A Connectionist Approach for

Incorporating Continuous Code

Churn into Software Reliability
Growth Models

N. Karunanithi

Room 2E-378, Bellcore
445, South Street, Morristown, NJ 07960

karun@©faline.bellcore.com

Abstract

A large number of execution-time based reliability growth models
have been proposed for estimating reliability of software systems. One
of the key assumptions made in almost all of the models is that the
complete code for the system is available before testing starts and that
the code remains frozen during testing. However, this assumption is
often violated in large software projects because usually the code is
developed in parts. This paper demonstrates the applicability of the
neural network approach to the problem of developing an extended
software reliability growth model in the face of continuous code churn.
In this preliminary study, neural network reliability models with and
without the code churn information are compared using a data set
from a large telecommunication system. The results suggest that the
neural network model with the code churn information is capable of
providing a more accurate prediction of future faults than the model
without the code churn information.

1 Introduction

A large number of dynamic reliability models for have been proposed for
estimating reliability growth of software systems. These analytic models de-
scribe the failure process as a function of execution time (or calendar time)

and are based on many simplifying assumptions [8]. One of the key assump-
tions made by many of the existing analytic models is that the code size
remains unchanged during testing. This assumption may not be valid for
most large software systems because the program undergoes change during
development.

Evolving programs can introduce a variety of complications for both soft-
ware engineers and the software reliability estimate. For software engineers,
an evolving program becomes a moving target during testing. Furthermore,
the testing team cannot have uniform confidance on all parts of an evolving
program because the code which is included early on would be exercised
more often than the parts that are included later. From software reliability
estimation point of view, the program evolution introduces complications in
efforts such as data collection, modeling, analysis and interpretation. Thus,
in the face of program evolution the existing execution time based software
reliability growth models may not be able to provide a trustworthy estimate
without proper extensions.

In order to deal with a continuously evolving code (or “code churn”)
Dalal and McIntosh [2] proposed a simple extension to a Poisson process
model and empirically demonstrated that adding the code churn information
can improve the fit of the model. This paper demonstrates the applicabil-
ity of the neural network approach to the problem of modeling software
reliability growth in the face of continuous code churn. In this preliminary
empirical study, neural network reliability models with and without the code
churn information are compared using a data set from a large telecommuni-
cation system. The results suggest that the neural network model with the
code churn information is capable of providing a more accurate prediction
of future faults than the model without the code churn information.

2 The Data Set

The data set used for this study is from a large telecommunication sys-
tem consisting of approximately 7 million non-commentary source lines [2].
The particular release for which the reliability model is applied had around
400,000 new or changed non-commentary source lines (NCNCSL). Since
the testing was performed in a highly distributed environment the time was
measured in “staff days”. The “staff day” metric represents the amount of
time a tester actually spends every day on testing the current release. Figure
1 illustrates the continuous code churn as a function of staff days. The ver-
tical (dashed) line indicates the date on which the system was frozen. After
the “soft freeze”, no functionality was added to the system and subsequent
changes reflect only fault fixes. Though several subsystems were delivered
at the start of the testing, only a subset of them were actually tested. This

Raw NCNCSL —
Prorated NCNCSL -
Soft Freeze ——-

Cumulative Code Size (KLOC)
N
o
@

0 200 400 600 800 1000 1200 1400
Cumulative Staff Days

Figure 1: Code Churn Vs. Cumulative Staff Days.

necessitated a proper adjustment to the initial NCNCSL. The dotted line
in Figure 1 shows the adjusted code size.

3 Model Development

3.1 Dalal and McIntosh Model

The basic model of Dalal and Mallows [1] on which the extended model is
built is given by

/,L(tl) = Ozl(l — 6_ﬁ(t’_t’_1))
where p1(2;) is the mean number of faults found at time ¢;, «; is the number
of faults at the beginning of the i-th interval and J is the rate parameter.
The number of remaining faults at time ¢; is equal to e Pli=tiz1) The
extended model which incorporates code churn is given by,

Qi1 = g(aie_ﬁ(t’_t"l), ¢, 0) i=1,....n

where g(z,¢,f) is a general (yet unspecified) function and ¢; is the size of
the code added at the end of ¢-th interval. If there was no code added in an
interval then the corresponding ¢; = 0. Typically, the extended model can
also be expressed as

g($aca 9) = x'i’gl(ca 6) —|—g2(l‘,C, 9)

with g1 = g2 = 0 whenever ¢ = 0. This formulation can be interpreted as
follows.

The number of faults in the code after the code churn =
{ the number of faults immediately before the code churn } +

{ the number of faults in newly delivered code } +
{ the number of faults in the code because of the interactions between the
two sets of faults}.

As afirst step approximation, it is assumed that the function g2(#, ¢, 6) =
0. This is equivalent to saying that there is no additional faults due to
interaction of the existing code and the newly added code. Next, they
assume that the structure of g; is an identity function and that ¢ is equal
to NCNCSL at ¢-th delivery (i.e., gi(¢c,) = 8g1(c)). Finally, they simplify
the model by assuming that the additional faults in the newly added code
is proportional the size of the code. Thus, the resulting model is given by,

g(aie_/@(tl_tl_l)’ ¢, g) =i = aie_/@(tz—tz—l) + gci

where a4 is the number of faults in the system at the beginning of (i41)st
interval. The corresponding expression for the cumulative fault, M (t;), is
given by,

M(t;) = M(ti_1) + ai(1 — e~ Plimti-n))

where M (t;—1) is the cumulative faults found at the end of the (¢ — 1)st
interval. Note that the above expression has the structure of an autoregres-
sive process. One of the important claims made by Dalal et. al., [1] is that
the fit of the extended model is considerably superior than that of the basic
model.

3.2 The Neural Network Approach

Applicability of neural network models to software reliability growth pre-
diction has been demonstrated by Karunanithi et al. [5, 6, 7]. Two impor-
tant conclusions of these studies are: i) the neural network approach is a
“black box” approach (i.e., the neural networks are capable of developing
an appropriate model for the failure process from the training data) and
ii) the modified Jordan style [4] networks with “Teacher Forced” training
are capable of providing a more accurate predictions than the feed-forward
networks.

The network models used in the previous research[5, 6, 7] had the ac-
cumulated time (#;) as the free variable and the cumulative faults (M(¢;))
as the dependent variable. From the modeling point, they are analogous
to the traditional execution time based software reliability growth models.
However, the networks used in the present study have an additional input

M(t;)

c IN

Figure 2: A Modified Jordan Style Neural Network.

(C;) for the cumulative code churn. Figure 2 represents an abstract model
of the modified Jordan style network used in this study. The dotted line in
Figure 2 represents the feed-back from the output (M (¢;—1)) required for
realizing the Jordan style network. For simplicity, it is assumed that the
network operates only in discrete time-steps. The “box” (JN) represents
the neural network.

4 Prediction Results

Even if the fit of a model is good, that does not guarantee that its predic-
tions will always be accurate. A good model also should provide accurate
predictions of future faults. In order to assess the predictive capability of
the model we used two extreme prediction horizons: the next-step prediction
(NSP), for the cumulative faults at the end of the next time step; and the
end-point prediction (EPP), for the cumulative faults at the end of the test
phase. When an extended model like the one developed in this paper is used
for predicting future events, one has to know not only the execution time
corresponding to a future day but also a precise information about the code
churn. We solved this issue by using the size of the code corresponding to
the final value of the code churn in the training data to all future predictions
(i.e., the value of the code size of the last point in the training data was
considered as the size of the final code). Note that this issue does not arise
if we do not use the code churn information.

The neural networks cannot predict well without sufficient training data.
This is analogous to using insufficient data to estimate the parameters of
a stochastic model. In our prediction experiment, the size of the training

set was gradually increased from a minimal set consisting of all data points
before the “soft freeze” up to a set with all but the last point in the failure
history. In order to gauge the predictive quality of the neural network model
we used the average relative error (ARFE) used by Malaiya et al. [9]. The
average relative error measure is defined as

n—1 ~
1 M(t;) — M(t;)
ARE_n—k—li_Zk;H M(tz)

where n is the number of points in data set, k is the number of points in the
training set corresponding to the soft freeze and n — k — 1 is the prediction
window. ARFE provides a summary of how well the model predicts across a
window of the future failure history. The predictive performance of the neu-
ral network models for the two extreme prediction horizons are summarized
in Table 1. The “Mean” and “SD” represent the mean and the standard
deviation of the ARE measure over 50 trials. These results suggest that
the network with the code churn information is capable of providing a more
accurate prediction than the network without the code churn information.

Neural Network NSP EPP
Model Mean SD Mean SD
Without Code Churn | 3.834 | 1.883 | 26.342 | 8.417

With Code Churn 2.955 | 1.803 17.27 | 5.837

Table 1: A Summary of Prediction Results in Terms of ARE.

5 Conclusion

We demonstrated that one can easily extend the execution time based neural
network framework to incorporate the code churn information. Our prelimi-
nary results suggest that incorporating the code churn information can help
both the fit as well as the predictive accuracy of the neural network models.
However, we do note that the results presented here are preliminary and
they have yet to be compared with the results of the existing models. This
will be explored in future.

Often, one is interested in not only predicting the cumulative faults but
also other quantities such as the rate of occurrence of failure, mean time
to failure etc. The extended neural network model developed in this study

represent only the cumulative faults. However, if one is interested in the
failure rate expression, it is straightforward to derive it from the expression
for the cumulative faults using the method outlined in [7].

References

(1]

[2]

Dalal, S. R. and Mallows, C. L., “Some Graphical Aids for Deciding
When to Stop Testing Software”, IEEE J. Selected Areas in Commu-
nications., Vol. 8, No. 2, pp. 169-175, 1990.

Dalal, S. R. and McIntosh, A. A., “Relhability Modeling and When
to Stop Testing for Large Software Systems in the Presence of Code
Churn: Analysis and Results for TIRKS Release 16.0”, Bellcore, TM-
ARH-021705, Aug. 1992.

Fahlman, S. E. and Lebiere, C., “The Cascaded-Correlation Learning
Architecture”, School of Computer Science, Carnegie Mellone Univer-

sity, Tech. Rep. CMU-CS-90-100, Feb. 1990.

Jordan, M. I., “Attractor Dynamics and Parallelism in a Connection-
st Sequential Machine”, Proc. of the 8th Annual Conf. of the Cog.
Science, 1986, pp. 531-546.

Karunanithi, N., Whitley, D. and Malaiya, Y. K., “Prediction of Soft-
ware Reliability Using Connectionist Models”, IEFE Trans. on Soft-
ware Eng., Vol. 18, No. 7, pp. 563-574, July 1992.

Karunanithi, N., Whitley, D. and Malaiya, Y. K., “Using Neural Net-
works in Reliability Prediction”, ITEEE Software, Vol. 9, No. 4, pp.
53-59, July 1992.

Karunanithi, N. and Malaiya, Y. K., “The Scaling Problem in Neural
Networks for Software Reliability Prediction”, Proc. 1992 Int. Symp.
on Soft. Rel. Eng., pp. 76-82, Oct. 1992.

Littlewood, B., “Theories of Software Reliability: How Good Are
They and How Can They Be Improved?”, IEEE Trans. on Software
Eng., Vol. SE-6, No. 5, pp. 489-500, Sep. 1980.

Malaiya, Y. K., Karunanithi, N. and Verma, P., “Predictability of
Software Reliability Models”, IEEE Trans. Reliability, Vol. 41, No. 4,
pp- 539-546, Dec. 1992.

