Appeared in Proceedings of ISSRE’'98, 5—7 Novenit#98, pp. 174-178 (IEEE Computer Society Press).

Model-Based Testing
of a Highly Programmable System

S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott
Bellcore Applied Research, 445 South Street, Morristown NJ 07960, USA
{sid, jain, karun, jleaton, lo}@bellcore.com

Abstract We report on our experience from two projects that ap-
plied principles of model-based testing to generate black-
The paradigm of model-based testing shifts the focus ofbox tests for Bellcore’s Intelligent Services Control Point

testing from writing individual test cases to developing a (ISCP). Model-based testing for the ISCP promised two sig-
model from which a test suite can be generated automati-nificant advantages over manual test creation. The first and
cally. We report on our experience with model-based test- most compelling advantage was coping with change: in re-
ing of a highly programmable system that implements in- sponse to changes in the product or the test criteria, the test
telligent telephony services in the U.S. telephone network.organization would simply regenerate a test suite automat-
Our approach used automatic test-case generation technol-ically. Second, we hypothesized that the use of pairwise-
ogy to develop sets of self-checking test cases based on aomplete tuples generated by Bellcore’s AETSsoftware
machine-readable specification of the messages in the prosystem would reveal more failures than tuples selected by
tocol under test. The AET® software system selected the traditional, manual approach. Previous experience with
a minimal number of test-data tuples that covered pairwise model-based testing using the AETG software system was
combinations of tuple elements. We found the combinatorialhighly promising [4].
approach of covering pairwise interactions between input The problems in the work of automatically generating
fields to be highly effective. Our tests revealed failures thattest cases for a reactive system using a test model include at
would have been difficult to detect using traditional test de- least the following items:
signs. However, transferring this technology to the testing
organization was difficult. Automatic generation of cases
represents a significant departure from conventional testing 5 Combining individual field values into test-case input

practice due to the large number of tests and the amountof ,5je5 such that constraints among fields are satisfied
software development involved.

Keywords: model-based software testing, automatictest- 3. Choosing number of tests (test termination criteria)
case generation, ISCP, AETG software system.

1. Selecting valid and invalid values for individual fields

4. Developing scaffolding for running the tests

) 5. Calculating the expected results (i.e., an oracle)
1. Introduction
6. Demonstrating the effectiveness of the effort.
Telephone users expect extremely high reliability of tele-

hone networks and services. and both equioment and ser- A conventional approach was used to select individual
P ' quip values (item 1), much like the approach in [5]. Values were

vice p.rowders dedicate themselyes to satisfying those X selected based on the data type, with emphasis on boundary
pectations. However, especially in the current era of com-
and average values.

petition in telecommunications markets, resources must be This work used a novel approach for items 2 and 3,

applied judiciously. The goal of our work was generating amely the AETG software system that was developed in

comprehensive test sets for a telephone network elemengellcore’s Applied Research division [4]. The AETG soft-
that would significantly enhance the reliability of the system . .
ware system supports the generation of input test data (tu-

yet cost little to generate. By enhancing the productivity of ples) in which every distinct value possible for each tuple

thg test organl.zatlon, we expec?t they will be able to re5p0nc}lelement appears at least once with every other distinct value
quickly to an increasingly rapid cycle of product releases

while maintaining high standards of system reliability. LAETG is a registered trademark of Bellcore.

of every other tuple element, a notion called pairwise cov- Category Examples

erage. The size of the test suite (item 3) is determined by Arithmetic add, subtract, multiply

the number of tuples required to attain pairwise coverage. String clrbit, setbit, concat, match
The value of the AETG software system is that it achieves Logical and, or, xor

pairwise coverage with test suites that are a tiny fraction of Time and date datestr, timestr, date+, time+
the size that would be required for exhaustive testing. Table addrow, delrow, selrow

The work required to develop test scaffolding dominated
the projects (item 4). We spent considerable time automat-
ing the creation of that scaffolding.

Because individual test cases were relatively simple, ex-
pected outputs could be computed easily (item 5). Expectedincludes both inputs and expected outputs.) Ramamoorthy
outputs and comparison logic were embedded in some tesgt al. discuss the use of symbolic execution to discover the
cases, making them self-checking. test data that will achieve statement, branch, and path cov-

Since this was a pilot of model-based testing, we wantederage [12]. Bird and Munoz discuss specific test-case gen-
to demonstrate its effectiveness by measuring the differenceerators with emphasis on generating self-checking code to
between the old and new approaches (item 6). However, outsupport compiler testing [1]. Ince surveys previous work on
work supplemented existing test suites (rather than replac-selecting test data [8]. Ostrand and Balcer discuss work that
ing them), so calculating the return on this investment is js quite close to ours, in that they generate functional test

Table 1. Manipulators tested in project 1

difficult. Preliminary results are discussed later. suites automatically using formal test specifications [10].
Camuffo et al. report on an approach based on annotated
2. Background and Related Work grammars that seems especially suited to generating tests

for compilers [3]. Maurer reviews the advantages and dis-
This section gives an overview of the system under test@dvantages of generating test data with context-free gram-

and discusses related work on model-based testing. mars [9]. Burgess reviews the main techniques in construct-
ing systems to generate test data [2].
2.1. System under test The use of techniques from experimental design to

choose test-case tuples is relatively new. Cohen et al. re-

The system under test was Bellcore’s Integrated Serviced?©rt On previous experience with developing and using the

Control Point (ISCP). The ISCP implements telephony ser- A_ETG softwgre system [4]. Heller discusses the use of de.-
vices in the telephone networks deployed in the U.S. andsian of experiment structures to choose test cases [7]. Duni-

elsewhere. This reactive system receives messages from gtz et al. report on their experience with attaining code cov-

telephone end office (switch) concerning a telephone call,€rade based on 2-way, 3-way, and higher coverage of values

executes some logic to choose a suitable response, an&nthmtest tuples [6].

sends a message to direct continued processing of the call.

Mass-market services implemented by the ISCP include3. Project 1: Basic Manipulators

toll-free numbers, dialing by voice, and user authentication

for wireless handsets. The first project addressed the automatic generation of
The ISCP software is built from several million lines test cases for basic manipulators provided by the ISCP soft-

of code and is a highly programmable system. The ISCPware. These manipulators are basic infrastructure used in

project manages a rapid release cycle due to specific taievery release of the software. Approximately two staff

loring done for individual customers. This tailoring is nec- years were devoted to this effort.

essary for the system to function properly in a customer’s

network, and affects the system sufficiently that each tai- 3.1. Scope of the tests to be generated

lored system is tested separately. Because the releases are

closely related, model-based testing promised significant Table 1 summarizes the manipulators that were tested.

advantages to the project. Individual data values were chosen manually, with special
attention to boundary values. Tuples (i.e., combinations of
2.2. Model-based testing test data) were generated by the AETG software system to

achieve pairwise coverage of all valid values. Testing of ta-
Much work has been done on automated generation ofble manipulators was slightly different because both tables
test data and test cases, with significant emphasis on testingnd table operations were generated.
compilers using automatically generated bits of code. (As All manipulators were tested using service logic on the
used in this paper, test data means test inputs; a test caskSCP that performed each operation, compared the result

Field Values Field Values
Type of operand 1| int, float, hex Column 1 data type hex, int, float, string, date
Value of operand 1 min, max, hominal Used as key? yes, ho
Operator 1 +o%, [y — Use in sel. criteria? yes, no
Type of operand 2| int, float, hex Column 2 data type hex, int, float, string, date
Value of operand 2 min, max, hominal Used as key? yes, ho
Operator 2 +o%, [y — Use in sel. criteria? yes, no
Type of operand 3| int, float, hex Column 3 data type hex, int, float, string, date
Value of operand 3 min, max, hominal Used as key? yes, ho

Use in sel. criteria? yes, no

Table 2. AETG software system relation for an

expression with 3 operators Table 3. Relation for testing 3-column tables

and for each column an indication whether that column is a
to an embedded expected value, and reported success Qfey for the table. A selection schema states which columns
failure. The effort to create the required service logic re- wjll participate in a query. Table 3 gives a relation for cre-
quired more time than any other project element. The only ating table and selection schemas for three-column tables.
way to create service logic on the ISCP is via a graphical Except for the addrow operation, all the other operations
service creation environment (known as SPACE). The GUI haye to specify a selection criteria. For the example given
test-automation tod@A Partnerwas used to drive the GUI. iy Table 3, the AETG software system creates 24 table and

Each test was initiated by sending a message, and theselection schemas instead of approximately 8000 in the ex-
result was indicated by the contents of a return messagehaustive case. Since ISCP imposed a limit of 15 columns
Appropriate system inputs (messages) had to be created. on their tables, we decided to model tables with 15 columns
only. Instead of exhaustively testisé® « 230 test cases, the
AETG software system created only 45 test cases.

Following the generation of table and selection schemas,

Table 2 shows a model (an AETG software system re- instances were created for each. Exactly one instance was
lation) for generating test cases. In this example, each testreated for each table schema; adam data generator
case consists of an arithmetic expression with two operatorsvas used to populate the table instance. &ach selec-
and three operands. The table lists all possibilitiegtuh. tion schema that was generated for a particular table, six
An example test case could be “int min + float max * hex selection instances were created. For example, if the se-
nominal” which might be implemented as “0 + 9.9E9 * ab.” lection schema for a table indicated that only columns 1
The AETG software system creates 18 test cases for cov-and 2 participate, one selection instance might look like “ta-
ering all the pairwise interactions as compared to 11,664blel.columnl =1 AND tablel.column2 = ABC."
test cases required for exhaustive testing. We created ex- Of the six selection instances (six was chosen arbitrar-
pressions with 5 operators. Instead of exhaustively testingily), three selections were for rows that existed in the table
312 x 4% combinations, the AETG software system gener- and three were for rows that did not exist. The target rows
ated just 24 test cases. Similar tables were used to creatéor the successful selections were randomly chosen from
test cases for the other basic manipulators. the newly generated table instance by a program; rows at

After the test cases were generated, expected output wathe beginning, middle, and end of the table were favored.
computed manually, which was feasible due to the small The three unsuccessful queries were generated by invalidat-
number of test cases. Appropriate logic was appended to théng the three successful cases.
test cases so they would check and report their own results.

3.4. Results and Payoff

3.2. Testing arithmetic/string manipulators

3.3. Testing table manipulators
Table 4 summarizes the results. Approximately 15% of
Two steps were required to test table manipulators, the generated test cases revealed system failures. The fail-
namely generation of tables with data and generation ofures were analyzed to discover patterns, resulting in the
gueries to be run against the newly generated tables. identification of several problem classes. These problem
In the first step, the AETG software system was used to classes included mishandled boundary values, unexpected
generate table and selection schemas. A table schema speections taken on invalid inputs, and numerous inconsisten-
ifies the number of columns, the data type of each column,cies between the implementation and the documentation.

Basic manipulators Message parsing and building

Total test cases 1601 Total test cases approx. 4,500

Failed testcases 213 Failed test cases approx. 5%

Failure classes 43 Failure classes 24
Table 4. Results from testing manipulators Table 5. Results from testing messages

Several of the failures were revealed only under certain 4.3. The test-generation system
combinations of values. For example, if a table had a com-
pound key, and if only a subset of these key columns were The first step in generating tests was extracting a model
specified in the selection criteria, then the system would ig- of the data (a test specification) from the message-set spec-
nore any non-key column in the criteria during selection. ification. Challenges that were overcome in developing the
After developing the test-generation system for one re- data model included null values for message parameters,
lease of the ISCP software, test suites were generated focomplex parameters (e.g., lists and other variable-length
two subsequent releases with just one staff-week of efforttypes), and upper bounds on the total message size.

each. In adiion to increasing the reliability of the prod- Message parameter values were chosen individually.

uct, the testing organization gained a tool that can be usedThe AETG software system was then used to construct mes-

to generate a compact and potent test suite. sages (i.e., tuples of values) such that all pairwise combina-
tions of parameter values were covered.

4. Project 2: Message Parsing and Building The strategy for testing an outgoing message was to build

the message inthe ISCP, send the message out, and compare
the output with the expected result using a text-comparison
%ol. The strategy for testing an incoming message was to
&endina message to the ISCP using a call-simulation tool,
then to compare the message received with expected values
embedded in the logic (making the case self-checking).
Following the selection of tuples, all required elements
) were generated. These elements included scripts to simu-
4.1. The opportunity late calls, expected outputs, ISCP logic, and test specifica-
tions. Again the GUI test-automati@pA Partnerwas used
The ISCP project created a model of the message set thafo create the logic on the ISCP.
would enable the development group to cope with changes. Each test case was run by simulating a telephone call.
This machine-readable specification was an opportunity toTests of incoming messages were initiated by sending a

The second project addressed the automatic generatio
of test cases for a particular message set supported by th
ISCP. Test cases were required to exercise functionality for
parsing and building the messages. Approximately four
staff-years were dedicated to this effort.

leverage our experience with model-based testing. message with a full set of parameter values; success or fail-
ure was indicated by the contents of a return message. Tests
4.2. Scope of the tests to be generated of outgoing messages were initiated by sending a message

with just enough information to cause the outgoing message

Testing the message set’s parsing and bu||d|ng func-to be sent; success or failure was determined by Comparing
tionality meant checking that all parameters from all mes- the output with an expected output.
sages could be read in from the network and sent out to
the network. The message set under test consisted of 2%.4. Results and Payoff
guery messages and associated response messages (total 50
unique messages). A query message can come in to the Table 5 summarizes the results. Failures were revealed
ISCP from a network element or be sent out from the ISCP while developing the test-generation system and running the
to other network elements. Similarly, a response messagegenerated tests. After analysis of all problems, 24 distinct
can come in to the ISCP or be sent out from the ISCP. failure classes were identified and submitted for repair.

Each message had 0 to 25 parameters. Parameters in- Following the transfer of this technology to the testing
cluded scalars (e.g., integers), fixed collections of scalarsorganization, the ISCP project will be able to generate test
(structs), and variable-length collections of arbitrary types. suites for subsequent revisions of the message set at ex-
Ultimately all parameters can be viewed as collections of tremely low cost. Significantly, the test suite can be gener-
scalars. Included in the generated tests were deliberate misated early in the release cycle, so the tests can be executed
matches of values to rule out false positive matches. as soon as an executable version is available.

5. Conclusion by the AETG software system. The generated test suites did
not replace existing tests but rather augmented them, mak-
We offer lessons learned about Systems that generatei’ng the calculation of cost-benefit ratios difficult. The in-

document, execute, and evaluate thousands of test cases. Vestment in test-generation techology yielded concrete ben-
efits, and the ISCP project plans to apply this technology to

new areas. The ISCP project is now able to generate test
suites following changes in certain areas at low cost, which
is expected to improve reliability in the field significantly.

Model of the test data is fundamental. The model is
comparable with an executable specification; like a speci-
fication, model development requires considerable domain
expertise. For example, permissible data values and com-

plex constraints among data values must be discovered and*Cknowledgements

represented. Although a model-based test-generation sys-

tem will require far more effort to develop than the model, Many thanks to Gene Cracovia, George Hartley, and es-
development of the model should be allocated a significantpecially Isaac Perelmuter for sponsoring our work.

portion of the up-front effort.

References
Model-based testing is a development project. The de-
velopment, application, and ongoing maintenance of a test- [1] D. L. Bird and C. U. Munoz. Automatic generation of
automation system requires expertise from software devel- random self-checking test casedBM Systems Journal
opers and professional testers. This mix of skill sets is diffi- 22(3):229-245, 1983.

cult to find in either a development or a testing organization. 2] C- J- Burgess. Software testing using an automatic genera-
tor of test data. In M. Ross, editdfirst International Con-

ference on Software Quality &magement (SQM93pages
Change must be managed to reduce human effort. Any 541-556, Southampton, UK, Apr. 1993. Comput. Mech.

change in the data model or generation tools generally [3] M. Camuffo, M. Maiocchi, and M. Morselli. Automatic
means regenerating all down-stream data files. Because software test generationinformation and Software Tech-
many support systems were involved in the generation of nology, 32(5):337-346, June 1990.

our test cases, a regeneration effort required considerable [4] P- M- Cohen, S. R. Dalal, M. L. Fredman, and G. C. Pat-
human attention. Future work will identify commonalities ton. The AETG system: An approach to testing based on

in successive versions of nerated test suite to avoid un- combinatorial desigrlEEE Transactions on Software Engi-
ESSIVE VErsions ot a generated test suite to avold u neering 23(7):437-444, July 1997.

necessary regeneration. [5] R.A.DeMillo, R.J. Lipton, and F. G. Sayward. Hints on test
data selection: help for the practicing programmHiEE
Technology transfer requires careful planning. First, Computer11(4):34-41, Apr. 1978.

I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows,
and A. lannino. Applying design of experiments to soft-
ware testing. IfProceedings of the Nineteenth International
Conference on Software Engineeripgges 205-215. ACM

the generation system must respect local practices. For ex- [6]
ample, a test specification document may have to be gen-
erated. These sorts of issues can dramatically increase the

effort required to develop the test-generation system. Sec- Press, May 1997.

ond, automatic generation of cases is a significant departure [7] . Heller. 'Using DOE structures to generate software test
from conventional testing practice due to the large number cases. IrProceedings of the Tufth International Confer-

of tests and the considerable amount of development that is ence on Testing Computer Softwgsages 33—39, Washing-
involved. Testers may not be comfortable with the approach ton, DC, June 1995.

and should therefore be involved throughout. Third, unlike [8] D. C.Ince. The automatic generation of test d&tamputer
a hand-crafted test case, it can be difficult to understand Journal 30(1):63-69, 1987. .
why a particular test was generated (i.e., what exactly is [9] P. M. Maurer. Generating test data with enhanced context-

. . free grammarslEEE Software7(4):50-55, July 1990.
being tested), which lends an unwanted element of mystery[lo] T. J. Ostrand and M. J. Balcer. The category-partition

to each test. For these reasons,'professional testeusds method for specifying and generating functional te€ism-
concentrate more on the underlying test models rather than munications of the ACMB1(6):676—686, June 1988.
a specific test case and the reason it was created. [11] I. M. Perelmuter and D. M. Marks. A proven methodology

for testing IN customer services. Rroceedings of theifth

Summary. The generated test cases revealed numerous International Conference on Iriigence in NetworksBor-
deaux, France, May 1998.

defects that were missed by traditional approaches. Test§;) ¢ v, Ramamoorthy, S. F. Ho, and W. T. Chen. On the auto-
using pairwise combinations of valid values revealed multi- mated generation of program test dateEE Transactions
ple defects that could only be observed given certain pairs of on Software Engineerin@E-2(4):293-300, Dec. 1976.
values, which proved the efficacy of the approach supported

