
Appeared in Proceedings of ISSRE’98, 5–7 November1998, pp. 174–178 (IEEE Computer Society Press).

Model-Based Testing
of a Highly Programmable System

S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott
Bellcore Applied Research, 445 South Street, Morristown NJ 07960, USA

fsid, jain, karun, jleaton, lottg@bellcore.com

Abstract

The paradigm of model-based testing shifts the focus of
testing from writing individual test cases to developing a
model from which a test suite can be generated automati-
cally. We report on our experience with model-based test-
ing of a highly programmable system that implements in-
telligent telephony services in the U.S. telephone network.
Our approach used automatic test-case generation technol-
ogy to develop sets of self-checking test cases based on a
machine-readable specification of the messages in the pro-
tocol under test. The AETGTM software system selected
a minimal number of test-data tuples that covered pairwise
combinationsof tuple elements. We found the combinatorial
approach of covering pairwise interactions between input
fields to be highly effective. Our tests revealed failures that
would have been difficult to detect using traditional test de-
signs. However, transferring this technology to the testing
organization was difficult. Automatic generation of cases
represents a significant departure from conventional testing
practice due to the large number of tests and the amount of
software development involved.

Keywords: model-based software testing, automatic test-
case generation, ISCP, AETG software system.

1. Introduction

Telephone users expect extremely high reliability of tele-
phone networks and services, and both equipment and ser-
vice providers dedicate themselves to satisfying those ex-
pectations. However, especially in the current era of com-
petition in telecommunications markets, resources must be
applied judiciously. The goal of our work was generating
comprehensive test sets for a telephone network element
that would significantly enhance the reliabilityof the system
yet cost little to generate. By enhancing the productivity of
the test organization, we expect they will be able to respond
quickly to an increasingly rapid cycle of product releases
while maintaining high standards of system reliability.

We report on our experience from two projects that ap-
plied principles of model-based testing to generate black-
box tests for Bellcore’s Intelligent Services Control Point
(ISCP). Model-based testing for the ISCP promised two sig-
nificant advantages over manual test creation. The first and
most compelling advantage was coping with change: in re-
sponse to changes in the product or the test criteria, the test
organization would simply regenerate a test suite automat-
ically. Second, we hypothesized that the use of pairwise-
complete tuples generated by Bellcore’s AETGTM software
system1 would reveal more failures than tuples selected by
the traditional, manual approach. Previous experience with
model-based testing using the AETG software system was
highly promising [4].

The problems in the work of automatically generating
test cases for a reactive system using a test model include at
least the following items:

1. Selecting valid and invalid values for individual fields

2. Combining individual field values into test-case input
tuples such that constraints among fields are satisfied

3. Choosing number of tests (test termination criteria)

4. Developing scaffolding for running the tests

5. Calculating the expected results (i.e., an oracle)

6. Demonstrating the effectiveness of the effort.

A conventional approach was used to select individual
values (item 1), much like the approach in [5]. Values were
selected based on the data type, with emphasis on boundary
and average values.

This work used a novel approach for items 2 and 3,
namely the AETG software system that was developed in
Bellcore’s Applied Research division [4]. The AETG soft-
ware system supports the generation of input test data (tu-
ples) in which every distinct value possible for each tuple
element appears at least once with every other distinct value

1AETG is a registered trademark of Bellcore.



of every other tuple element, a notion called pairwise cov-
erage. The size of the test suite (item 3) is determined by
the number of tuples required to attain pairwise coverage.
The value of the AETG software system is that it achieves
pairwise coverage with test suites that are a tiny fraction of
the size that would be required for exhaustive testing.

The work required to develop test scaffolding dominated
the projects (item 4). We spent considerable time automat-
ing the creation of that scaffolding.

Because individual test cases were relatively simple, ex-
pected outputs could be computed easily (item 5). Expected
outputs and comparison logic were embedded in some test
cases, making them self-checking.

Since this was a pilot of model-based testing, we wanted
to demonstrate its effectiveness by measuring the difference
between the old and new approaches (item 6). However, our
work supplemented existing test suites (rather than replac-
ing them), so calculating the return on this investment is
difficult. Preliminary results are discussed later.

2. Background and Related Work

This section gives an overview of the system under test
and discusses related work on model-based testing.

2.1. System under test

The system under test was Bellcore’s Integrated Services
Control Point (ISCP). The ISCP implements telephony ser-
vices in the telephone networks deployed in the U.S. and
elsewhere. This reactive system receives messages from a
telephone end office (switch) concerning a telephone call,
executes some logic to choose a suitable response, and
sends a message to direct continued processing of the call.
Mass-market services implemented by the ISCP include
toll-free numbers, dialing by voice, and user authentication
for wireless handsets.

The ISCP software is built from several million lines
of code and is a highly programmable system. The ISCP
project manages a rapid release cycle due to specific tai-
loring done for individual customers. This tailoring is nec-
essary for the system to function properly in a customer’s
network, and affects the system sufficiently that each tai-
lored system is tested separately. Because the releases are
closely related, model-based testing promised significant
advantages to the project.

2.2. Model-based testing

Much work has been done on automated generation of
test data and test cases, with significant emphasis on testing
compilers using automatically generated bits of code. (As
used in this paper, test data means test inputs; a test case

Category Examples
Arithmetic add, subtract, multiply
String clrbit, setbit, concat, match
Logical and, or, xor
Time and date datestr, timestr, date+, time+
Table addrow, delrow, selrow

Table 1. Manipulators tested in project 1

includes both inputs and expected outputs.) Ramamoorthy
et al. discuss the use of symbolic execution to discover the
test data that will achieve statement, branch, and path cov-
erage [12]. Bird and Munoz discuss specific test-case gen-
erators with emphasis on generating self-checking code to
support compiler testing [1]. Ince surveys previous work on
selecting test data [8]. Ostrand and Balcer discuss work that
is quite close to ours, in that they generate functional test
suites automatically using formal test specifications [10].
Camuffo et al. report on an approach based on annotated
grammars that seems especially suited to generating tests
for compilers [3]. Maurer reviews the advantages and dis-
advantages of generating test data with context-free gram-
mars [9]. Burgess reviews the main techniques in construct-
ing systems to generate test data [2].

The use of techniques from experimental design to
choose test-case tuples is relatively new. Cohen et al. re-
port on previous experience with developing and using the
AETG software system [4]. Heller discusses the use of de-
sign of experiment structures to choose test cases [7]. Duni-
etz et al. report on their experience with attaining code cov-
erage based on 2-way, 3-way, and higher coverage of values
within test tuples [6].

3. Project 1: Basic Manipulators

The first project addressed the automatic generation of
test cases for basic manipulators provided by the ISCP soft-
ware. These manipulators are basic infrastructure used in
every release of the software. Approximately two staff
years were devoted to this effort.

3.1. Scope of the tests to be generated

Table 1 summarizes the manipulators that were tested.
Individual data values were chosen manually, with special
attention to boundary values. Tuples (i.e., combinations of
test data) were generated by the AETG software system to
achieve pairwise coverage of all valid values. Testing of ta-
ble manipulators was slightly different because both tables
and table operations were generated.

All manipulators were tested using service logic on the
ISCP that performed each operation, compared the result

2



Field Values
Type of operand 1 int, float, hex
Value of operand 1 min, max, nominal
Operator 1 +; �; =;�
Type of operand 2 int, float, hex
Value of operand 2 min, max, nominal
Operator 2 +; �; =;�
Type of operand 3 int, float, hex
Value of operand 3 min, max, nominal

Table 2. AETG software system relation for an
expression with 3 operators

to an embedded expected value, and reported success or
failure. The effort to create the required service logic re-
quired more time than any other project element. The only
way to create service logic on the ISCP is via a graphical
service creation environment (known as SPACE). The GUI
test-automation toolQA Partnerwas used to drive the GUI.

Each test was initiated by sending a message, and the
result was indicated by the contents of a return message.
Appropriate system inputs (messages) had to be created.

3.2. Testing arithmetic/string manipulators

Table 2 shows a model (an AETG software system re-
lation) for generating test cases. In this example, each test
case consists of an arithmetic expression with two operators
and three operands. The table lists all possibilities foreach.
An example test case could be “int min + float max * hex
nominal” which might be implemented as “0 + 9.9E9 * ab.”
The AETG software system creates 18 test cases for cov-
ering all the pairwise interactions as compared to 11,664
test cases required for exhaustive testing. We created ex-
pressions with 5 operators. Instead of exhaustively testing
3
12
� 4

5 combinations, the AETG software system gener-
ated just 24 test cases. Similar tables were used to create
test cases for the other basic manipulators.

After the test cases were generated, expected output was
computed manually, which was feasible due to the small
number of test cases. Appropriate logic was appended to the
test cases so they would check and report their own results.

3.3. Testing table manipulators

Two steps were required to test table manipulators,
namely generation of tables with data and generation of
queries to be run against the newly generated tables.

In the first step, the AETG software system was used to
generate table and selection schemas. A table schema spec-
ifies the number of columns, the data type of each column,

Field Values
Column 1 data type hex, int, float, string, date
Used as key? yes, no
Use in sel. criteria? yes, no
Column 2 data type hex, int, float, string, date
Used as key? yes, no
Use in sel. criteria? yes, no
Column 3 data type hex, int, float, string, date
Used as key? yes, no
Use in sel. criteria? yes, no

Table 3. Relation for testing 3-column tables

and for each column an indication whether that column is a
key for the table. A selection schema states which columns
will participate in a query. Table 3 gives a relation for cre-
ating table and selection schemas for three-column tables.

Except for the addrow operation, all the other operations
have to specify a selection criteria. For the example given
in Table 3, the AETG software system creates 24 table and
selection schemas instead of approximately 8000 in the ex-
haustive case. Since ISCP imposed a limit of 15 columns
on their tables, we decided to model tables with 15 columns
only. Instead of exhaustively testing515 �230 test cases, the
AETG software system created only 45 test cases.

Following the generation of table and selection schemas,
instances were created for each. Exactly one instance was
created for each table schema; a random data generator
was used to populate the table instance. Foreach selec-
tion schema that was generated for a particular table, six
selection instances were created. For example, if the se-
lection schema for a table indicated that only columns 1
and 2 participate, one selection instance might look like “ta-
ble1.column1 = 1 AND table1.column2 = ABC.”

Of the six selection instances (six was chosen arbitrar-
ily), three selections were for rows that existed in the table
and three were for rows that did not exist. The target rows
for the successful selections were randomly chosen from
the newly generated table instance by a program; rows at
the beginning, middle, and end of the table were favored.
The three unsuccessful queries were generated by invalidat-
ing the three successful cases.

3.4. Results and Payoff

Table 4 summarizes the results. Approximately 15% of
the generated test cases revealed system failures. The fail-
ures were analyzed to discover patterns, resulting in the
identification of several problem classes. These problem
classes included mishandled boundary values, unexpected
actions taken on invalid inputs, and numerous inconsisten-
cies between the implementation and the documentation.

3



Basic manipulators
Total test cases 1601
Failed test cases 213
Failure classes 43

Table 4. Results from testing manipulators

Several of the failures were revealed only under certain
combinations of values. For example, if a table had a com-
pound key, and if only a subset of these key columns were
specified in the selection criteria, then the system would ig-
nore any non-key column in the criteria during selection.

After developing the test-generation system for one re-
lease of the ISCP software, test suites were generated for
two subsequent releases with just one staff-week of effort
each. In addition to increasing the reliability of the prod-
uct, the testing organization gained a tool that can be used
to generate a compact and potent test suite.

4. Project 2: Message Parsing and Building

The second project addressed the automatic generation
of test cases for a particular message set supported by the
ISCP. Test cases were required to exercise functionality for
parsing and building the messages. Approximately four
staff-years were dedicated to this effort.

4.1. The opportunity

The ISCP project created a model of the message set that
would enable the development group to cope with changes.
This machine-readable specification was an opportunity to
leverage our experience with model-based testing.

4.2. Scope of the tests to be generated

Testing the message set’s parsing and building func-
tionality meant checking that all parameters from all mes-
sages could be read in from the network and sent out to
the network. The message set under test consisted of 25
query messages and associated response messages (total 50
unique messages). A query message can come in to the
ISCP from a network element or be sent out from the ISCP
to other network elements. Similarly, a response message
can come in to the ISCP or be sent out from the ISCP.

Each message had 0 to 25 parameters. Parameters in-
cluded scalars (e.g., integers), fixed collections of scalars
(structs), and variable-length collections of arbitrary types.
Ultimately all parameters can be viewed as collections of
scalars. Included in the generated tests were deliberate mis-
matches of values to rule out false positive matches.

Message parsing and building
Total test cases approx. 4,500
Failed test cases approx. 5%
Failure classes 24

Table 5. Results from testing messages

4.3. The test-generation system

The first step in generating tests was extracting a model
of the data (a test specification) from the message-set spec-
ification. Challenges that were overcome in developing the
data model included null values for message parameters,
complex parameters (e.g., lists and other variable-length
types), and upper bounds on the total message size.

Message parameter values were chosen individually.
The AETG software system was then used to construct mes-
sages (i.e., tuples of values) such that all pairwise combina-
tions of parameter values were covered.

The strategy for testing an outgoing message was to build
the message in the ISCP, send the message out, and compare
the output with the expected result using a text-comparison
tool. The strategy for testing an incoming message was to
send in a message to the ISCP using a call-simulation tool,
then to compare the message received with expected values
embedded in the logic (making the case self-checking).

Following the selection of tuples, all required elements
were generated. These elements included scripts to simu-
late calls, expected outputs, ISCP logic, and test specifica-
tions. Again the GUI test-automationQA Partnerwas used
to create the logic on the ISCP.

Each test case was run by simulating a telephone call.
Tests of incoming messages were initiated by sending a
message with a full set of parameter values; success or fail-
ure was indicated by the contents of a return message. Tests
of outgoing messages were initiated by sending a message
with just enough information to cause the outgoing message
to be sent; success or failure was determined by comparing
the output with an expected output.

4.4. Results and Payoff

Table 5 summarizes the results. Failures were revealed
while developing the test-generation system and running the
generated tests. After analysis of all problems, 24 distinct
failure classes were identified and submitted for repair.

Following the transfer of this technology to the testing
organization, the ISCP project will be able to generate test
suites for subsequent revisions of the message set at ex-
tremely low cost. Significantly, the test suite can be gener-
ated early in the release cycle, so the tests can be executed
as soon as an executable version is available.

4



5. Conclusion

We offer lessons learned about systems that generate,
document, execute, and evaluate thousands of test cases.

Model of the test data is fundamental. The model is
comparable with an executable specification; like a speci-
fication, model development requires considerable domain
expertise. For example, permissible data values and com-
plex constraints among data values must be discovered and
represented. Although a model-based test-generation sys-
tem will require far more effort to develop than the model,
development of the model should be allocated a significant
portion of the up-front effort.

Model-based testing is a development project. The de-
velopment, application, and ongoing maintenance of a test-
automation system requires expertise from software devel-
opers and professional testers. This mix of skill sets is diffi-
cult to find in either a development or a testing organization.

Change must be managed to reduce human effort. Any
change in the data model or generation tools generally
means regenerating all down-stream data files. Because
many support systems were involved in the generation of
our test cases, a regeneration effort required considerable
human attention. Future work will identify commonalities
in successive versions of a generated test suite to avoid un-
necessary regeneration.

Technology transfer requires careful planning. First,
the generation system must respect local practices. For ex-
ample, a test specification document may have to be gen-
erated. These sorts of issues can dramatically increase the
effort required to develop the test-generation system. Sec-
ond, automatic generation of cases is a significant departure
from conventional testing practice due to the large number
of tests and the considerable amount of development that is
involved. Testers may not be comfortable with the approach
and should therefore be involved throughout. Third, unlike
a hand-crafted test case, it can be difficult to understand
why a particular test was generated (i.e., what exactly is
being tested), which lends an unwanted element of mystery
to each test. For these reasons, professional testers should
concentrate more on the underlying test models rather than
a specific test case and the reason it was created.

Summary. The generated test cases revealed numerous
defects that were missed by traditional approaches. Tests
using pairwise combinations of valid values revealed multi-
ple defects that could only be observed given certain pairs of
values, which proved the efficacy of the approach supported

by the AETG software system. The generated test suites did
not replace existing tests but rather augmented them, mak-
ing the calculation of cost-benefit ratios difficult. The in-
vestment in test-generation techology yielded concrete ben-
efits, and the ISCP project plans to apply this technology to
new areas. The ISCP project is now able to generate test
suites following changes in certain areas at low cost, which
is expected to improve reliability in the field significantly.

Acknowledgements

Many thanks to Gene Cracovia, George Hartley, and es-
pecially Isaac Perelmuter for sponsoring our work.

References

[1] D. L. Bird and C. U. Munoz. Automatic generation of
random self-checking test cases.IBM Systems Journal,
22(3):229–245, 1983.

[2] C. J. Burgess. Software testing using an automatic genera-
tor of test data. In M. Ross, editor,First International Con-
ference on Software Quality Management (SQM93), pages
541–556, Southampton, UK, Apr. 1993. Comput. Mech.

[3] M. Camuffo, M. Maiocchi, and M. Morselli. Automatic
software test generation.Information and Software Tech-
nology, 32(5):337–346, June 1990.

[4] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Pat-
ton. The AETG system: An approach to testing based on
combinatorial design.IEEE Transactions on Software Engi-
neering, 23(7):437–444, July 1997.

[5] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: help for the practicing programmer.IEEE
Computer, 11(4):34–41, Apr. 1978.

[6] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows,
and A. Iannino. Applying design of experiments to soft-
ware testing. InProceedings of the Nineteenth International
Conference on Software Engineering, pages 205–215. ACM
Press, May 1997.

[7] E. Heller. Using DOE structures to generate software test
cases. InProceedings of the Twelfth International Confer-
ence on Testing Computer Software, pages 33–39, Washing-
ton, DC, June 1995.

[8] D. C. Ince. The automatic generation of test data.Computer
Journal, 30(1):63–69, 1987.

[9] P. M. Maurer. Generating test data with enhanced context-
free grammars.IEEE Software, 7(4):50–55, July 1990.

[10] T. J. Ostrand and M. J. Balcer. The category-partition
method for specifying and generating functional tests.Com-
munications of the ACM, 31(6):676–686, June 1988.

[11] I. M. Perelmuter and D. M. Marks. A proven methodology
for testing IN customer services. InProceedings of the Fifth
International Conference on Intelligence in Networks, Bor-
deaux, France, May 1998.

[12] C. V. Ramamoorthy, S. F. Ho, and W. T. Chen. On the auto-
mated generation of program test data.IEEE Transactions
on Software Engineering, SE-2(4):293–300, Dec. 1976.

5


