one of the more re
ent models.The Delayed S-shaped model proposed by Yamada et al.[?℄ is one of the re
ent addition tothe family of Gamma distribution models. In addition, we have also examined the inverse-polynomial model proposed by Littlewood and Verrall [?℄ and the power model by Crow [?℄.All these models are two parameter models. This allows a fair 
omparison among the models.It was felt that these models do represent a suÆ
iently wide range of presumed behavior.All the models 
onsidered are NHPP (Non-Homogeneous Poisson Pro
ess) models with theex
eption of inverse-polynomial model.The fault models are des
ribed below. For some models, the parameters have a spe
i�
interpretation. We �rst des
ribe the important steps involved in parameter estimation of thelogarithmi
 model. Sin
e the same steps 
an be applied for other models we only show theirbasi
 equations. Sin
e the number of data points is not large we have used the least squareste
hnique in our experiments. The maximum likelihood method has been found to performsimilarly in this appli
ation [?℄.Logarithmi
 Model (LOGM): This model was proposed by Musa and Okumoto [?℄.Here the underlying software failure pro
ess has the 
hara
teristi
s of a logarithmi
 poissonpro
ess and it assumes the total number of failures in the system to be equal to in�nity inin�nite time. It has an intensity fun
tion that de
reases exponentially with the number of3



failures experien
ed. The mean value fun
tion and the failure intensity are [?℄:�(t; �) = �0 ln(1 + �1t)�(t; �) = �0�11+�1tIt should be noted that the failure intensity 
an also be expressed as:�(�; �) = �0�1exp(� ��0 ).The square of the sum of the errors, S is given by:S(�0; �1) = Pnl=1[ln rl � ln�0�1 + ln(1 + �1t)℄2where rl is the a
tual failure intensity at tl, 
al
ulated from the input data. Minimizingthis expression results in the least square estimation of the parameters �0 and �1.It is easily seen that �0�1 represent the initial failure intensity at time 0. This modelbelongs to the in�nite-fault 
ategory [?℄, and thus the 
on
ept of an initial number of faultsdoes not exist.Inverse Polynomial Model (INPM): This model was proposed by Littlewood andVerrall [?℄. This model is more general and 
exible enough where one 
an 
hoose di�erentreliability growth fun
tions. In our experiment we have 
onsidered the model with a se
onddegree polynomial. The main 
hara
teristi
 feature of this model is that the program hazardrate de
reases with time and experien
es dis
ontinuities of varying heights at ea
h failure.The mean value fun
tion and failure intensity equations are [?℄:�(t; �) = 3�0(Q1 +Q2)�(t; �) = �0pt2+�1 (Q1�Q2)where,Q1 = 3qt + (t2 + �1)1=2 and Q2 = 3qt� (t2 + �1)1=2Although this is not a popular model, it was 
hosen for examination, be
ause in [?℄, ithas been shown to have good predi
tability for one data set.Exponential Model (EXPM): This model was originally proposed by Moranda [?℄4



and Musa [?℄ reformulated it in terms of exe
ution time. Several models 
an be shown tobe variations of this model[?℄. Here the important assumption is that the per fault hazardrate is a 
onstant. The mean value fun
tion and failure intensity equations are:�(t; �) = �0[1� exp(��1t)℄�(t; �) = �0�1exp(��1t)This is a �nite-failures model. The parameter �0 represents the initial number of faultsand �0�1 is the initial failure intensity. Te
hniques exists to estimate �0 and �1 empiri
ally[?℄.Power Model (POWM): This model was proposed by Crow [?℄ to estimate reliabilityof hardware systems during development testing. This model models the failure events as anonhomogeneous Poisson pro
ess whose failure intensity fun
tion is a power fun
tion of time.However, it is possible to apply this model to estimate software reliability by 
ontrolling thefailure intensity range. For the purpose of our experiment we have kept the value of �1 <1.0. The basi
 equations of the mean value fun
tion and the failure intensity are:�(t; �) = �0t�1�(t; �) = �0�1t�1�1This is a in�nite-failures model.Delayed S-Shaped Model (DSSM): This model was proposed by Yamada, Ohba, andOsaki [?℄. This model 
hara
terizes software failure pro
ess as a delayed S-shaped growth.Here software error dete
tion pro
ess 
an be regarded as a learning pro
ess in whi
h test-team members improve their familiarity and skill gradually. This is regarded to be the bestof the several S-Shaped models[?℄. The basi
 equations for the mean number of failure valueand the failure intensity are:�(t; �) = �0[1� (1 + �1t)e��1t℄�(t; �) = �0�21te��1tThis is a �nite-failures model. The total number of faults is �0 and 1=�1 is the time whenthe maximum failure intensity o

urs. Most other models assume that the failure intensity5



starts de
lining from the beginning. However the S-Shaped models 
an represent an initialrise in failure intensity that is sometimes observed.Figures 1 and 2 show the typi
al behavior of these models in terms of � and �.
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3 A NEW PREDICTABILITY MEASUREEven though a large number of models are available in the literature, no 
lear guidelines havebeen presented for sele
tion of a parti
ular model. Chara
terization of a model requires itsappli
ation to a number of data sets and evaluating its predi
tive 
apabilities. Appli
abilityof a model 
an be measured using one of the three distin
t approa
hes 
onsidered below.1.Goodness-of-�t: This may be termed as an end-point approa
h be
ause evaluation
an be done only after all the data points fti; �ig; i = 0; 1; :::; n, or equivalently fti; �ig; i =0; 1; :::; n are available. After a 
urve 
orresponding to a sele
ted model Mk is �tted to thedata, the deviation between observed and the �tted values is evaluated by using the Chi-7



Square test or Kolmogorov-Smirnov[?℄ test. The Kolmogorov-Smirnov test is 
onsideredto be more e�e
tive 
ompared with the Chi-Square test. The goodness-of-�t approa
h haslow 
omputational requirements and is the one used most widely. For example, it has beenused by Matsumoto et al. to 
ompare the Exponential, Hyperexponential and the S-Shapedmodels [?℄.The disadvantage with goodness-of-�t measures is that they do not measure predi
tabil-ity. It is possible to have a model whi
h �ts the later behavior but not earlier. Su
h a model
an have a good overall �t while providing poor predi
tability in the early phases.2.Next-Step-Predi
tability: In this approa
h a partial data set, say, ftig; i = 1; :::; (l�1); is used to predi
t the value of Tl. The predi
ted and the observed values of Tl are then
ompared. This approa
h has been used by Abdel-Ghaly et al.[?℄ and Bro
klehurst et al.[?℄.This method 
an also be used for grouped data. This approa
h allows predi
tability to bemeasured with a partial data set, while testing is still in progress. However it only measuresshort-term predi
tability.3.Variable-Term-Predi
tability: Short-term predi
tability 
an be an appropriate mea-sure near the end of the test phase. However in a
tual pra
ti
e, the need to predi
t thebehavior near the end of the test phase by using data available near the beginning of thetest phase, is very important. This approa
h, used by Musa, Iannino and Okumoto [?℄and Malaiya et al.[?℄, makes proje
tions of the �nal value of � at ea
h tl, using the partialdata set fti; �ig; i = 0; :::; l. The error in these proje
tions 
an then be plotted againsttime. This method requires n di�erent 
urve-�tting for ea
h data set. The e�e
tiveness ofthe weighted-parameter estimation has been examined by Verma and Malaiya[?℄ using thesame approa
h. Sukert [?℄ has empiri
ally validated Jelinski-Moranda, S
hi
k-Wolverton,and modi�ed S
hi
k-Wolverton models using data sets from four DOD proje
ts. However hehas not presented any formal 
omparison.In this paper the variable-term predi
tability approa
h has been used to 
ompare someof the major SRGMs. A
tual data from a wide spe
trum of software proje
ts, 
orrespondingto di�erent initial fault densities have been used.8



Our proposed two-
omponent predi
tability measure 
onsists of Average Error (AE) andAverage Bias (AB). The AE is a measure of how well a model predi
ts throughout the testphase. The AB indi
ates the general bias of the model. The AB 
an be either positive ornegative depending on whether the model is prone to overestimation or underestimation.More formally, let the data be grouped into n points (ti; �i); i = 1 to n, where �i isthe failure intensity at time ti. Using a spe
i�
 model Mk, and data set j, let Dkij be theproje
ted total number of the faults to be dete
ted. ThusDkij = FfMk; (t1; �1); (t2; �2); � � � ; (ti; �i)g.Taking the variable-term approa
h[?℄, we 
an make plots of predi
tion error (Dkij �Dj)=Dj; i = 1 to n, for ea
h model k. Then predi
tability measures are given by(i) AEkj = 1n Pni=1 ����Dkij�DjDj ����(ii) ABkj = 1n Pni=1 Dkij�DjDjThe use of these measures is illustrated in Figure 3. The total shaded area under the
urve is used for 
omputing AEkj . On the other hand, 
al
ulating ABkj requires use of theappropriate sign.
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The di�erent data sets used 
orrespond to various fault density ranges. To have a proper
omparison, we have trimmed some of the data so that they 
orrespond to one of a fewsele
ted ranges. Let tl and tu be the time 
orresponding to lower and upper bound faultdensities. Our lower limits 
orrespond to a point where the relative error is signi�
antlyhigh. Our upper limits 
orrespond to a point where suÆ
ient faults have been dete
ted(and 
orre
ted) and the system has a
hieved a high reliability. In our 
omparison s
hemewe 
al
ulate ABs and AEs only within these limits. These limits are spe
i�
 to ea
h dataset and do not depend on the model used. Let mj be the total number of points between tland tu for ea
h data set j. Hen
e,(i) AEkj = 1mj Pui=l ���Dij�DjDj ���(ii) ABkj = 1mj Pui=l Dij�DjDjOur observations show that the omission of end-points do not a�e
t the generality of the
on
lusions drawn here.For the purpose of 
omparison, the data sets examined (Table 1) 
an be 
lassi�ed intoone of the following ranges: 1) High Fault Density Range in whi
h the initial fault densityis more than 10.0 faults/KLOC, 2) Medium Fault Density Range in whi
h the initial faultdensity is between 1.0 and 10.0 faults/KLOC, and 3) Low Fault Density Range in whi
hthe initial fault density of the systems is less than 1.0 faults/KLOC. The �rst range is
ommonly en
ountered at the beginning of unit test or the system test phase[?℄. The middlerange 
orresponds to systems that are either in system test phase or in some 
ases, in theoperational phase. The last range 
orresponds to software whi
h has very low fault densityto start with and is normally en
ountered in operational mode. Comparison of these modelsin these ranges would allow us to see if the predi
tability of a model has any signi�
antdependen
e on fault density. Sin
e the data sets are for diverse proje
ts from diverse teams,observations are more useful. If the data sets are from a single environment, the general10



appli
ability of the results may be less reliable.
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TABLE 1. THE DATA SETS USED.Data Referen
e Code Size Faults Software Type Range UsedSets Lines Dete
ted faults/KLOC1.1 [?℄ 1000 27 Class Compiler Proje
t 20.0{5.0(H)1.2 " 1000 24 " "1.3 " 1000 21 " "1.4 " 1000 27 " "2 [?℄ 21,700 136 Realtime Command and Control "3.1 [?℄ 40,000 46 On-line Data Entry 1.00{0.05(M)3.2 [?℄ 1,317,000 328 Database Appli
ation Software 0.20{0.05(L)3.3 [?℄ 35,000 279 Hardware Control Software 7.0{0.7(M)4 [?℄ 180,000 101 Military Appli
ation Software 0.20{0.05(L)5 [?℄ 240,000 3207 Appli
ation Software 13.0{1.3(H)6 [?℄ 870,000 535 Realtime Control Appli
ation 0.5{0.05(L)7 [?℄ 200,000 481 Monitoring and Realtime Control 2.0{0.05(M)8 [?℄ 14,500 55 Railway Interlo
king System 3.0{0.05(M)9 [?℄ 90,000 198 Monitoring and Realtime Control 2.0{0.05(M)10.1 [?℄ 10,000 118 Flight Dynami
 Appli
ation 10.0{1.0(H)10.2 [?℄ 22,500 180 Flight Dynami
 Appli
ation 7.0{0.7(M)10.3 [?℄ 38,500 213 Flight Dynami
 Appli
ation 5.0{0.5(M)11 [?℄ 1,000,000 231 Not Known 0.20{0.05(L)
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TABLE 2. AVERAGE ERROR OF MODELS(AEs)AT DIFFERENT FAULT DENSITY RANGES.Data Set MODELS Data SetUsed Log Inv Poly Exponen Power S-Shaped AverageHIGH FAULT DENSITY RANGE1.1 23.69 28.04 36.32 16.31 44.82 29.841.2 36.00 17.31 44.00 65.27 30.83 38.681.3 22.22 33.08 31.36 12.26 47.57 29.301.4 18.96 36.87 24.24 41.87 47.60 33.912 10.58 8.11 37.48 34.26 47.60 27.415 8.03 8.54 9.06 13.04 22.73 12.2810.1 11.48 12.14 17.58 23.68 16.59 16.29MEDIUM FAULT DENSITY RANGE3.1 21.58 24.77 25.19 24.32 30.48 25.273.3 8.80 37.64 13.33 45.50 30.92 27.247 13.58 25.69 30.87 28.97 14.38 22.708 4.95 9.40 20.81 37.18 22.28 18.929 14.64 31.50 14.98 49.97 33.18 28.8510.2 10.09 24.76 17.84 18.66 25.26 19.3210.3 13.39 19.64 29.12 19.40 35.21 23.35LOW FAULT DENSITY RANGE3.2 22.35 32.36 30.49 36.83 31.69 30.744 33.11 47.63 15.66 66.42 31.29 38.826 17.43 19.10 21.47 34.91 28.00 24.1811 26.29 24.23 33.50 15.29 43.16 28.49
13



TABLE 3. AVERAGE BIAS OF MODELS (ABs)AT DIFFERENT FAULT DENSITY RANGES.Data Set MODELS Data SetUsed Log Inv Poly Exponen Power S-Shaped AverageHIGH FAULT DENSITY RANGE1.1 -23.69 -20.41 -36.32 -2.41 -44.82 -25.531.2 -36.00 +17.31 -44.00 +65.27 -11.41 -1.771.3 -22.22 +3.11 -31.36 -4.55 -26.32 -16.271.4 -9.14 +26.01 -18.21 +37.44 -29.52 +1.322 -10.04 +5.18 -37.48 +33.57 -47.60 -11.275 +6.34 +4.44 +5.42 +12.57 -21.95 +1.3610.1 -2.32 -5.72 -13.87 +23.53 -14.76 -2.63MEDIUM FAULT DENSITY RANGE3.1 -21.58 -23.01 -25.19 -9.54 -30.30 -21.923.3 -4.31 +32.68 -12.89 +45.49 -17.39 +8.727 +11.23 +24.02 +20.51 +28.40 -10.95 +14.648 -3.49 +0.97 -13.88 +37.16 -10.06 +2.149 +14.64 +31.50 +12.21 +49.97 -33.18 +15.0310.2 -1.67 +7.59 -12.07 +10.16 -20.41 -3.2810.3 -13.39 -19.64 -29.12 +8.62 -35.21 -17.75LOW FAULT DENSITY RANGE3.2 -18.00 +6.07 -24.94 +18.71 -28.70 -9.374 +25.86 +44.54 -14.77 +61.15 -31.29 +17.106 +14.68 +9.33 +3.86 +34.91 -27.06 +7.1411 -24.89 -19.57 -32.12 -12.21 -43.16 -26.39
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TABLE 4a. WEIGHTED AVERAGE ERROR OF MODELSAT DIFFERENT FAULT DENSITY RANGES.Fault Density MODELSRange Log Inv Poly Exponen Power S-ShapedHIGH 8.6 8.9 12.0 15.4 24.8MEDIUM 13.7 26.6 24.6 33.1 23.6LOW 22.8 27.3 28.3 31.5 34.1OverallAverage 20.9 26.0 26.8 30.6 32.4TABLE 4b. WEIGHTED AVERAGE BIAS OF MODELSAT DIFFERENT FAULT DENSITY RANGES.Fault Density MODELSRange Log Inv Poly Exponen Power S-ShapedHIGH +4.3 +4.2 +0.8 +14.8 -23.8MEDIUM +4.4 +16.6 +4.9 +28.4 -20.3LOW -9.3 +1.4 -19.1 +16.0 -32.7OverallAverage -6.9 +3.2 -15.2 +17.2 -30.84 COMPARISON OF MODELSIn our analysis we have used 18 di�erent data sets 
olle
ted from a wide variety of softwaresystems [?, ?, ?, ?, ?, ?, ?, ?, ?, ?℄ as shown in Table 1. They range from a 
ompiler proje
tin an a
ademi
 environment to a set of hardware 
ontrol modules used in a pra
ti
al system.Among them 8 data sets are from Japanese software proje
ts. Note that data sets 3.1, 3.2,5, 6, 7, 8 and 9 are 
alendar time based while the remaining data sets are exe
ution timebased. The size of the sour
e 
ode for the data sets 2, 5 and 8 were reported in assemblyinstru
tions whereas for the remaining data sets it was in high level languages. In the last
olumn of the Table 1 we use the following notations to represent di�erent fault density15



ranges: H for high, M for medium and L for low. While in this study we have used moredata sets than most other studies, there is a need to 
olle
t even more extensive number ofdata sets from diverse sour
es and repeat the examination. Performan
es of these models,in terms of AE and AB, are shown in Tables 2 and 3, and in Figures 4 and 5. In Table 2,a smaller value of AE implies a higher a

ura
y in predi
tability of a given model. The ABvalues in Table 3 indi
ate whether a model is prone to overpredi
tion or underpredi
tion.4.1 COMPARISON WITH WEIGHTSIn this se
tion it is assumed that the results from the large proje
ts have more signi�
an
e,hen
e we have in
luded a weighting fa
tor 
orresponding to the a
tual size of the softwarewhen averaging. Table 4a represents the weighted average and overall predi
tive 
apabilitiesof these models. Table 4b summarizes the weighted bias measure of these models. Figure4 highlights the average error in predi
tability of models at di�erent fault density rangesa
ross all data sets. Figure 5 is used to indi
ate how these models exhibit bias at variousfault density ranges.
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The logarithmi
 model, as shown in Tables 2, seems to perform relatively well. Thoughit is not the best predi
tor in all 
ases, it has proje
ted the remaining faults most a

uratelyin the medium fault density range. Also in the high and the low fault density ranges its AEmeasures are better than other models in majority of the 
ases. When the best values arepredi
ted by other models in these two ranges, the LOGM's AEs are often 
lose. As shown inTables 3 its AB values indi
ate that this model has a mixed bias, sometimes predi
ting moreand sometimes predi
ting fewer than a
tual number of faults. The weighted average AEmeasures given in Table 4a and Figure 4 suggest that the LOGM has performed relativelybetter than other models. Table 4b indi
ates that the LOGM exhibited a slight positive17



bias in high and medium fault density ranges, although the averaged AB measure over allfault density ranges showed a slight negative bias. Figure 5 summarizes the behavior of theLOGM in terms of average bias. This suggests that the LOGM may o�er good predi
tabilityduring di�erent phases, be it testing or �eld operations.The inverse polynomial model seems to perform de
ent predi
tions. The INPM has thelowest AE value of 17.31 and 7.11 for the data sets 1.2 and 2 in the high fault density range,and its AEs are in the middle range in most of the remaining 
ases. From Figure 4a itappears that the INPM has the se
ond best predi
tive 
apability in the high and the lowfault density ranges. From the overall average AE value in Figure 4, the INPM appears tobe the se
ond best predi
tor. Results in Table 3 show that the INPM has the tenden
y ofpositive bias in majority of the 
ases. The values in Table 4b and Figure 5 indi
ate thatthis model is a 
onsistent overpredi
tor in all fault density ranges. However it should benoted that its overall bias has the lowest positive value among all models. This may makeit suitable for adaptive implementation or for getting a high estimate.The exponential model's biased predi
tive behavior is somewhat similar to that of theLOGM. Ex
ept for data set 4, where EXPM has the lowest value of 15.66, its AE values inmost of the remaining 
ases are about in the middle. The AEs in Table 4a and Figure 4indi
ate that the EXPM is the third best predi
tor in all fault density ranges. Ex
ept fordata sets 5, 6, 7 and 9 where it has positive AE values, its negative AB values lie betweenthe extreme values predi
ted by other models. In many of the 
ases, the EXPM's relativelyhigher AB values imply that the EXPM may underproje
t more 
ompared to the LOGM.From Table 4b we 
an see that the EXPM shows a small positive bias in the high and themedium fault density ranges and a signi�
ant negative bias in the low fault density range.As shown in Figure 5 the overall bias is negative.The power model, as shown in Table 2, seems to perform highly in
onsistently. Thoughthe POWM's AE measure of 16.31, 12.26, and 15.29 are the best for data sets 1.1, 1.3, and11, it has the highest AEs in eight 
ases ( data set: 1.2, 3.2, 3.3, 4, 6, 8, 9 and 10.1). Asshown in Table 4a and Figure 4 its average AE is the highest among all models in the mediumfault density range and the se
ond highest value in the low fault density range. Even in the18



high fault density range its predi
tion errors are 
lose to the highest values given by theDSSM. This suggests that this model may not be a good predi
tor on
e the produ
t rea
heshigher reliability. A 
omparison in Table 3 shows that both the INPM and the POWM seemto have similar bias in all 
ases ex
ept for data sets 1.3, 10.1, and 10.3. The POWM's ABvalues are the highest positive values when 
ompared to that of other models as shown inTable 4a and Figure 5.The delayed S-Shaped model, as shown in Tables 2, seems to be a poor estimator in many
ases. Its AE values are the highest for the data sets 1.1, 1.3, 1.4, 3.1, 5, 10.1, 10.3, 2, and11. The delayed S-Shaped model performs poorly in the high fault density range as shown inTable 4a. In the medium fault density range its performan
e is not signi�
antly better thanthat of the worst predi
tor, the POWM. Overall weighted average AE measure in Figure4 implies that the DSSM predi
ts with the highest error among all models. AB values inTable 3 indi
ate that the DSSM has 
onsistent negative bias a
ross all data sets. Moreoverits AB values are the highest negative bias for all data sets ex
ept for 
ases 1.2, 1.3 and8. Its weighted average AB values in Table 4b and Figure 5 show that the DSSM as theonly model that 
onsistently underestimates in all fault density ranges. The DSSM modelis stable in early phases of testing whi
h a

ounts for why some prefer to use it. Overall itmight be a weak model. Zinnel [?℄ has shown that a 
orre
tive strategy 
an improve theperforman
e of this model. This needs to be further investigated.Our observation from Table 3 suggests that performan
e of these models may sometimesbe a�e
ted by the pe
uliarities of the data set. For example, data sets 1.1 and 11 for
ed allmodels to exhibit negative bias. One possible approa
h to over
ome this pe
uliarity 
an beto use either an adaptive predi
tion approa
h [?℄ or a non-parametri
 approa
h suggested in[?, ?℄. One more observation from Table 4a suggests that all these models, with the ex
eptionof the DSSM, have de
reasing a

ura
y in predi
tion when the fault density is de
reased.Further evaluation is needed to verify that this is indeed signi�
ant. A possible explanation
an be that at low failure intensity, the information 
ontent in the available data may belower.
19



4.2 COMPARISON WITHOUT WEIGHTSIn the previous se
tion we 
ompared the predi
tive a

ura
y of models at di�erent faultdensity ranges using weighted average AE measures. In order to make our observationsmore stronger we performed further statisti
al analysis without assigning weights to theproje
ts. We performed statisti
al analysis using the ANOVA method. In this approa
h weviewed the results as out
omes of randomized blo
k experiment in whi
h the proje
ts wererandomly sele
ted and the SRGMs as \treatments" applied to ea
h of the proje
ts.In order to make 
omparison among the SRGMs we performed an \intra-proje
t" 
om-parisons in the following way. We 
lassi�ed the AE measures into a proje
ts-by-SRGMstwo-way table and performed ANOVA with proje
ts being the blo
ks and the SRGMs thetreatments. Note that this approa
h takes into a

ount the pe
uliarities in the di�erentproje
ts whi
h 
ould potentially impa
t the the performan
e of these 
ompeting models.Sin
e we are also interested in 
omparing SRGMs at di�erent fault density ranges weperformed a variant of the two-way 
lassi�
ation ANOVA. In this analysis, we treated ob-servations as out
omes of an unbalan
ed nested experiment. The results of this ANOVA isshown in Table 5. TABLE 5. ANOVA RESULTS WITHDIFFERENT FAULT DENSITY RANGES.Sour
e df MSS FStatisti
sFD 2 307.0Proje
ts within FD 15 242.2SRGMs 4 615.6 5.72FD * SRGMs 8 94.4 0.87SRGMs * Proje
ts within FD 60 107.6(Error)To �nd whether there is any signi�
ant di�eren
e among the SRGMs, we used the Fstatisti
 ModelsMSSErrorMSS whi
h takes the value 5.72 with 4 and 60 df and is signi�
ant. To 
he
k20



whether there are signi�
ant intera
tions between the fault density levels and the SRGMs,we used the F statisti
 FD�ModelsMSSErrorMSS whi
h takes the value 0.87 with 8 and 60 df and issigni�
ant. Sin
e the intera
tion is not signi�
ant the performan
e of a model relative to theother models is not a�e
ted by fault density. The resulting AE are shown in Table 6 andFigure 6. TABLE 6. AVERAGE ERROR OF MODELSAT DIFFERENT FAULT DENSITY RANGES.Fault Density MODELSRange Log Inv Poly Exponen Power S-ShapedHIGH 18.7 20.6 28.6 29.5 36.8MEDIUM 12.4 24.8 21.7 32.0 27.4LOW 24.8 30.8 25.3 38.4 33.5OverallAverage 17.6 24.5 25.2 32.5 32.4�gure=./�g6.ps,height=3.5inThe average AE values for the models are: Log = 17.6, Inv Poly = 24.5, Exp = 25.1,Power = 32.4 and S-Shaped = 32.4. Sin
e the SRGMs have signi�
ant F statisti
s, the LeastSigni�
ant Di�eren
e (LSD) pro
edure 
an be used to di�erentiate among them. Using theLSD method, two SRGMs are signi�
antly di�erent if their means have a di�eren
e of 6.9 orabove. The LSD value of 6.9 is 
al
ulated using T0:05;68 
riti
al equal to 2.0. If the di�eren
eis less than 6.9 then we 
an interpret that the SRGMs have similar predi
tive a

ura
y a
rossall proje
ts. Thus we 
an 
on
lude, using > to denote signi�
antly better, that f Log g > fInv Poly, Exp g > f Power, S-Shaped g. This 
on
lusion agrees with our earlier observationsbased on the weighted analysis.From these graphs we 
an make the following observations: 1) the performan
e of thesemodels may vary at di�erent fault density ranges and 2) the Log model may perform relativelywell a
ross di�erent fault density ranges. However these observations should be veri�edfurther using more data sets and analysis. 21



5 CONCLUDING REMARKSWe have presented an approa
h for evaluating predi
tability of software reliability growthmodels whi
h is related with how the models are a
tually used. We have evaluated averageerror and average bias for di�erent models for data sets for diverse proje
ts with varyinginitial fault density ranges. Our results seem to support Musa's observation[?℄ that thelogarithmi
 model appears to have good predi
tability in most 
ases. Furthermore, ouroverall result suggests that the Inverse Polynomial model 
an be used as the next alternative.The delayed S-Shaped model, whi
h in some 
ases have been shown to have good �t, generallyperformed poorly. The statisti
al analysis also shows that these models have signi�
antlydi�erent predi
tive 
apabilities.However, it should be noted that what we have evaluated is not just the models butrather the 
ombination of our evaluation s
heme as well as models. Thus, whenever ourapproa
h is used for evaluating a (new) model the e�e
tiveness of our s
heme should also betaken into 
onsideration.Both 
alendar time and exe
ution time data sets were used in our study. Although onemight expe
t that the S-shape model would have better predi
tability for 
alendar timebased data sets, we did not noti
e any signi�
ant di�eren
e in performan
e. Furthermore,our results did not indi
ate any signi�
ant di�eren
e in the performan
es of other modelsdue to the use of either 
alendar time or exe
ution time. This aspe
t of the problem needsfurther study.It is found that some models tend to overestimate or underestimate. It seems that theinverse polynomial model and the power model are prone to 
onsistent overpredi
tion. Ourresult also suggests that the delayed S-shaped model is a 
onsistent underpredi
tor. It hasbeen argued that a 
onsistent positive bias should be 
onsidered as an optimisti
 predi
tion[?℄. In addition, some data sets may have pe
uliarities that may 
ause most models to haveeither positive or negative bias. It may be possible to exploit this fa
t to do an a priori oradaptive 
orre
tion as shown in [?℄. An alternative approa
h to avoid su
h biased predi
tionsmay be to 
ombine two or more models with opposite biases.22
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