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Abstract

One of the key assumptions made in most of the
time-domain based software reliability growth models
1s that the complete code for the system is available
before testing starts and that the code remains frozen
during testing. However, this assumption is often vi-
olated n large software projects. Thus, the existing
models may not be able to provide an accurate de-
scription of the failure process in the presence of code
churn. Recently, Dalal and McIntosh [3] developed an
extended stochastic model by incorporating continuous
code churn into a standard Poisson process model and
observed an improvement in the model’s estimation
accuracy. This paper demonstrates the applicability of
the neural network approach to the problem of devel-
oping an extended software reliability growth model in
the face of continuous code churn. In this preliminary
study, a comparison is made between two neural net-
work models, one with the code churn information and
the other without the code churn information, for the
accuracy of fit and the predictive quality using a data
set from a large telecommunication system. The pre-
liminary results suggest that the neural network model
that incorporates the code churn information is capa-
ble of providing a more accurate prediction than the
network without the code churn information.

Keywords: Software reliability growth modeling, Ex-
tended stochastic models, Neural network models,
Continuous code churn, Complex models.

1 Introduction

There exists a large number of analytic software
reliability growth models for estimating reliability
growth of software systems. Existing analytic models
describe the failure process as a function of execution

time (or calendar time) and a set of unknown param-
eters. Some of the attractive features of the analytic
models are that they are easy to analyze, interpret
and make inferences. However, analytic models are
based on many simplifying assumptions [9, 12]. For
example, one of the key assumptions made in many
of the existing analytic models (although this is of-
ten not stated explicitly) is that the code size remains
unchanged during testing. This assumption may not
be valid for most large software systems because the
program undergoes change (or evolves) during devel-
opment. Programs can evolve due to either require-
ments changes or integration of parts during devel-
opment. Requirement changes may occur due to en-
hancement of features, adaptation of the system to
changing hardware and software, optimization of the
system to realize performance improvement etc. Evo-
lution of code may also occur during development for
several reasons such as: parallel development of com-
ponent systems by different groups, conducting tests
in a step-by-step (or feature-by-feature) fashion, per-
forming tests as and when subsystems are ready, and
starting tests before the interfaces between subsystems
are incomplete.

Evolving programs can introduce a variety of com-
plications for both software engineers and the software
reliability estimate. For software engineers, an evolv-
ing program becomes a moving target during testing.
Furthermore, the testing team cannot have uniform
confidance on all parts of an evolving program be-
cause the code which is included early on would be
exercised more often than the parts that are included
later. From software reliability estimation point of
view, the program evolution introduces complications
in efforts such as data collection, modeling, analysis
and interpretation. Thus, in the face of program evo-
lution, existing execution time based software relia-
bility growth models may not be able to provide a
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Figure 1: Code Churn Vs. Cumulative Staff Days.

trustworthy estimate without proper extensions.

To make a model more reliable one must incorpo-
rate relevant information about the evolutionary pro-
cess of the code. Incorporating such additional infor-
mation into a model can help the model to provide
a more realistic picture of the failure process than a
model that relies solely on the assumptions made by
the model developer. Musa et al. [12] discuss three
general approachs for tackling the issue of program
evolution. However, all those approachs do not di-
rectly deal with continuous program evolution. Re-
cently, Munson et al. [11] proposed an approach to
incorporate the functional program complexity of the
software into dynamic reliability growth models. The
functional complexity of a system (under testing) rep-
resents the expected value of the relative complexity
metrics of modules under a particular operational pro-
file. However, this approach requires both a static
analysis of the code as well as a precise definition of
the operational profile of the software. In order to deal
with a continuously evolving code (or “code churn”)
Dalal and McIntosh [3] proposed a simple extension to
a Poisson process model proposed by Dalal and Mal-
lows [1, 2]. (Their definition of “code churn” includes
both new additions of code as well as changes in the
existing code due to fault fixes.) In their approach,
the size of the code churn was considered as one of
the free variables of the model. They validated their
extended model by applying it to a large telecommuni-
cation software project. Their empirical results clearly
demonstrate that adding the code churn information
can improve the fit of the model.

This paper demonstrates the applicability of the
neural network approach to the problem of modeling
software reliability growth in the face of continuous
code churn. The idea is inspired by the work of Dalal
and McIntosh [3]. In this preliminary study, a com-
parison is made between two neural network models,
one with the code churn information and the other
without the code churn information, for the accuracy
of fit and the predictive quality using a data set from
a large telecommunication system. The preliminary
results suggest that the neural network model that in-
corporates the code churn information is capable of
providing a more accurate prediction than the net-
work without the code churn information. The rest
of the paper is as follows. Section 2 describes the
data set used in this study. Section 3 reviews the ex-
tended model developed by Dalal and McIntosh [3]
and discusses the applicability of the neural network
approach for developing extended software reliability
growth models. Section 4 presents preliminary results
from the neural network approach in terms of the fit
of the models and their predictive quality. Section 5
concludes the paper with a summary of results and
future extensions.

2 The Data Set

The data set used for this study is from a
large telecommunication system consisting of approx-
imately 7 million non-commentary source lines [3].
The particular release for which the reliability model
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Figure 2: Cumulative Faults Vs. Cumulative Staff Days.

is applied had around 400,000 new or changed non-
commentary source lines (NCNCSL). Since the testing
was performed in a highly distributed environment the
time was measured in “staff days”. The “staff day”
metric represents the amount of time a tester actu-
ally spends every day on testing the current release.
It should be noted that a staff day 1s not exactly the
same as the calendar time. To collect the staff day
data, the testing organization used a custom built lo-
gin procedure to prompt the tester to enter the time
information for the previous day when they logged
on each morning. The code churn took place in two
ways: first, the developers delivered code on daily ba-
sis; and second, testing in the early stages occurred by
groups of subsystems. At the initial stages of testing
the system contained only some of the modifications
and additions of the code; not all of the subsystems
were tested at once. As testing progressed, more addi-
tions and modifications were included. Figure 1 illus-
trates the continuous code churn as a function of staff
days. The vertical (dashed) line indicates the date on
which the system was frozen. After the “soft freeze”,
no functionality was added to the system and subse-
quent changes reflect only fault fixes. To make the
graph continuous, they used a simple linear interpola-
tion for those days in which there was no code churn.
Since they considered modifications in the code due
to fault fixes also as part of the code churn, the sys-
tem had a non-trivial code churn even after the soft
freeze. Though several subsystems were delivered at
the start of the testing, only a subset of them were ac-
tually tested. This necessitated a proper adjustment

to the initial NCNCSL. So the initial NCNCSL was
prorated across the NCNCSL received after the start
of testing but before the soft freeze. The dotted line
in Figure 1 shows the adjusted code size. Figure 2
illustrates the actual failure history of the system as a
function of time.

In the model developed by Dalal and McIntosh [3]
as well as the neural network approach examined in
this paper, the code size is used as one of the free vari-
ables. Figure 3 illustrates the relationship between the
cumulative faults and the cumulative code size. Note
that nearly half of the faults were observed before the
soft freeze and the amount of additional code added
due to fault fixes constitutes about one sixth of the
entire code.

3 Model Development
3.1 Dalal and McIntosh Model

If one assumes a continuous code churn and fits
a basic model at each interval, the resulting cumu-
lative fault vs. time curve will look like a waterfall
(a cascade of exponentially decaying curves). This
will also lead to an unmanageable number of param-
eters. In order to make the model computationally
tractable, Dalal and McIntosh [3] make the following
assumptions. Let the testing be divided into n inter-
vals (to,t1), (t1,%2), ..., (th—1,%n) and each code deliv-
ery corresponds to the start of a new interval. Let
the number of faults /V; in each interval ¢ be a Pois-
son random varlable with mean «; and that it satisfies
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Figure 3: Cumulative Faults Vs. Cumulative Code Size.

the usual exponential assumptions. Let ¢; be the size
of the code added at the end of the i-th interval. If
there was no code added in an interval then the cor-
responding ¢; = 0. Since all code should undergo at
least some testing, it is assumed that there were no
further additions of code beyond interval & < n — 1.
The basic model of Dalal and Mallows [1, 2] on which
the extended model was built is given by

() = (1 — e—ﬁ(t,—t,_l))

where yi(t;) is the mean number of faults found at time
t;, a; 1s the number of faults at the beginning of the
t-th interval and j is the rate parameter. The number
of remaining faults at time ¢; is equal to e Plti=tiz),
The extended model, which incorporates code churn
¢i, 18 given by,

oyl = g(aie_ﬁ(t’_t"l), ¢, 0) =1

R

where g(x,c,0) is a general (yet unspecified) function.
Typically, the extended model can also be expressed
as

g($aca 9) = x'i’gl(ca 6) —|—g2(l‘,C, 9)

with g1 = g2 = 0 whenever ¢ = 0. This formulation
can be interpreted as follows:
The number of faults in the code

after the code churn =
{ the number of faults immediately before the code

churn } +
{ the number of faults in newly delivered code } +
{ the number of faults in the code because of the
interactions between the two sets of faults}.

As a first step approximation, it 1s assumed that the
function ga(x,c¢,8) = 0. This is equivalent to saying
that there 1s no additional faults due to interaction of
the existing code and the newly added code. Next, the
structure of ¢g; is assumed to be an identity function
and ¢ is equal to NCNCSL at the i-th delivery (i.e.,
g1(c,8) = fg1(e)). Finally, the model is simplified by
assuming that the number of faults in the added code
is proportional to the size of this code. Thus, the
resulting model 1s given by,

g(aie_ﬁ(t’_t"l), ¢i,0) = ajq1 = ae”Pli—ti=0) g,

where ;41 is the number of faults in the system at
the beginning of (¢ 4+ 1)st interval. Their formulation
also includes a maximum likelihood equation for es-
timating the parameters of the extended model and
an economic heuristic to decide when one should stop
testing. Observe that the estimate of the parameters
a and [ can very over time. The corresponding ex-
pression for the cumulative fault, M (¢;), is given by,

M(t;) = M(ti_1) 4 (1 — e~ Plimtimn)
where M (t;_1) is the cumulative faults found at the
end of the (¢ — 1)st interval. Note that the above ex-
pression has the structure of an autoregressive process.
One of the important claims of their study is that the

fit of the extended model is considerably superior than
that of the basic model.

3.2 The Neural Network Approach

Applicability of neural network models to software
reliability growth prediction has been demonstrated
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Figure 4: A Modified Jordan Style Neural Network.

by Karunanithi et al. [6, 7, 8]. (For more details on
neural network models and their implementation refer
to [6, 7, 8] and other references recommended therein.)
Two important conclusions of the earlier studies are: i)
the neural network approach is a “black box” approach
(i.e., the neural networks are capable of developing
an appropriate model for the failure process from the
training data) and ii) the modified Jordan style [5]
networks with “Teacher Forced” training are capable
of providing more accurate predictions than the feed-
forward networks. Also, it was hypothesized that one
can easily realize a complex software reliability growth
model by incorporating additional information into
the neural network framework. This paper verifies the
later hypothesis by adding the code churn information
to the existing neural networks framework.

The mnetwork models wused in the previous
research[6, 7, 8] had the accumulated time (¢;) as the
free variable and the cumulative faults (M (¢;)) as the
dependent variable. From the modeling point of view,
they are analogous to the traditional execution time
based software reliability growth models. However,
the networks used in the present study have an addi-
tional input (C;) for the cumulative code churn. Fig-
ure 4 represents an abstract model of the modified
Jordan style network used in this study. The dotted
line in Figure 4 represents the feed-back from the out-
put (M (t;—1)) required for realizing the Jordan style
network. For simplicity, it is assumed that the net-
work operates only in discrete time-steps. The “box”
(JN) represents the neural network.

The function mapping of the network can be ex-
pressed as,

M(t:) = fF(M(ti-1), 1, C)

where f is an unknown mapping developed by the
neural network. According to this model, the cumu-

lative faults at time ¢; 1s a function of the cumulative
time, the cumulative code churn and the cumulative
faults at the previous time step. This realization of the
model 1s analogous to the extended model developed
by Dalal and McIntosh [3].

4 Results
4.1 Fit of the Model

To evaluate the quality of the fit of the neural net-
work approach, we constructed two different Jordan
style networks. The first network had the staff day
as the only external input. The second network, on
the other hand, had both the staff day and the cumu-
lative code churn as external inputs. Figure 4 shows
the schematic representation of the second network
model. The network had a clipped linear unit [8] in
the output layer and sigmoidal units in the hidden
layer. The network was constructed and trained us-
ing the Cascade-Correlation algorithm. The Cascade-
Correlation algorithm is a constructive algorithm that
can be used not only to train a network but also to
construct a suitable network. During training, the
Cascade-Correlation starts with a minimal network
(i.e., a network with no hidden units) and progres-
sively adds the required number of hidden units until
the learning is successfully completed. However, the
number of hidden units added to the network and the
final weights of a trained network can vary depending
on the random weight values used at the beginning of
the training. This can introduce statistical variation
in the fit as well as the predictions of the model. To
reduce such variations and to get a better statistics
we constructed and trained networks using 50 differ-
ent initial weight vectors. The results reported in this
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Figure 5: Fit of the Neural Network Models.

section are based on the averages obtained from 50 tri-
als. The final fit of the networks with and without the
code churn information are shown in Figure 5. The
solid line in Figure 5 represents the actual cumulative
faults observed. The dotted line is the fit of the net-
work with the code churn input. The fit of the network
without the code churn information is represented in
a dash line. Note that both fits look almost similar.
However, a closer look at these fits revealed that the
network that used the code churn information is closer
to the actual data than the network without the code
churn information. This observation agrees with the
result of Dalal and McIntosh [3].

4.2 A Diagnostic Plot

In order to check whether there are bias in the fit of
the models, a simple diagnostic plot was constructed
using the residuals from the final fit of the models. For
the purpose of illustration, the diagnostic plot for the
network with the code churn information is shown in
Figure 6.

The residuals in Figure 6 represent the difference
between the change in the observed number of cumu-
lative faults and the change in the number of cumu-
lative faults of the fit of the model. The residuals for
the plot are obtained as follows:

Residuals = {(M(t;)— M (t;—1))— (M (t:)— M (ti_1))}

where M () and M(t) represent the observed faults
and the fit of the model respectively. The residuals
are analogous to the derivative of M (¢) and reflect the
sensitivity (or bias) of the local behavior of the fit.
The diagnostic plot suggests that there is no overall
major trend in the fit of the neural network model.

4.3 Prediction Results

Even if the fit of a model is good, that does not
guarantee that its predictions will always be accurate.
A good model also should provide accurate predic-
tions of future faults. In order to assess the predictive
capability of the model we used two extreme predic-
tion horizons: the next-step prediction (NSP), for the
cumulative faults at the end of the next time step;
and the end-point prediction (EPP), for the cumula-
tive faults at the end of the test phase. When an
extended model like the one developed in this paper is
used for predicting future events, one has to know not
only the execution time corresponding to a future day
but also a precise information about the code churn.
We solved this issue by using the size of the code cor-
responding to the final value of the code churn in the
training data to all future predictions (i.e., the value
of the code size of the last point in the training data
was considered as the size of the final code). Note
that this issue does not arise if we do not use the code
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Figure 6: Diagnostics: Residuals vs. Staff Days.

churn information.

The neural networks cannot predict well without
sufficient training data. This is analogous to using in-
sufficient data to estimate the parameters of a stochas-
tic model. In our prediction experiment, the size of
the training set was gradually increased from a min-
imal set consisting of all data points before the “soft
freeze” up to a set with all but the last point in the
failure history. In order to gauge the predictive qual-
ity of the neural network model we used the average
relative error (ARFE) used by Malaiya et al. [10]. The
average relative error measure is defined as

n—1 9
1 M(t;) — M(t;)
ARE_n—k—li_Zk;H M(tz)

where n is the number of points in data set, k is the
number of points in the training set corresponding to
the soft freeze and n — k — 1 1s the prediction window.
ARFE provides a summary of how well the model pre-
dicts across a window of the future failure history. The
predictive performance of the neural network models
for the two extreme prediction horizons are summa-
rized in Table 1. The “Mean” and “SD” represent the
mean and the standard deviation of the ARE measure
over 50 trials. These results suggest that the network
with the code churn information is capable of pro-
viding a more accurate prediction than the network

without the code churn information.

5 Conclusion

We demonstrated that one can easily extend the ex-
ecution time based neural network framework to incor-
porate the code churn information. Our preliminary
results suggest that incorporating the code churn in-
formation can help both the fit as well as the predictive
accuracy of the neural network models. However, we
do note that the results presented here are preliminary
and they have yet to be compared with the results of
the existing models. This will be explored in future.

Dalal and Mallows [1, 2] proposed and integrated
an economic model to decide when one should stop
testing. The economic model 1s based on the tradeoff
between the cost of testing software (i.e., not releasing
in time) and the cost of releasing it. In the future, we
plan to integrate their economic model with the neural
network framework.

Often, one is interested in predicting not only the
cumulative faults but also other quantities such as the
rate of occurrence of failure, mean time to failure etc.
The extended neural network model developed in this
study represent only the cumulative faults. However,
if one is interested in the failure rate expression, it is
straightforward to derive it from the expression for the



Neural Network NSP EPP
Model Mean SD Mean SD
Without Code Churn | 3.834 | 1.883 | 26.342 | 8.417
With Code Churn 2.955 | 1.803 | 17.27 | 5.837

Table 1: A Summary of Prediction Results in Terms of ARE.

cumulative faults using the method outlined in [8].

There are several advantages with an extended soft-

ware reliability growth model:

e From a modeling point of view, it demonstrates

how one can extend a time-domain based model,
whether it is based on the neural network frame-
work or the standard stochastic approach, by in-
corporating continuous code churn information.

From an information theoretic point view, the ex-
tended model is appealing because it is based on
more information about the failure process than
the traditional execution time-based model. As a
first approximation, we directly included the code
size in the extended model. However, this need
not be the case; one can preprocess the code (i.e.,
perform a static analysis on the code to extract
relevant static complexity measures) and then use
the preprocessed outputs to build a more sophis-
ticated software reliability growth model.

One can also use the extended model in the early
stages of the software development cycle because
the model does not require the existence of code
for the complete system.
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