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Scope and Purpose|Genetic algorithms are becoming recognized as a robust method forgenerating solutions to certain \hard" optimization problems. In this study, we examine thesuitability of a genetic algorithm for solving an optimization problem that arises in sizingSONET rings in a telecommunications network. We consider applying genetic algorithmsto this problem because it is a computationally di�cult problem whose solutions have cleareconomic impacts and very straightforward encodings in genetic algorithms.Abstract|We describe an optimization problem that arises in SONET ring sizing. Wecompare solutions obtained by the genetic algorithm to both optimal solutions obtained bythe CPLEXmixed integer program solver and heuristic solutions generated by the algorithmthat is incorporated in the SONET Toolkit { a decision support system for planning SONETnetworks.
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1 IntroductionSynchronous Optical Network (SONET) technology allows today's telecommunications net-works to concentrate large tra�c volumes onto a relatively small number of nodes and links.As a result, the amount of tra�c that could potentially be interrupted by the failure of oneof these high-capacity network elements is also large. Thus, ensuring survivability throughfault-tolerant network design is becoming increasingly important. SONET [2] rings are in-corporated into telecommunications network architectures to provide immediate recoveryfrom certain equipment failures.Structurally, a SONET ring consists of a set of nodes connected by high-capacity opticallinks to form a cycle that nowhere overlaps itself. (See Figure 1.) A telecommunicationnetwork may include several embedded rings to a�ord built-in failure protection. Ringcon�gurations a�ord high failure survivability because every pair of ring nodes is connectedby two physically diverse paths. As a consequence, no single node or link failure disconnectsthe ring.In the event of a failure, all tra�c, except that which terminates at a failed node, can beyA condensed version of this paper was presented at ACM Symposium on Applied Computing [1].2
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Figure 1: A 12 node ring.diverted around the failure as long as the links have enough capacity. In practice, rings areavailable in only a few discrete sizes with all links of the same capacity. Thus, when werefer to a ring's capacity, we are implicitly referring to the capacity of each of its links. Notsurprisingly, larger rings cost more.In designing a network that includes rings, we'd naturally choose the cheapest rings thata�ord full survivability from single failures. To do this, we �rst determine the capacityrequired to assure survivability, then select the smallest available ring size that meets orexceeds this requirement. Determining the capacity required for survivability depends onthe particular type of ring being constructed. In the rings that we consider1, the capacityrequired for survivability depends on the routing of the demands around the ring. Given aparticular routing for each demand (clockwise or counter-clockwise), the smallest capacityrequired to assure survivability is linearly related to the maximum amount of tra�c routedon any link. Thus, the question becomes: how do we route the demands so as to minimizethe maximum amount of tra�c on a link? The process of assigning each demand to one oftwo possible routes around the ring is known as ring loading. The ring loading problem isthe related optimization problem that minimizes the maximum tra�c on a link. The ringloading problem and its application to SONET ring sizing are presented by Cosares andSaniee [3]. (See also [4].) Cosares and Saniee [3] prove that ring loading is NP-completeand propose several heuristics for obtaining approximate solutions.The fact that the ring loading problem is NP-complete makes it a logical candidate fora heuristic search methods like genetic algorithms. Moreover, the binary nature of thedecision provides an immediate encoding for a genetic algorithm. As a result, GAs can beimplemented in a very natural way. To our knowledge, ring loading is a new application forgenetic algorithms, which can be very successful on realistic-sized instances. Goldberg [5]notes that evolutionary algorithms have already been incorporated into SONET networkdesign at US West to assist in determining which nodes to group together on a ring.This paper is organized into three main parts: (1) a mathematical description of the ringloading problem; (2) outlines of the heuristic methods we apply; and (3) computationalresults comparing GA solutions with optimal solutions obtained by CPLEX [6] and approx-imate solutions obtained by a heuristic implemented in the SONET Toolkit [7] { a decisionsupport system used by transport planners in the Bell regional operating companies.1Bidirectional rings with time-slot interchange capability.3



2 The Ring Loading ProblemThe ring loading problem is de�ned on a network whose nodes are connected to form a ring,as shown in Figure 1. We consider the nodes to be indexed from 1 to n going clockwisearound the ring. Similarly, the links are indexed from 1 to n so that index i corresponds tothe link on the clockwise side of node i.Given a set D of demands between nodes on the ring, the ring loading problem seeks arouting for each demand { either clockwise or counter-clockwise { such that the maximumload on a link is minimized. A demand k 2 D is de�ned by a pair of nodes ik and jk andsome amount dk of tra�c between them. We assume that dk is nonnegative and integer. Aparticular demand k, partitions the links of the ring into two sets: those that are traversedin a clockwise routing of demand k and those that are traversed in a counter-clockwiserouting. Let C(k) be the clockwise links, and let CC(k) be the counter-clockwise links.Given these de�nitions, the ring loading problem is[RL]: minimize zsubject to: xk + ~xk = 1; 8k 2 D (1)Xl2C(k) dkxk + Xl2CC(k) dk~xk � z; 8l = 1; : : : ; n (2)xk; ~xk 2 f0; 1g 8k 2 D: (3)The constraints (1) ensure that each demand is routed. The left-hand side of each con-straint (2) computes the tra�c on a particular link l. Hence, the objective value z will bethe maximum amount of tra�c on any link of the ring.Since [RL] is formulated using binary variables, a particular demand is routed either entirelyclockwise or entirely counter-clockwise. By relaxing this \all-one-way" requirement, wecould formulate the ring loading problem to allow some portion of a demand to routeclockwise and the remainder to route counter-clockwise. Frank, Nishizeki, Saito, Suzuki,and Tardos [8] analyze the ring loading problem when the demands may be split in an\integer way". Earlier results of Frank [9] (for a more general problem) provide a polynomialtime algorithm for this version of ring loading. If the demands may be split arbitrarily, thenring loading is equivalent to solving a linear program and, therefore, polynomially solvable.Shulman, Vachani, Ward, and Kubat [4] have proposed an algorithm that exploits thespecial structure of the underlying network to solve the continuous-variable ring loadingproblem extremely e�ciently. So, although ring loading may be viewed as a mathematicalprogram in binary, integer, or continuous variables, the binary ring loading problem is theonly one that is computationally di�cult. Hence, it is this problem that we consider in ourstudy.
4



3 Heuristics for Binary Ring LoadingCosares and Saniee [3] consider the (binary) ring loading problem in the context of aninteractive planning tool for SONET networks. Thus, they advocate heuristic approachesfor two primary reasons: 1) the binary ring loading problem is computationally intractable;and 2) a ring loading subroutine could, potentially, be called a large number of times duringa network planning session. Cosares and Saniee [3] propose several heuristics, but we includeonly the two-phase greedy heuristic our study because it is the basis of the one currentlyimplemented in the SONET Toolkit [7].The two-phase greedy heuristic is most easily described by �rst presenting a basic greedy(one-phase) approach. The basic greedy algorithm is: given a set of demands sorted innon-increasing order of demand size, route them one at a time so that the tra�c on thebusiest link is increased the least. The two-phase greedy algorithm is simply the basicgreedy algorithm calling itself to break ties. Speci�cally, the algorithm is stated as:� For each demand, route in the direction that causes the current maximum link loadto increase the least.If there is a tie, do the following:{ Temporarily route the current demand clockwise, then route all other demandsaccording to the basic greedy algorithm, breaking ties arbitrarily.{ Temporarily route the current demand counter-clockwise, then route all otherdemands according to the basic greedy algorithm, breaking ties arbitrarily.{ Permanently route the current demand in the direction that yielded the best�nal link load.Our results verify that this algorithm is extremely fast and that its solutions are relativelygood. However, the variability in the quality of the solutions that it produces suggests thatthere may also be a place for alternative methods such as genetic algorithms.3.1 Genetic AlgorithmGenetic algorithms, developed by John Holland [10], are search procedures based on the me-chanics of natural evolution. Genetic algorithms try to strike a balance between explorationand exploitation during search. However, the �tness proportionate selection criterion usedin standard genetic algorithms may sometimes lead to premature convergence [11]. Oneway to reduce premature convergence is to use a variant of the standard genetic algorithmcalled the steady-state genetic algorithm. In this study, we employ a steady-state geneticalgorithm called GENITOR2 that was developed by Whitley [11].2GENITOR is available though the Computer Science Department at Colorado State University.5



The objective for the ring loading problem is to minimize the maximum load on the linksof a ring. Thus, for each individual in the population, a �tness value is assigned based onthe maximum link load it induces. The particular �tness function we use is1maxl fload on link lg :In this study, we use a standard binary encoding because it maps directly to the routingof the demands. Here, the number of bits in a string is equal to the number of demands tobe routed. A value of 1 in position k can be interpreted as routing load dk in the clockwise(C) direction, and a value of 0 as routing in the counter-clockwise (CC) direction. This isillustrated in Figure 2.
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Maximum load is 57 on link 1-4.Figure 2: An example of a routing with its GA encoding.4 Test CasesWe evaluate the utility of the genetic algorithm by examining its performance on eightdi�erent sets of test problems. The test sets arise by considering two di�erent ring sizeswith four di�erent demand distributions.The rings in our tests contain either 10 or 25 nodes. These sizes are selected to examineboth \ordinary" and \extreme" cases. A ring in a telecommunications network will typicallycontain between 5 and 15 nodes. Thus, we consider the 10 node rings to be ordinary-sizedrings and the 25 node rings to be extremely large rings.6



We generate the demand amounts dk randomly from either a uniform or a bimodal distri-bution. The uniformly distributed tests are sampled from either a low variance range of1-100 or a higher variance range of 1-500. The bimodal case is constructed by samplingfrom two separate intervals within the 1-500 range. The bimodal sample has 80% of itsdemands between 1 and 50 and the remaining 20% between 400 and 500.Three of our demand cases include positive demand between all possible pairs of nodes.For a ring with n nodes, there are n � (n� 1)=2 possible source and destination pairs. Weconsider a set of demands to be complete if it has a positive demand between every possiblepair of nodes, and partial if it has positive demand between only a subset of the possiblepairs. Thus, three of our test cases have complete sets of demands. These cases are formedby sampling from one of the three demand distributions described above { uniform lowvariance, uniform high variance, and bimodal.We expect that many rings in telecommunication networks will not carry tra�c betweenall possible pairs of nodes. For this reason, our remaining demand case includes only apartial set of demands. Partial sets of demands are generated by randomly �xing some ofthe possible demands to zero. In this case, we �x half of the possible demands to zero andsample the remaining demands uniformly from the low variance range.To summarize, the four demand cases we consider are:� Case 1: Complete set of demands between 1 and 100 with uniform distribution (C1 ).� Case 2: Half of the demands in Case 1 set to zero (C2 ).� Case 3: Complete set of demands between 1 and 500 with uniform distribution (C3 ).� Case 4: Complete set of demands between 1 and 500 but with a bimodal distribution(C4 ).Note that cases 1, 3 and 4 have complete demand sets, while case 2 has a partial set.We generate 10 di�erent problem instances for each case. This yields 40 instances for eachring size. For convenience, they are labeled Ci j, where 1 � i � 4 represents the demandcase and 1 � j � 10 represents the instance within a case. For example, C1 10 representsthe 10th instance of the test case 1.5 Computational ResultsTables 1 and 2 summarize results obtained by applying the two-pass algorithm, CPLEX,and GENITOR to 10 and 25 node problems on a Sun4m workstation. Since the two-passalgorithm is by far the fastest of the three methods, our intent is mainly to evaluate thequality of the solutions obtained by the two heuristics. To do this, we compare two-pass7



and GENITOR solutions to optimal solutions obtained by CPLEX [6] { a widely-usedcommercial solver for linear and mixed integer linear programs.5.1 A Discussion of CPLEX SettingsThe ring loading problem includes integer variables, so we use CPLEX's mixed integersolver, which employs a branch and bound algorithm. We invoke CPLEX from within ourown program via the CPLEX callable library. We use all default options with the exceptionthat we specify the absolute mipgap to be 0.99 and the relative mipgap to be 10�9. Thesesettings save CPLEX needless search but do not omit any potentially optimal solutions.To clarify how these settings are used, we brie
y describe the branch and bound algorithm.(A more detailed discussion appears in [12].) The branch and bound method solves integerprograms by solving a sequence of linear programs. The �rst linear program (LP) is obtainedby relaxing all of the integrality constraints to allow fractional solutions. For [RL] theconstraints (3) are replaced by the simple bound constraints:0 � xk; ~xk � 1 8k 2 D:Thus, the solution for this LP may contain fractional variables. In trying to solve [RL], wecreate the next LP by �xing one of the fractional variables to either 0 or 1. Thus, eachfractional variable can potentially yield two linear subproblems. The optimal solutions foreach of these LPs may also include fractional variables which can, in turn, be �xed. Thisprocess of identifying and �xing fractional variables is called branching. One can now seethat the linear subproblems form a tree with the original linear relaxation at the root.Branch and bound proceeds in this way { �xing variables and solving linear programs {until some LP yields an all-integer solution.When an integer solution is discovered, it provides an upper bound on the optimal integersolution. Alternatively, the optimal value of an LP subproblem provides a lower bound onthe value of any integer solution that can be its descendent. So, if the least upper boundis lower than an LP subproblem solution, the LP cannot possibly yield a better integersolution, so branch and bound explores this branch no further. In this way, branch andbound can avoid searching fruitless branches. When there remain no branches that canpotentially yield a better integer solution, branch and bound will have either found theoptimal integer solution or determined that the problem is infeasible. (Note that [RL] isnever infeasible.)This description illustrates the fact that branch and bound is an exponential search algo-rithm. Thus, naively applying branch and bound to large integer programs may result inextremely long solution times.We specify the absolute mipgap parameter in CPLEX to further reduce needless search. Atany iteration of branch and bound, the absolute mipgap is the di�erence between the bestupper bound and the best lower bound. The relative mipgap is the absolute gap dividedby the lower bound plus 1.0. Both of these values provide stopping criteria for CPLEX.8



We set the relative gap at its lowest setting to prevent stopping at a suboptimal solution.Alternatively, we set a high (.99) value for the absolute gap because we know that theobjective value for the ring loading problem must be integer. Thus, we know that CPLEXhas discovered an optimal solution as soon as it �nds an integer solution that is within 1.0of its lower bound.5.2 GENITOR SettingsWe use the Reduced Surrogate Crossover operator and the Adaptive Mutation operatorimplemented in the GENITOR package. For all our experiments, the mutation rate is 0.15,and the crossover probability is 0.20.For 10 node rings the results are generated using a population of 500; for 25 node ringsthe population is 1000. Since the �nal solution produced by the GENITOR algorithm isin
uenced by the randomly generated initial population, we perform the search 50 timesfor each instance. Thus, the results reported for the GENITOR algorithm are based onsummary statistics from these experiments.The stopping criterion for GENITOR is that a pre-speci�ed number of evaluations be per-formed. For the 10 node problems, GENITOR performs 10,000 evaluations. For 25 nodeproblems it does 100,000 evaluations. These limits are selected based upon preliminary ob-servation of several di�erent values. Usually, it is the case that the best solution is observedwell before reaching this limit. The timings reported in Tables 1 and 2 provide insight intothe average time it takes to reach the best solution. Since it is also of interest to knowworst-case timings, we note that the maximum time required to reach the evaluation limitin the 10 node problems is 9.00 seconds, while the maximum time required in the 25 nodeproblems is 542.78 seconds.5.3 ObservationsIn each of the 10 node problems, the genetic algorithm �nds an optimal solution at leastonce. The objective mean values and standard deviations indicate that there is little vari-ability in the quality of the GA solution from one trial to the next. For several problems,the genetic algorithm obtains an optimal solution in every trial. In most cases, the two-passalgorithm is within 10% of the optimum. However, it is o� by as much as 25% for exampleC4 3. In many of the 10 node instances, we observe that the worst solution obtained byGENITOR is at least as good as the two-pass solution.For some of the 25 node problems, CPLEX reaches its branch and bound node limit beforeit discovers an optimal solution. When this happens, we are sometimes able to generateoptimal solutions by adjusting additional CPLEX parameters, or by adding some constraintsto the basic formulation. When the optimal solution is obtained by one of these alternatemeans, we provide only the solution but no CPU time in Table 2. In a few cases, none9



of these strategies yields a con�rmed optimal solution. When no solution can be provenoptimal, the value reported in Table 2 is simply the best solution observed, which is anupper bound on the true optimal value.Once again, the best genetic algorithm solution often matches the best solution obtained.Although the GA solutions still appear to be quite robust, there is more variability betweenits best and worst solutions. In contrast, the two-pass algorithm performs more consistentlyon large problems than it does on the small ones. In every case, it is within 11% of the bestsolution observed.Figures 3 and 4 illustrate the relative quality of the best values obtained by each of the threemethods. Each of the �gures includes four di�erent problem groups corresponding to thefour di�erent demand cases. For each demand case there are ten observations correspondingto the ten di�erent instances. The graphs depict the relative deviations from the bestsolution observed for each instance. There is little discernible di�erence between the CPLEXand GENITOR best solutions, but there is often a noticeable di�erence between the one-pass solution and the best solution observed. We note, however, that the best GENITORsolution is based upon 50 trials, and the CPLEX solution may also be based upon severaltrials.
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Figure 3: Comparative summary of best results for 10 node examples.
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Figure 4: Comparative summary of best results for 25 node examples.5.3.1 More Detailed Observations with CPLEXFour problems are not solved using any of the CPLEX options speci�ed because they reachthe branch and bound node limit of 20,000 before any solution can be proved optimal. Forthese problems more detailed information is given in Tables 3 and 4. One of these problems{ problem C3 4 { is solved using a di�erent formulation. Thus, its optimal value is givenin Table 2.Table 3 contains the objective value obtained by CPLEX, with di�erent combinations ofoptions, after examining 20,000 branch and bound nodes. We allow alternative settingsfor three di�erent options. We consider turning the CPLEX aggregator \on" and \o�".We also consider changing the branch direction to preferentially branch up the branch andbound tree in the hope of limiting tree size, and we alter the node selection strategy to use a\best-estimate" rather than a \best-bound" strategy. By default, the node selection strategyis \best-bound" and the branching direction is based on the magnitude of the branchingvariable's integer infeasibility, which is always 0.5 in ring loading. For more detail on theseand other CPLEX options, we refer the reader to the CPLEX documentation [6].While we are sometimes able to solve di�erent subsets of our test set by adjusting theCPLEX parameters, no one set of parameters performs consistently best. Therefore, wereport the results in Tables 1 and 2 based on the default settings. We consider resettingeither the branching direction or the node selection strategy with the aggregator \on" and11



with the aggregator \o�". In all, there are six cases that correspond to the following setsof options:Option Set 1: Aggregator = on; branching direction = default;node selection = best-bound.Option Set 2: Aggregator = on; branching direction = up;node selection = best-bound.Option Set 3: Aggregator = on; branching direction = default;node selection = best-estimate.Option Set 4: Aggregator = o�; branching direction = default;node selection = best-bound.Option Set 5: Aggregator = o�; branching direction = up;node selection = best-bound.Option Set 6: Aggregator = o�; branching direction = default;node selection = best-estimate.The objective value of the best integer solution is provided in Table 3 and the correspondingCPU time is given in Table 4. The lower bound provided in Table 3 is the tightest lowerbound across the cases considered.We note that any instance (including those in Table 2) that reaches the branch and boundnode limit of 20,000 takes a long time to solve because CPLEX must solve 20,000 linearprograms. The times provided in Table 4 give a sense for how long it takes to reach thislimit. Tables 3 and 4 together illustrate the main drawback in naively applying standardoptimization software to solve these types of problems: spending a long time and examiningmany thousands of branch and bound nodes does not necessarily ensure a \good" solution.Branch and bound is an exponential search algorithm. Although it is assured of �nding anoptimal solution if it terminates with an absolute mipgap less than one, it may not �nd agood or even feasible solution if it stops because it reaches a node or time limit.6 ConclusionsOur results emphasize the fact that GENITOR is robust not only in the quality of it'ssolutions, but also in the time it takes to obtain them. Its running time is sensitive to thenumber of demands populating the ring, but it is relatively insensitive to the speci�c probleminstance and the underlying demand distribution. The low variability in both solution timeand quality are important features for software that is to be used interactively.In our study, we do not attempt to tune the CPLEX parameters for our particular problemstructure. We also do not attempt to provide CPLEX a stronger formulation by adding12



constraints to the basic formulation in Section 2. These strategies often yield large im-provements in the performance of integer program solvers, and might provide an alternateavenue for research.Our main goal has been to demonstrate the suitability of genetic algorithms for solvingthe binary ring loading problem. We feel that such algorithms have merit in this contextbecause ring loading yields an immediate binary encoding and because these algorithmsproduce solutions of consistently high quality. Thus, applying a genetic algorithm to thisproblem is simple to do and yields good results.Our comparisons with the two-pass algorithm show that there is a tradeo� between time andsolution quality. Currently, the SONET Toolkit opts for fast solutions because it evaluatesmany potential rings. Once a ring has been selected it may be advantageous to size it basedon a higher quality solution. For a 10-node ring with a complete set of demands, the costof computing such a solution is roughly �ve seconds. Thus, we can easily imagine using GAin the context of a two-phased planning process.It may still be possible to reduce the time required by the genetic algorithm by adjustingsome of its internal parameters. Reducing the size of the population is one mechanism toreduce the solution time. Another option is to introduce an additional termination criterionbased on the LP lower bound for [RL]. The intent of such a criterion is to stop the geneticalgorithm as soon as it discovers a solution that is within a prescribed tolerance of thelower bound. The special structure of rings makes the LP lower bound extremely easy tocompute [4]. Thus, such a termination strategy is easy to incorporate and is likely to reducecomputation time but still provide high-quality solutions. Genetic algorithms will becomean attractive solution alternative if computing times can be reduced without impacting thequality of the solution.Finally, we note that in practice rings are built in a few standard sizes that correspondto the SONET standard transmission rates. Thus, we cannot assume that we can buildrings in any discrete size. The implication of this is that solution inaccuracies may havelittle e�ect on cost if they do not require moving to a larger-sized ring, but are extremelycostly when a larger ring than needed is built. Further studies with real data are needed todetermine the cost associated with solution inaccuracies.
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Heuristics CPLEX GENITORTest Link CPU Link CPU Link Capacity CPU Time SecCases Capacity Time Sec Capacity Time Sec Mean Best Std Mean StdC1 1 584 0.03 584 0.77 584.0 584 0.0 4.13 0.49C1 2 881 0.02 749 0.55 749.7 749 3.3 4.49 0.61C1 3 759 0.03 661 5.37 662.3 661 1.8 5.86 1.05C1 4 726 0.03 701 1.62 701.4 701 1.6 4.73 0.74C1 5 721 0.02 660 2.77 660.8 660 1.3 5.26 0.97C1 6 733 0.03 726 0.67 726.2 726 0.7 5.50 0.96C1 7 729 0.02 712 2.48 712.5 712 1.1 5.06 0.69C1 8 715 0.02 702 1.53 702.6 702 2.6 5.15 1.08C1 9 666 0.03 644 0.70 645.6 644 4.8 5.31 0.89C1 10 715 0.03 712 1.02 712.8 712 2.0 4.94 0.87C2 1 329 0.02 312 0.28 312.2 312 0.4 2.77 0.71C2 2 402 0.00 399 0.90 400.2 399 1.5 2.63 1.10C2 3 434 0.00 383 0.28 384.4 383 3.1 2.79 0.97C2 4 346 0.00 346 0.45 346.6 346 1.8 2.62 0.85C2 5 487 0.00 449 0.15 449.1 449 0.3 2.31 0.54C2 6 429 0.00 424 0.20 425.3 424 3.6 2.98 1.02C2 7 409 0.00 403 0.42 403.7 403 1.8 2.97 1.17C2 8 474 0.02 473 0.80 474.0 473 2.7 2.99 1.17C2 9 350 0.00 347 0.85 347.0 347 0.4 2.29 0.78C2 10 517 0.02 456 0.62 456.6 456 2.9 2.53 0.57C3 1 2895 0.03 2893 0.95 2893.4 2893 0.0 4.65 0.75C3 2 4236 0.03 3722 0.92 3726.9 3722 19.8 4.51 0.66C3 3 3771 0.03 3277 4.98 3284.8 3277 9.9 5.88 1.13C3 4 3786 0.02 3469 1.57 3469.7 3469 4.1 4.87 0.89C3 5 3504 0.03 3273 2.65 3277.5 3273 6.8 5.11 0.92C3 6 3615 0.03 3605 4.10 3607.4 3605 4.6 5.73 1.21C3 7 3611 0.02 3530 3.65 3533.1 3530 4.9 5.28 0.84C3 8 3575 0.02 3486 3.53 3488.8 3486 5.9 5.39 0.90C3 9 3472 0.03 3196 1.20 3199.8 3196 17.4 5.05 1.05C3 10 3982 0.02 3530 4.10 3534.9 3530 8.4 5.03 0.88C4 1 1865 0.03 1863 0.87 1863.2 1863 0.0 4.73 0.73C4 2 1859 0.03 1858 1.47 1858.0 1858 0.0 4.48 0.52C4 3 2036 0.03 1620 0.38 1620.0 1620 0.0 4.45 0.64C4 4 2120 0.03 2000 1.25 2000.0 2000 0.0 4.69 0.78C4 5 1939 0.02 1932 0.75 1932.1 1932 1.0 4.74 1.07C4 6 1659 0.02 1658 0.57 1658.0 1658 0.0 4.92 0.88C4 7 2102 0.03 1907 0.67 1912.7 1907 19.3 5.37 0.92C4 8 1858 0.00 1857 0.87 1868.8 1857 12.2 4.88 0.79C4 9 2048 0.02 2009 4.35 2009.0 2009 0.0 5.10 0.99C4 10 1777 0.02 1770 1.78 1770.0 1770 0.0 4.59 0.61Table 1: A Summary of Results for the Ring with 10 Nodes.
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Heuristics CPLEX GENITORTest Link CPU Link CPU Link Capacity CPU Time SecCases Capacity Time Sec Capacity Time Sec Mean Best Std Mean StdC1 1 4391 1.98 4110 19.78 4161.5 4119 28.8 447.64 39.67C1 2 4150 2.02 3911 22.60 3933.5 3911 19.1 454.10 44.19C1 3 4476 1.93 4136 19.12 4207.8 4153 31.1 448.11 48.57C1 4 4353 2.03 4202 - 4234.9 4204 25.7 457.50 37.23C1 5 4206 2.15 4122 29.73 4137.3 4122 15.3 427.31 42.73C1 6 4297 2.20 4128 22.18 4181.9 4141 30.6 452.74 39.39C1 7 4182 2.05 4018 - 4078.0 4023 22.7 454.57 36.95C1 8 4335 2.03 4142 46.30 4196.4 4156 30.6 448.99 36.50C1 9 4182 2.00 4075 331.98 4124.9 4082 25.2 456.40 39.89C1 10 4093 1.93 4010 23.72 4020.9 4010 15.6 430.00 45.93C2 1 2246 0.40 2147 - 2147.1 2147 1.6 118.92 13.86C2 2 1946 0.52 1946 - 1947.9 1946 3.9 111.63 14.77C2 3 2381 0.57 2323 31.93 2325.6 2323 4.5 137.38 17.75C2 4 2134 0.58 2050 122.85 2062.2 2052 5.8 126.71 15.46C2 5 2366 0.45 2235y - 2242.9 2235 14.7 138.90 18.91C2 6 2199 0.45 2049 58.58 2051.8 2049 5.1 128.11 14.92C2 7 2164 0.47 2051 5.72 2051.2 2051 1.4 118.26 21.96C2 8 2110 0.47 2026 551.27 2032.3 2026 10.2 141.44 17.97C2 9 2237 0.45 2179 13.28 2181.4 2179 5.2 134.08 16.77C2 10 2201 0.52 2136 22.70 2136.3 2136 0.8 123.28 16.42C3 1 21594 2.05 20391 202.60 20631.5 20401 157.3 451.10 42.39C3 2 20559 1.95 19399 38.65 19494.4 19399 81.8 472.95 35.09C3 3 22059 1.72 20516 38.35 20912.0 20543 179.4 450.67 39.99C3 4 21765 1.73 20853 - 21049.9 20854 109.9 459.15 38.22C3 5 21061 2.10 20453 558.07 20549.6 20453 93.8 449.98 40.70C3 6 21562 2.22 20477 54.58 20768.1 20552 138.6 465.62 38.97C3 7 20847 2.02 19922 35.82 20186.7 19930 145.2 459.93 35.97C3 8 21358 1.98 20547 879.58 20801.0 20551 155.7 458.11 45.53C3 9 20906 1.95 20216 - 20422.4 20216 141.8 473.11 31.57C3 10 20047 2.07 19886 29.53 19931.7 19886 64.5 459.75 36.17C4 1 9598 1.87 9523 16.72 9553.9 9523 22.5 472.89 39.18C4 2 10155 2.00 9495 11.90 9517.6 9495 43.6 490.26 37.86C4 3 9769 1.97 9354 16.13 9435.9 9362 84.1 484.48 44.67C4 4 10224 1.75 10195 24.82 10204.7 10195 19.6 481.91 46.75C4 5 9993 1.90 9594 24.72 9616.5 9594 41.0 460.86 38.79C4 6 10827 2.13 10094 118.77 10096.4 10094 3.4 488.70 40.54C4 7 9522 1.88 9061 19.43 9070.0 9061 15.3 489.26 31.02C4 8 9476 1.85 9466y - 9478.7 9466 20.9 479.25 41.29C4 9 10512 2.02 10089y - 10128.6 10089 40.5 487.00 40.84C4 10 11676 2.02 10532 21.57 10535.3 10532 11.6 458.96 53.21Table 2: A Summary of Results for the Ring with 25 Nodes. y: Solution not con�rmedoptimal. 15



Test Lower CPLEX Options SetCases Bound 1 2 3 4 5 6C2 5 2231 2324 2364 2235 2236 2438 2236C3 4 20853 21220 23986 20943 21220 25582 20943C4 8 9415 9467 13176 9466 9502 11497 9467C4 9 10066 10141 12324 10089 10264 12433 10089Table 3: Objective values for problems not solved.

Test CPLEX Options SetCases 1 2 3 4 5 6C2 5 1423.58 1328.45 1180.47 1134.85 1324.08 1240.65C3 4 2875.30 2910.98 2771.02 3011.58 2833.93 2870.33C4 8 2762.55 2819.13 2852.77 2632.48 2955.73 2566.93C4 9 2362.68 2366.08 2209.40 2358.22 2668.75 2493.60Table 4: CPU times for problems not solved.
16
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