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Scope and Purpose—Genetic algorithms are becoming recognized as a robust method for
generating solutions to certain “hard” optimization problems. In this study, we examine the
suitability of a genetic algorithm for solving an optimization problem that arises in sizing
SONET rings in a telecommunications network. We consider applying genetic algorithms
to this problem because it is a computationally difficult problem whose solutions have clear
economic impacts and very straightforward encodings in genetic algorithms.

Abstract—We describe an optimization problem that arises in SONET ring sizing. We
compare solutions obtained by the genetic algorithm to both optimal solutions obtained by
the CPLEX mixed integer program solver and heuristic solutions generated by the algorithm
that is incorporated in the SONET Toolkit — a decision support system for planning SONET
networks.
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1 Introduction

Synchronous Optical Network (SONET) technology allows today’s telecommunications net-
works to concentrate large traffic volumes onto a relatively small number of nodes and links.
As a result, the amount of traffic that could potentially be interrupted by the failure of one
of these high-capacity network elements is also large. Thus, ensuring survivability through
fault-tolerant network design is becoming increasingly important. SONET [2] rings are in-
corporated into telecommunications network architectures to provide immediate recovery
from certain equipment failures.

Structurally, a SONET ring consists of a set of nodes connected by high-capacity optical
links to form a cycle that nowhere overlaps itself. (See Figure 1.) A telecommunication
network may include several embedded rings to afford built-in failure protection. Ring
configurations afford high failure survivability because every pair of ring nodes is connected
by two physically diverse paths. As a consequence, no single node or link failure disconnects
the ring.

In the event of a failure, all traffic, except that which terminates at a failed node, can be

A condensed version of this paper was presented at ACM Symposium on Applied Computing [1].



Figure 1: A 12 node ring.

diverted around the failure as long as the links have enough capacity. In practice, rings are
available in only a few discrete sizes with all links of the same capacity. Thus, when we
refer to a ring’s capacity, we are implicitly referring to the capacity of each of its links. Not
surprisingly, larger rings cost more.

In designing a network that includes rings, we’d naturally choose the cheapest rings that
afford full survivability from single failures. To do this, we first determine the capacity
required to assure survivability, then select the smallest available ring size that meets or
exceeds this requirement. Determining the capacity required for survivability depends on
the particular type of ring being constructed. In the rings that we consider', the capacity
required for survivability depends on the routing of the demands around the ring. Given a
particular routing for each demand (clockwise or counter-clockwise), the smallest capacity
required to assure survivability is linearly related to the maximum amount of traffic routed
on any link. Thus, the question becomes: how do we route the demands so as to minimize
the maximum amount of traffic on a link? The process of assigning each demand to one of
two possible routes around the ring is known as ring loading. The ring loading problem is
the related optimization problem that minimizes the maximum traffic on a link. The ring
loading problem and its application to SONET ring sizing are presented by Cosares and
Saniee [3]. (See also [4].) Cosares and Saniee [3] prove that ring loading is NP-complete
and propose several heuristics for obtaining approximate solutions.

The fact that the ring loading problem is NP-complete makes it a logical candidate for
a heuristic search methods like genetic algorithms. Moreover, the binary nature of the
decision provides an immediate encoding for a genetic algorithm. As a result, GAs can be
implemented in a very natural way. To our knowledge, ring loading is a new application for
genetic algorithms, which can be very successful on realistic-sized instances. Goldberg [5]
notes that evolutionary algorithms have already been incorporated into SONET network
design at US West to assist in determining which nodes to group together on a ring.

This paper is organized into three main parts: (1) a mathematical description of the ring
loading problem; (2) outlines of the heuristic methods we apply; and (3) computational
results comparing GA solutions with optimal solutions obtained by CPLEX [6] and approx-
imate solutions obtained by a heuristic implemented in the SONET Toolkit [7] — a decision
support system used by transport planners in the Bell regional operating companies.

! Bidirectional rings with time-slot interchange capability.



2 The Ring Loading Problem

The ring loading problem is defined on a network whose nodes are connected to form a ring,
as shown in Figure 1. We consider the nodes to be indexed from 1 to n going clockwise
around the ring. Similarly, the links are indexed from 1 to n so that index i corresponds to
the link on the clockwise side of node 1.

Given a set D of demands between nodes on the ring, the ring loading problem seeks a
routing for each demand — either clockwise or counter-clockwise — such that the maximum
load on a link is minimized. A demand k& € D is defined by a pair of nodes iy and j; and
some amount dy of traffic between them. We assume that dj is nonnegative and integer. A
particular demand k, partitions the links of the ring into two sets: those that are traversed
in a clockwise routing of demand k£ and those that are traversed in a counter-clockwise
routing. Let C(k) be the clockwise links, and let CC(k) be the counter-clockwise links.
Given these definitions, the ring loading problem is

[RL]: minimize 2z

subject to: xp + I = 1, Vk € D (1)
Z drxy + Z dpzp < z, VI = 1,...,n (2)
leC(k) leCC(k)

T, Tp € {0,1} Vk € D. (3)

The constraints (1) ensure that each demand is routed. The left-hand side of each con-
straint (2) computes the traffic on a particular link /. Hence, the objective value z will be
the maximum amount of traffic on any link of the ring.

Since [RL] is formulated using binary variables, a particular demand is routed either entirely
clockwise or entirely counter-clockwise. By relaxing this “all-one-way” requirement, we
could formulate the ring loading problem to allow some portion of a demand to route
clockwise and the remainder to route counter-clockwise. Frank, Nishizeki, Saito, Suzuki,
and Tardos [8] analyze the ring loading problem when the demands may be split in an
“Integer way”. Earlier results of Frank [9] (for a more general problem) provide a polynomial
time algorithm for this version of ring loading. If the demands may be split arbitrarily, then
ring loading is equivalent to solving a linear program and, therefore, polynomially solvable.
Shulman, Vachani, Ward, and Kubat [4] have proposed an algorithm that exploits the
special structure of the underlying network to solve the continuous-variable ring loading
problem extremely efficiently. So, although ring loading may be viewed as a mathematical
program in binary, integer, or continuous variables, the binary ring loading problem is the
only one that is computationally difficult. Hence, it is this problem that we consider in our
study.



3 Heuristics for Binary Ring Loading

Cosares and Saniee [3] consider the (binary) ring loading problem in the context of an
interactive planning tool for SONET networks. Thus, they advocate heuristic approaches
for two primary reasons: 1) the binary ring loading problem is computationally intractable;
and 2) a ring loading subroutine could, potentially, be called a large number of times during
a network planning session. Cosares and Saniee [3] propose several heuristics, but we include
only the two-phase greedy heuristic our study because it is the basis of the one currently
implemented in the SONET Toolkit [7].

The two-phase greedy heuristic is most easily described by first presenting a basic greedy
(one-phase) approach. The basic greedy algorithm is: given a set of demands sorted in
non-increasing order of demand size, route them one at a time so that the traffic on the
busiest link is increased the least. The two-phase greedy algorithm is simply the basic
greedy algorithm calling itself to break ties. Specifically, the algorithm is stated as:

e For each demand, route in the direction that causes the current maximum link load
to increase the least.

If there is a tie, do the following;:

— Temporarily route the current demand clockwise, then route all other demands
according to the basic greedy algorithm, breaking ties arbitrarily.

— Temporarily route the current demand counter-clockwise, then route all other
demands according to the basic greedy algorithm, breaking ties arbitrarily.

— Permanently route the current demand in the direction that yielded the best
final link load.

Our results verify that this algorithm is extremely fast and that its solutions are relatively
good. However, the variability in the quality of the solutions that it produces suggests that
there may also be a place for alternative methods such as genetic algorithms.

3.1 Genetic Algorithm

Genetic algorithms, developed by John Holland [10], are search procedures based on the me-
chanics of natural evolution. Genetic algorithms try to strike a balance between exploration
and exploitation during search. However, the fitness proportionate selection criterion used
in standard genetic algorithms may sometimes lead to premature convergence [11]. One
way to reduce premature convergence is to use a variant of the standard genetic algorithm
called the steady-state genetic algorithm. In this study, we employ a steady-state genetic
algorithm called GENITOR? that was developed by Whitley [11].

2GENITOR is available though the Computer Science Department at Colorado State University.



The objective for the ring loading problem is to minimize the maximum load on the links
of a ring. Thus, for each individual in the population, a fitness value is assigned based on
the maximum link load it induces. The particular fitness function we use is

1

mlax{load on link [}

In this study, we use a standard binary encoding because it maps directly to the routing
of the demands. Here, the number of bits in a string is equal to the number of demands to
be routed. A value of 1 in position k£ can be interpreted as routing load di in the clockwise
(C) direction, and a value of 0 as routing in the counter-clockwise (CC) direction. This is
illustrated in Figure 2.

(2.3) 17 C
(2,4) 12 cc
(3.4) 16 C

12
Endpoints Amount | Direction 15
0
1,2 20 C
1,3 30 CcC 30
1,9 15 CcC

GA Encoding: 100101
Maximum load is57 on link 1-4.

Figure 2: An example of a routing with its GA encoding.

4 Test Cases

We evaluate the utility of the genetic algorithm by examining its performance on eight
different sets of test problems. The test sets arise by considering two different ring sizes
with four different demand distributions.

The rings in our tests contain either 10 or 25 nodes. These sizes are selected to examine
both “ordinary” and “extreme” cases. A ring in a telecommunications network will typically
contain between 5 and 15 nodes. Thus, we consider the 10 node rings to be ordinary-sized
rings and the 25 node rings to be extremely large rings.



We generate the demand amounts dy randomly from either a uniform or a bimodal distri-
bution. The uniformly distributed tests are sampled from either a low variance range of
1-100 or a higher variance range of 1-500. The bimodal case is constructed by sampling
from two separate intervals within the 1-500 range. The bimodal sample has 80% of its
demands between 1 and 50 and the remaining 20% between 400 and 500.

Three of our demand cases include positive demand between all possible pairs of nodes.
For a ring with n nodes, there are n x (n — 1)/2 possible source and destination pairs. We
consider a set of demands to be complete if it has a positive demand between every possible
pair of nodes, and partial if it has positive demand between only a subset of the possible
pairs. Thus, three of our test cases have complete sets of demands. These cases are formed
by sampling from one of the three demand distributions described above — uniform low
variance, uniform high variance, and bimodal.

We expect that many rings in telecommunication networks will not carry traffic between
all possible pairs of nodes. For this reason, our remaining demand case includes only a
partial set of demands. Partial sets of demands are generated by randomly fixing some of
the possible demands to zero. In this case, we fix half of the possible demands to zero and
sample the remaining demands uniformly from the low variance range.

To summarize, the four demand cases we consider are:

Case 1: Complete set of demands between 1 and 100 with uniform distribution (C1.).

Case 2: Half of the demands in Case 1 set to zero (C2.).

Case 3: Complete set of demands between 1 and 500 with uniform distribution (C3.).

Case 4: Complete set of demands between 1 and 500 but with a bimodal distribution
(C4.).

Note that cases 1, 3 and 4 have complete demand sets, while case 2 has a partial set.

We generate 10 different problem instances for each case. This yields 40 instances for each
ring size. For convenience, they are labeled Ci_j, where 1 < i < 4 represents the demand
case and 1 < j < 10 represents the instance within a case. For example, C1_10 represents
the 10th instance of the test case 1.

5 Computational Results

Tables 1 and 2 summarize results obtained by applying the two-pass algorithm, CPLEX,
and GENITOR to 10 and 25 node problems on a Sun4m workstation. Since the two-pass
algorithm is by far the fastest of the three methods, our intent is mainly to evaluate the
quality of the solutions obtained by the two heuristics. To do this, we compare two-pass



and GENITOR solutions to optimal solutions obtained by CPLEX [6] — a widely-used
commercial solver for linear and mixed integer linear programs.

5.1 A Discussion of CPLEX Settings

The ring loading problem includes integer variables, so we use CPLEX’s mixed integer
solver, which employs a branch and bound algorithm. We invoke CPLEX from within our
own program via the CPLEX callable library. We use all default options with the exception
that we specify the absolute mipgap to be 0.99 and the relative mipgap to be 102, These
settings save CPLEX needless search but do not omit any potentially optimal solutions.

To clarify how these settings are used, we briefly describe the branch and bound algorithm.
(A more detailed discussion appears in [12].) The branch and bound method solves integer
programs by solving a sequence of linear programs. The first linear program (LP) is obtained
by relaxing all of the integrality constraints to allow fractional solutions. For [RL] the
constraints (3) are replaced by the simple bound constraints:

0 <z, 72, < 1 Vk € D.

Thus, the solution for this LP may contain fractional variables. In trying to solve [RL], we
create the next LP by fixing one of the fractional variables to either 0 or 1. Thus, each
fractional variable can potentially yield two linear subproblems. The optimal solutions for
each of these LPs may also include fractional variables which can, in turn, be fixed. This
process of identifying and fixing fractional variables is called branching. One can now see
that the linear subproblems form a tree with the original linear relaxation at the root.
Branch and bound proceeds in this way — fixing variables and solving linear programs —
until some LP yields an all-integer solution.

When an integer solution is discovered, it provides an upper bound on the optimal integer
solution. Alternatively, the optimal value of an LP subproblem provides a lower bound on
the value of any integer solution that can be its descendent. So, if the least upper bound
is lower than an LP subproblem solution, the LP cannot possibly yield a better integer
solution, so branch and bound explores this branch no further. In this way, branch and
bound can avoid searching fruitless branches. When there remain no branches that can
potentially yield a better integer solution, branch and bound will have either found the
optimal integer solution or determined that the problem is infeasible. (Note that [RL] is
never infeasible.)

This description illustrates the fact that branch and bound is an exponential search algo-
rithm. Thus, naively applying branch and bound to large integer programs may result in
extremely long solution times.

We specify the absolute mipgap parameter in CPLEX to further reduce needless search. At
any iteration of branch and bound, the absolute mipgap is the difference between the best
upper bound and the best lower bound. The relative mipgap is the absolute gap divided
by the lower bound plus 1.0. Both of these values provide stopping criteria for CPLEX.



We set the relative gap at its lowest setting to prevent stopping at a suboptimal solution.
Alternatively, we set a high (.99) value for the absolute gap because we know that the
objective value for the ring loading problem must be integer. Thus, we know that CPLEX
has discovered an optimal solution as soon as it finds an integer solution that is within 1.0
of its lower bound.

5.2 GENITOR Settings

We use the Reduced Surrogate Crossover operator and the Adaptive Mutation operator
implemented in the GENITOR package. For all our experiments, the mutation rate is 0.15,
and the crossover probability is 0.20.

For 10 node rings the results are generated using a population of 500; for 25 node rings
the population is 1000. Since the final solution produced by the GENITOR algorithm is
influenced by the randomly generated initial population, we perform the search 50 times
for each instance. Thus, the results reported for the GENITOR algorithm are based on
summary statistics from these experiments.

The stopping criterion for GENITOR is that a pre-specified number of evaluations be per-
formed. For the 10 node problems, GENITOR performs 10,000 evaluations. For 25 node
problems it does 100,000 evaluations. These limits are selected based upon preliminary ob-
servation of several different values. Usually, it is the case that the best solution is observed
well before reaching this limit. The timings reported in Tables 1 and 2 provide insight into
the average time it takes to reach the best solution. Since it is also of interest to know
worst-case timings, we note that the maximum time required to reach the evaluation limit
in the 10 node problems is 9.00 seconds, while the maximum time required in the 25 node
problems is 542.78 seconds.

5.3 Observations

In each of the 10 node problems, the genetic algorithm finds an optimal solution at least
once. The objective mean values and standard deviations indicate that there is little vari-
ability in the quality of the GA solution from one trial to the next. For several problems,
the genetic algorithm obtains an optimal solution in every trial. In most cases, the two-pass
algorithm is within 10% of the optimum. However, it is off by as much as 25% for example
C4_3. In many of the 10 node instances, we observe that the worst solution obtained by
GENITOR is at least as good as the two-pass solution.

For some of the 25 node problems, CPLEX reaches its branch and bound node limit before
it discovers an optimal solution. When this happens, we are sometimes able to generate
optimal solutions by adjusting additional CPLEX parameters, or by adding some constraints
to the basic formulation. When the optimal solution is obtained by one of these alternate
means, we provide only the solution but no CPU time in Table 2. In a few cases, none



of these strategies yields a confirmed optimal solution. When no solution can be proven
optimal, the value reported in Table 2 is simply the best solution observed, which is an
upper bound on the true optimal value.

Once again, the best genetic algorithm solution often matches the best solution obtained.
Although the GA solutions still appear to be quite robust, there is more variability between
its best and worst solutions. In contrast, the two-pass algorithm performs more consistently
on large problems than it does on the small ones. In every case, it is within 11% of the best
solution observed.

Figures 3 and 4 illustrate the relative quality of the best values obtained by each of the three
methods. Each of the figures includes four different problem groups corresponding to the
four different demand cases. For each demand case there are ten observations corresponding
to the ten different instances. The graphs depict the relative deviations from the best
solution observed for each instance. There is little discernible difference between the CPLEX
and GENITOR best solutions, but there is often a noticeable difference between the one-
pass solution and the best solution observed. We note, however, that the best GENITOR
solution is based upon 50 trials, and the CPLEX solution may also be based upon several
trials.
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Figure 4: Comparative summary of best results for 25 node examples.

5.3.1 More Detailed Observations with CPLEX

Four problems are not solved using any of the CPLEX options specified because they reach
the branch and bound node limit of 20,000 before any solution can be proved optimal. For
these problems more detailed information is given in Tables 3 and 4. One of these problems
— problem C3_4 - is solved using a different formulation. Thus, its optimal value is given
in Table 2.

Table 3 contains the objective value obtained by CPLEX, with different combinations of
options, after examining 20,000 branch and bound nodes. We allow alternative settings
for three different options. We consider turning the CPLEX aggregator “on” and “off”.
We also consider changing the branch direction to preferentially branch up the branch and
bound tree in the hope of limiting tree size, and we alter the node selection strategy to use a
“best-estimate” rather than a “best-bound” strategy. By default, the node selection strategy
is “best-bound” and the branching direction is based on the magnitude of the branching
variable’s integer infeasibility, which is always 0.5 in ring loading. For more detail on these
and other CPLEX options, we refer the reader to the CPLEX documentation [6].

While we are sometimes able to solve different subsets of our test set by adjusting the
CPLEX parameters, no one set of parameters performs consistently best. Therefore, we
report the results in Tables 1 and 2 based on the default settings. We consider resetting
either the branching direction or the node selection strategy with the aggregator “on” and
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with the aggregator “off”. In all, there are six cases that correspond to the following sets
of options:

Option Set 1: Aggregator = on; branching direction = default;
node selection = best-bound.

Option Set 2: Aggregator = on; branching direction = up;
node selection = best-bound.

Option Set 3: Aggregator = on; branching direction = default;
node selection = best-estimate.

Option Set 4: Aggregator = off; branching direction = default;
node selection = best-bound.

Option Set 5: Aggregator = off; branching direction = up;
node selection = best-bound.

Option Set 6: Aggregator = off; branching direction = default;
node selection = best-estimate.

The objective value of the best integer solution is provided in Table 3 and the corresponding
CPU time is given in Table 4. The lower bound provided in Table 3 is the tightest lower
bound across the cases considered.

We note that any instance (including those in Table 2) that reaches the branch and bound
node limit of 20,000 takes a long time to solve because CPLEX must solve 20,000 linear
programs. The times provided in Table 4 give a sense for how long it takes to reach this
limit. Tables 3 and 4 together illustrate the main drawback in naively applying standard
optimization software to solve these types of problems: spending a long time and examining
many thousands of branch and bound nodes does not necessarily ensure a “good” solution.
Branch and bound is an exponential search algorithm. Although it is assured of finding an
optimal solution if it terminates with an absolute mipgap less than one, it may not find a
good or even feasible solution if it stops because it reaches a node or time limit.

6 Conclusions

Our results emphasize the fact that GENITOR is robust not only in the quality of it’s
solutions, but also in the time it takes to obtain them. Its running time is sensitive to the
number of demands populating the ring, but it is relatively insensitive to the specific problem
instance and the underlying demand distribution. The low variability in both solution time
and quality are important features for software that is to be used interactively.

In our study, we do not attempt to tune the CPLEX parameters for our particular problem
structure. We also do not attempt to provide CPLEX a stronger formulation by adding
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constraints to the basic formulation in Section 2. These strategies often yield large im-
provements in the performance of integer program solvers, and might provide an alternate
avenue for research.

Our main goal has been to demonstrate the suitability of genetic algorithms for solving
the binary ring loading problem. We feel that such algorithms have merit in this context
because ring loading yields an immediate binary encoding and because these algorithms
produce solutions of consistently high quality. Thus, applying a genetic algorithm to this
problem is simple to do and yields good results.

Our comparisons with the two-pass algorithm show that there is a tradeoff between time and
solution quality. Currently, the SONET Toolkit opts for fast solutions because it evaluates
many potential rings. Once a ring has been selected it may be advantageous to size it based
on a higher quality solution. For a 10-node ring with a complete set of demands, the cost
of computing such a solution is roughly five seconds. Thus, we can easily imagine using GA
in the context of a two-phased planning process.

It may still be possible to reduce the time required by the genetic algorithm by adjusting
some of its internal parameters. Reducing the size of the population is one mechanism to
reduce the solution time. Another option is to introduce an additional termination criterion
based on the LP lower bound for [RL]. The intent of such a criterion is to stop the genetic
algorithm as soon as it discovers a solution that is within a prescribed tolerance of the
lower bound. The special structure of rings makes the LP lower bound extremely easy to
compute [4]. Thus, such a termination strategy is easy to incorporate and is likely to reduce
computation time but still provide high-quality solutions. Genetic algorithms will become
an attractive solution alternative if computing times can be reduced without impacting the
quality of the solution.

Finally, we note that in practice rings are built in a few standard sizes that correspond
to the SONET standard transmission rates. Thus, we cannot assume that we can build
rings in any discrete size. The implication of this is that solution inaccuracies may have
little effect on cost if they do not require moving to a larger-sized ring, but are extremely
costly when a larger ring than needed is built. Further studies with real data are needed to
determine the cost associated with solution inaccuracies.
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Heuristics CPLEX GENITOR
Test Link CPU Link CPU Link Capacity CPU Time Sec
Cases || Capacity | Time Sec || Capacity | Time Sec || Mean | Best | Std | Mean Std
Cl.1 584 0.03 584 0.77 584.0 | 584 | 0.0 | 4.13 0.49
C12 881 0.02 749 0.55 749.7 | 749 | 3.3 | 4.49 0.61
C1.3 759 0.03 661 5.37 662.3 | 661 | 1.8 | 5.86 1.05
Cl4 726 0.03 701 1.62 7014 | 701 | 1.6 | 4.73 0.74
Cls5 721 0.02 660 2.77 660.8 | 660 | 1.3 | 5.26 0.97
Cl.6 733 0.03 726 0.67 726.2 | 726 | 0.7 | 5.50 0.96
C1.7 729 0.02 712 2.48 7125 | 712 | 1.1 5.06 0.69
C138 715 0.02 702 1.53 702.6 | 702 | 2.6 | 5.15 1.08
C1.9 666 0.03 644 0.70 645.6 | 644 | 4.8 | 5.31 0.89
C1.10 715 0.03 712 1.02 712.8 | 712 | 2.0 | 4.94 0.87
Cc2.1 329 0.02 312 0.28 312.2 | 312 | 04 | 2.77 0.71
C222 402 0.00 399 0.90 400.2 | 399 | 1.5 | 2.63 1.10
C2.3 434 0.00 383 0.28 384.4 | 383 | 3.1 2.79 0.97
C24 346 0.00 346 0.45 346.6 | 346 | 1.8 | 2.62 0.85
C2.5 487 0.00 449 0.15 449.1 | 449 | 0.3 | 2.31 0.54
C2.6 429 0.00 424 0.20 4253 | 424 | 3.6 | 2.98 1.02
C2.7 409 0.00 403 0.42 403.7 | 403 | 1.8 | 2.97 1.17
C28 474 0.02 473 0.80 474.0 | 473 | 2.7 | 2.99 1.17
C2.9 350 0.00 347 0.85 347.0 | 347 | 04 | 2.29 0.78
C2.10 517 0.02 456 0.62 456.6 | 456 | 2.9 | 2.53 0.57
C3.1 2895 0.03 2893 0.95 2893.4 | 2893 | 0.0 | 4.65 0.75
C322 4236 0.03 3722 0.92 3726.9 | 3722 | 19.8 | 4.51 0.66
C3.3 3771 0.03 3277 4.98 3284.8 | 3277 | 99 | 5.88 1.13
C34 3786 0.02 3469 1.57 3469.7 | 3469 | 4.1 | 4.87 0.89
C35 3504 0.03 3273 2.65 3277.5 | 3273 | 6.8 | 5.11 0.92
C3.6 3615 0.03 3605 4.10 3607.4 | 3605 | 4.6 | 5.73 1.21
C3.7 3611 0.02 3530 3.65 3533.1 | 3530 | 4.9 | 5.28 0.84
C38 3575 0.02 3486 3.53 3488.8 | 3486 | 5.9 | 5.39 0.90
C3.9 3472 0.03 3196 1.20 3199.8 | 3196 | 17.4 | 5.05 1.05
C3.10 3982 0.02 3530 4.10 3534.9 | 3530 | 84 | 5.03 0.88
C4.1 1865 0.03 1863 0.87 1863.2 | 1863 | 0.0 | 4.73 0.73
C422 1859 0.03 1858 1.47 1858.0 | 1858 | 0.0 | 4.48 0.52
C4.3 2036 0.03 1620 0.38 1620.0 | 1620 | 0.0 | 4.45 0.64
C44 2120 0.03 2000 1.25 2000.0 | 2000 | 0.0 | 4.69 0.78
C4.5 1939 0.02 1932 0.75 1932.1 | 1932 | 1.0 | 4.74 1.07
C4.6 1659 0.02 1658 0.57 1658.0 | 1658 | 0.0 | 4.92 0.88
Cc47 2102 0.03 1907 0.67 1912.7 | 1907 | 19.3 | 5.37 0.92
C48 1858 0.00 1857 0.87 1868.8 | 1857 | 12.2 | 4.88 0.79
c49 2048 0.02 2009 4.35 2009.0 | 2009 | 0.0 | 5.10 0.99
C4.10 1777 0.02 1770 1.78 1770.0 | 1770 | 0.0 | 4.59 0.61

Table 1: A Summary of Results for the Ring with 10 Nodes.
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Heuristics CPLEX GENITOR

Test Link CPU Link CPU Link Capacity CPU Time Sec
Cases || Capacity | Time Sec || Capacity | Time Sec Mean Best Std Mean Std

C1l1 4391 1.98 4110 19.78 4161.5 | 4119 | 28.8 | 447.64 | 39.67
C12 4150 2.02 3911 22.60 3933.5 | 3911 | 19.1 | 454.10 | 44.19
C13 4476 1.93 4136 19.12 4207.8 | 4153 | 31.1 | 448.11 | 48.57
Cl4 4353 2.03 4202 - 4234.9 | 4204 | 25.7 | 457.50 | 37.23
C1l.5 4206 2.15 4122 29.73 4137.3 | 4122 | 15.3 | 427.31 | 42.73
Cl6 4297 2.20 4128 22.18 4181.9 | 4141 | 30.6 | 452.74 | 39.39
C1.7 4182 2.05 4018 - 4078.0 | 4023 | 22.7 | 454.57 | 36.95
C138 4335 2.03 4142 46.30 4196.4 | 4156 | 30.6 | 448.99 | 36.50
C19 4182 2.00 4075 331.98 4124.9 | 4082 | 25.2 | 456.40 | 39.89
C1.10 4093 1.93 4010 23.72 4020.9 | 4010 | 15.6 | 430.00 | 45.93
C2.1 2246 0.40 2147 - 2147.1 | 2147 1.6 | 118.92 | 13.86
C222 1946 0.52 1946 - 19479 | 1946 3.9 | 111.63 | 14.77
Cc23 2381 0.57 2323 31.93 2325.6 | 2323 4.5 | 137.38 | 17.75
Cc24 2134 0.58 2050 122.85 2062.2 | 2052 5.8 | 126.71 | 15.46
C2.5 2366 0.45 22351 - 2242.9 | 2235 | 14.7 | 138.90 | 18.91
C2.6 2199 0.45 2049 58.58 2051.8 | 2049 5.1 | 128.11 | 14.92
c2.7 2164 0.47 2051 5.72 2051.2 | 2051 1.4 | 118.26 | 21.96
Cc28 2110 0.47 2026 551.27 2032.3 | 2026 | 10.2 | 141.44 | 17.97
Cc29 2237 0.45 2179 13.28 21814 | 2179 5.2 | 134.08 | 16.77
C2.10 2201 0.52 2136 22.70 2136.3 | 2136 0.8 | 123.28 | 16.42
C3.1 21594 2.05 20391 202.60 20631.5 | 20401 | 157.3 | 451.10 | 42.39
C322 20559 1.95 19399 38.65 19494.4 | 19399 | 81.8 | 472.95 | 35.09
C33 22059 1.72 20516 38.35 20912.0 | 20543 | 179.4 | 450.67 | 39.99
C34 21765 1.73 20853 - 21049.9 | 20854 | 109.9 | 459.15 | 38.22
C3.5 21061 2.10 20453 558.07 20549.6 | 20453 | 93.8 | 449.98 | 40.70
C3.6 21562 2.22 20477 54.58 20768.1 | 20552 | 138.6 | 465.62 | 38.97
C3.7 20847 2.02 19922 35.82 20186.7 | 19930 | 145.2 | 459.93 | 35.97
C38 21358 1.98 20547 879.58 20801.0 | 20551 | 155.7 | 458.11 | 45.53
C3.9 20906 1.95 20216 - 20422.4 | 20216 | 141.8 | 473.11 | 31.57
C3.10 20047 2.07 19886 29.53 19931.7 | 19886 | 64.5 | 459.75 | 36.17
C4.1 9598 1.87 9523 16.72 9553.9 | 9523 | 22.5 | 472.89 | 39.18
C422 10155 2.00 9495 11.90 9517.6 | 9495 | 43.6 | 490.26 | 37.86
C4.3 9769 1.97 9354 16.13 9435.9 | 9362 | 84.1 | 484.48 | 44.67
C44 10224 1.75 10195 24.82 10204.7 | 10195 | 19.6 | 481.91 | 46.75
C4.5 9993 1.90 9594 24.72 9616.5 | 9594 | 41.0 | 460.86 | 38.79
C46 10827 2.13 10094 118.77 10096.4 | 10094 | 3.4 | 488.70 | 40.54
C4.7 9522 1.88 9061 19.43 9070.0 | 9061 | 15.3 | 489.26 | 31.02
C48 9476 1.85 94667 - 9478.7 | 9466 | 20.9 | 479.25 | 41.29
Cc49 10512 2.02 10089° - 10128.6 | 10089 | 40.5 | 487.00 | 40.84
C4.10 11676 2.02 10532 21.57 10535.3 | 10532 | 11.6 | 458.96 | 53.21

Table 2: A Summary of Results for the Ring with 25 Nodes.

optimal.
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Test ||| Lower CPLEX Options Set

Cases || Bound 1 2 3 4 5 6

2.5 2231 2324 2364 2235 2236 2438 2236

C34 20853 || 21220 | 23986 | 20943 | 21220 | 25582 | 20943

C48 9415 9467 | 13176 | 9466 9502 | 11497 | 9467

C49 10066 | 10141 | 12324 | 10089 | 10264 | 12433 | 10089
Table 3: Objective values for problems not solved.

Test CPLEX Options Set

Cases 1 2 3 5 6

C2.5 1423.58 | 1328.45 | 1180.47 | 1134.85 | 1324.08 | 1240.65

C34 2875.30 | 2910.98 | 2771.02 | 3011.58 | 2833.93 | 2870.33

C48 2762.55 | 2819.13 | 2852.77 | 2632.48 | 2955.73 | 2566.93

Cc49 2362.68 | 2366.08 | 2209.40 | 2358.22 | 2668.75 | 2493.60

Table 4: CPU times for problems not solved.
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