
A Neural Network Approach for Software Reliability GrowthModeling In the Presence of Code ChurnN. KarunanithiRoom: 2E-378, Bellcore445 South Street, Morristown, NJ 07960(201) 829-4466Email: karun@faline:bellcore:comAbstractOne of the key assumptions made in most of thetime-domain based software reliability growth modelsis that the complete code for the system is availablebefore testing starts and that the code remains frozenduring testing. However, this assumption is often vi-olated in large software projects. Thus, the existingmodels may not be able to provide an accurate de-scription of the failure process in the presence of codechurn. Recently, Dalal and McIntosh [3] developed anextended stochastic model by incorporating continuouscode churn into a standard Poisson process model andobserved an improvement in the model's estimationaccuracy. This paper demonstrates the applicability ofthe neural network approach to the problem of devel-oping an extended software reliability growth model inthe face of continuous code churn. In this preliminarystudy, a comparison is made between two neural net-work models, one with the code churn information andthe other without the code churn information, for theaccuracy of �t and the predictive quality using a dataset from a large telecommunication system. The pre-liminary results suggest that the neural network modelthat incorporates the code churn information is capa-ble of providing a more accurate prediction than thenetwork without the code churn information.Keywords: Software reliability growth modeling, Ex-tended stochastic models, Neural network models,Continuous code churn, Complex models.1 IntroductionThere exists a large number of analytic softwarereliability growth models for estimating reliabilitygrowth of software systems. Existing analytic modelsdescribe the failure process as a function of execution

time (or calendar time) and a set of unknown param-eters. Some of the attractive features of the analyticmodels are that they are easy to analyze, interpretand make inferences. However, analytic models arebased on many simplifying assumptions [9, 12]. Forexample, one of the key assumptions made in manyof the existing analytic models (although this is of-ten not stated explicitly) is that the code size remainsunchanged during testing. This assumption may notbe valid for most large software systems because theprogram undergoes change (or evolves) during devel-opment. Programs can evolve due to either require-ments changes or integration of parts during devel-opment. Requirement changes may occur due to en-hancement of features, adaptation of the system tochanging hardware and software, optimization of thesystem to realize performance improvement etc. Evo-lution of code may also occur during development forseveral reasons such as: parallel development of com-ponent systems by di�erent groups, conducting testsin a step-by-step (or feature-by-feature) fashion, per-forming tests as and when subsystems are ready, andstarting tests before the interfaces between subsystemsare incomplete.Evolving programs can introduce a variety of com-plications for both software engineers and the softwarereliability estimate. For software engineers, an evolv-ing program becomes a moving target during testing.Furthermore, the testing team cannot have uniformcon�dance on all parts of an evolving program be-cause the code which is included early on would beexercised more often than the parts that are includedlater. From software reliability estimation point ofview, the program evolution introduces complicationsin e�orts such as data collection, modeling, analysisand interpretation. Thus, in the face of program evo-lution, existing execution time based software relia-bility growth models may not be able to provide a
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Figure 1: Code Churn Vs. Cumulative Sta� Days.trustworthy estimate without proper extensions.To make a model more reliable one must incorpo-rate relevant information about the evolutionary pro-cess of the code. Incorporating such additional infor-mation into a model can help the model to providea more realistic picture of the failure process than amodel that relies solely on the assumptions made bythe model developer. Musa et al. [12] discuss threegeneral approachs for tackling the issue of programevolution. However, all those approachs do not di-rectly deal with continuous program evolution. Re-cently, Munson et al. [11] proposed an approach toincorporate the functional program complexity of thesoftware into dynamic reliability growth models. Thefunctional complexity of a system (under testing) rep-resents the expected value of the relative complexitymetrics of modules under a particular operational pro-�le. However, this approach requires both a staticanalysis of the code as well as a precise de�nition ofthe operational pro�le of the software. In order to dealwith a continuously evolving code (or \code churn")Dalal and McIntosh [3] proposed a simple extension toa Poisson process model proposed by Dalal and Mal-lows [1, 2]. (Their de�nition of \code churn" includesboth new additions of code as well as changes in theexisting code due to fault �xes.) In their approach,the size of the code churn was considered as one ofthe free variables of the model. They validated theirextended model by applying it to a large telecommuni-cation software project. Their empirical results clearlydemonstrate that adding the code churn informationcan improve the �t of the model.

This paper demonstrates the applicability of theneural network approach to the problem of modelingsoftware reliability growth in the face of continuouscode churn. The idea is inspired by the work of Dalaland McIntosh [3]. In this preliminary study, a com-parison is made between two neural network models,one with the code churn information and the otherwithout the code churn information, for the accuracyof �t and the predictive quality using a data set froma large telecommunication system. The preliminaryresults suggest that the neural network model that in-corporates the code churn information is capable ofproviding a more accurate prediction than the net-work without the code churn information. The restof the paper is as follows. Section 2 describes thedata set used in this study. Section 3 reviews the ex-tended model developed by Dalal and McIntosh [3]and discusses the applicability of the neural networkapproach for developing extended software reliabilitygrowth models. Section 4 presents preliminary resultsfrom the neural network approach in terms of the �tof the models and their predictive quality. Section 5concludes the paper with a summary of results andfuture extensions.2 The Data SetThe data set used for this study is from alarge telecommunication system consisting of approx-imately 7 million non-commentary source lines [3].The particular release for which the reliability model
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Figure 2: Cumulative Faults Vs. Cumulative Sta� Days.is applied had around 400,000 new or changed non-commentary source lines (NCNCSL). Since the testingwas performed in a highly distributed environment thetime was measured in \sta� days". The \sta� day"metric represents the amount of time a tester actu-ally spends every day on testing the current release.It should be noted that a sta� day is not exactly thesame as the calendar time. To collect the sta� daydata, the testing organization used a custom built lo-gin procedure to prompt the tester to enter the timeinformation for the previous day when they loggedon each morning. The code churn took place in twoways: �rst, the developers delivered code on daily ba-sis; and second, testing in the early stages occurred bygroups of subsystems. At the initial stages of testingthe system contained only some of the modi�cationsand additions of the code; not all of the subsystemswere tested at once. As testing progressed, more addi-tions and modi�cations were included. Figure 1 illus-trates the continuous code churn as a function of sta�days. The vertical (dashed) line indicates the date onwhich the system was frozen. After the \soft freeze",no functionality was added to the system and subse-quent changes re
ect only fault �xes. To make thegraph continuous, they used a simple linear interpola-tion for those days in which there was no code churn.Since they considered modi�cations in the code dueto fault �xes also as part of the code churn, the sys-tem had a non-trivial code churn even after the softfreeze. Though several subsystems were delivered atthe start of the testing, only a subset of them were ac-tually tested. This necessitated a proper adjustment

to the initial NCNCSL. So the initial NCNCSL wasprorated across the NCNCSL received after the startof testing but before the soft freeze. The dotted linein Figure 1 shows the adjusted code size. Figure 2illustrates the actual failure history of the system as afunction of time.In the model developed by Dalal and McIntosh [3]as well as the neural network approach examined inthis paper, the code size is used as one of the free vari-ables. Figure 3 illustrates the relationship between thecumulative faults and the cumulative code size. Notethat nearly half of the faults were observed before thesoft freeze and the amount of additional code addeddue to fault �xes constitutes about one sixth of theentire code.3 Model Development3.1 Dalal and McIntosh ModelIf one assumes a continuous code churn and �tsa basic model at each interval, the resulting cumu-lative fault vs. time curve will look like a waterfall(a cascade of exponentially decaying curves). Thiswill also lead to an unmanageable number of param-eters. In order to make the model computationallytractable, Dalal and McIntosh [3] make the followingassumptions. Let the testing be divided into n inter-vals (t0; t1); (t1; t2); : : : ; (tn�1; tn) and each code deliv-ery corresponds to the start of a new interval. Letthe number of faults Ni in each interval i be a Pois-son random variable with mean �i and that it satis�es
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Figure 3: Cumulative Faults Vs. Cumulative Code Size.the usual exponential assumptions. Let ci be the sizeof the code added at the end of the i-th interval. Ifthere was no code added in an interval then the cor-responding ci = 0. Since all code should undergo atleast some testing, it is assumed that there were nofurther additions of code beyond interval k � n � 1.The basic model of Dalal and Mallows [1, 2] on whichthe extended model was built is given by�(ti) = �i(1� e��(ti�ti�1))where �(ti) is the mean number of faults found at timeti, �i is the number of faults at the beginning of thei-th interval and � is the rate parameter. The numberof remaining faults at time ti is equal to �ie��(ti�ti�1).The extended model, which incorporates code churnci, is given by,�i+1 = g(�ie��(ti�ti�1); ci; �) i = 1; : : : ; nwhere g(x; c; �) is a general (yet unspeci�ed) function.Typically, the extended model can also be expressedas g(x; c; �) = x+ g1(c; �) + g2(x; c; �)with g1 = g2 = 0 whenever c = 0. This formulationcan be interpreted as follows:The number of faults in the codeafter the code churn =f the number of faults immediately before the codechurn g +f the number of faults in newly delivered code g +f the number of faults in the code because of theinteractions between the two sets of faultsg.

As a �rst step approximation, it is assumed that thefunction g2(x; c; �) = 0. This is equivalent to sayingthat there is no additional faults due to interaction ofthe existing code and the newly added code. Next, thestructure of g1 is assumed to be an identity functionand c is equal to NCNCSL at the i-th delivery (i.e.,g1(c; �) = �g1(c)). Finally, the model is simpli�ed byassuming that the number of faults in the added codeis proportional to the size of this code. Thus, theresulting model is given by,g(�ie��(ti�ti�1); ci; �) = �i+1 = �ie��(ti�ti�1) + �ciwhere �i+1 is the number of faults in the system atthe beginning of (i + 1)st interval. Their formulationalso includes a maximum likelihood equation for es-timating the parameters of the extended model andan economic heuristic to decide when one should stoptesting. Observe that the estimate of the parameters� and � can very over time. The corresponding ex-pression for the cumulative fault, M (ti), is given by,M (ti) = M (ti�1) + �i(1� e��(ti�ti�1))where M (ti�1) is the cumulative faults found at theend of the (i � 1)st interval. Note that the above ex-pression has the structure of an autoregressive process.One of the important claims of their study is that the�t of the extended model is considerably superior thanthat of the basic model.3.2 The Neural Network ApproachApplicability of neural network models to softwarereliability growth prediction has been demonstrated
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lative faults at time ti is a function of the cumulativetime, the cumulative code churn and the cumulativefaults at the previous time step. This realization of themodel is analogous to the extended model developedby Dalal and McIntosh [3].4 Results4.1 Fit of the ModelTo evaluate the quality of the �t of the neural net-work approach, we constructed two di�erent Jordanstyle networks. The �rst network had the sta� dayas the only external input. The second network, onthe other hand, had both the sta� day and the cumu-lative code churn as external inputs. Figure 4 showsthe schematic representation of the second networkmodel. The network had a clipped linear unit [8] inthe output layer and sigmoidal units in the hiddenlayer. The network was constructed and trained us-ing the Cascade-Correlation algorithm. The Cascade-Correlation algorithm is a constructive algorithm thatcan be used not only to train a network but also toconstruct a suitable network. During training, theCascade-Correlation starts with a minimal network(i.e., a network with no hidden units) and progres-sively adds the required number of hidden units untilthe learning is successfully completed. However, thenumber of hidden units added to the network and the�nal weights of a trained network can vary dependingon the random weight values used at the beginning ofthe training. This can introduce statistical variationin the �t as well as the predictions of the model. Toreduce such variations and to get a better statisticswe constructed and trained networks using 50 di�er-ent initial weight vectors. The results reported in this
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Figure 5: Fit of the Neural Network Models.section are based on the averages obtained from 50 tri-als. The �nal �t of the networks with and without thecode churn information are shown in Figure 5. Thesolid line in Figure 5 represents the actual cumulativefaults observed. The dotted line is the �t of the net-work with the code churn input. The �t of the networkwithout the code churn information is represented ina dash line. Note that both �ts look almost similar.However, a closer look at these �ts revealed that thenetwork that used the code churn information is closerto the actual data than the network without the codechurn information. This observation agrees with theresult of Dalal and McIntosh [3].4.2 A Diagnostic PlotIn order to check whether there are bias in the �t ofthe models, a simple diagnostic plot was constructedusing the residuals from the �nal �t of the models. Forthe purpose of illustration, the diagnostic plot for thenetwork with the code churn information is shown inFigure 6.The residuals in Figure 6 represent the di�erencebetween the change in the observed number of cumu-lative faults and the change in the number of cumu-lative faults of the �t of the model. The residuals forthe plot are obtained as follows:Residuals = f(M (ti)�M (ti�1))�(M̂ (ti)�M̂ (ti�1))g

where M (t) and M̂(t) represent the observed faultsand the �t of the model respectively. The residualsare analogous to the derivative of M (t) and re
ect thesensitivity (or bias) of the local behavior of the �t.The diagnostic plot suggests that there is no overallmajor trend in the �t of the neural network model.4.3 Prediction ResultsEven if the �t of a model is good, that does notguarantee that its predictions will always be accurate.A good model also should provide accurate predic-tions of future faults. In order to assess the predictivecapability of the model we used two extreme predic-tion horizons: the next-step prediction (NSP), for thecumulative faults at the end of the next time step;and the end-point prediction (EPP), for the cumula-tive faults at the end of the test phase. When anextended model like the one developed in this paper isused for predicting future events, one has to know notonly the execution time corresponding to a future daybut also a precise information about the code churn.We solved this issue by using the size of the code cor-responding to the �nal value of the code churn in thetraining data to all future predictions (i.e., the valueof the code size of the last point in the training datawas considered as the size of the �nal code). Notethat this issue does not arise if we do not use the code
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Figure 6: Diagnostics: Residuals vs. Sta� Days.churn information.The neural networks cannot predict well withoutsu�cient training data. This is analogous to using in-su�cient data to estimate the parameters of a stochas-tic model. In our prediction experiment, the size ofthe training set was gradually increased from a min-imal set consisting of all data points before the \softfreeze" up to a set with all but the last point in thefailure history. In order to gauge the predictive qual-ity of the neural network model we used the averagerelative error (ARE) used by Malaiya et al. [10]. Theaverage relative error measure is de�ned asARE = 1n� k � 1 n�1Xi=k+1 �����M (ti)� M̂ (ti)M (ti) �����where n is the number of points in data set, k is thenumber of points in the training set corresponding tothe soft freeze and n� k� 1 is the prediction window.ARE provides a summary of how well the model pre-dicts across a window of the future failure history. Thepredictive performance of the neural network modelsfor the two extreme prediction horizons are summa-rized in Table 1. The \Mean" and \SD" represent themean and the standard deviation of the ARE measureover 50 trials. These results suggest that the networkwith the code churn information is capable of pro-viding a more accurate prediction than the network

without the code churn information.5 ConclusionWe demonstrated that one can easily extend the ex-ecution time based neural network framework to incor-porate the code churn information. Our preliminaryresults suggest that incorporating the code churn in-formation can help both the �t as well as the predictiveaccuracy of the neural network models. However, wedo note that the results presented here are preliminaryand they have yet to be compared with the results ofthe existing models. This will be explored in future.Dalal and Mallows [1, 2] proposed and integratedan economic model to decide when one should stoptesting. The economic model is based on the tradeo�between the cost of testing software (i.e., not releasingin time) and the cost of releasing it. In the future, weplan to integrate their economic model with the neuralnetwork framework.Often, one is interested in predicting not only thecumulative faults but also other quantities such as therate of occurrence of failure, mean time to failure etc.The extended neural network model developed in thisstudy represent only the cumulative faults. However,if one is interested in the failure rate expression, it isstraightforward to derive it from the expression for the



Neural Network NSP EPPModel Mean SD Mean SDWithout Code Churn 3.834 1.883 26.342 8.417With Code Churn 2.955 1.803 17.27 5.837Table 1: A Summary of Prediction Results in Terms of ARE.cumulative faults using the method outlined in [8].There are several advantages with an extended soft-ware reliability growth model:� From a modeling point of view, it demonstrateshow one can extend a time-domain based model,whether it is based on the neural network frame-work or the standard stochastic approach, by in-corporating continuous code churn information.� From an information theoretic point view, the ex-tended model is appealing because it is based onmore information about the failure process thanthe traditional execution time-based model. As a�rst approximation, we directly included the codesize in the extended model. However, this neednot be the case; one can preprocess the code (i.e.,perform a static analysis on the code to extractrelevant static complexitymeasures) and then usethe preprocessed outputs to build a more sophis-ticated software reliability growth model.� One can also use the extended model in the earlystages of the software development cycle becausethe model does not require the existence of codefor the complete system.References[1] S. R. Dalal and C. L. Mallows, \When ShouldOne Stop Testing Software?", J. Am. Statist.Assoc., 83, pp. 872-879, 1988.[2] S. R. Dalal and C. L. Mallows, \Some GraphicalAids for Deciding When to Stop Testing Soft-ware", IEEE J. Selected Areas in Communica-tions., Vol. 8, No. 2, pp. 169-175, 1990.[3] S. R. Dalal and A. A. McIntosh, \Reliabil-ity Modeling and When to Stop Testing forLarge Software Systems in the Presence of CodeChurn: Analysis and Results for TIRKS Release16.0", Bellcore, TM-ARH-021705, Aug. 1992.
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