
A Connectionist Approach forIncorporating Continuous CodeChurn into Software ReliabilityGrowth ModelsN. KarunanithiRoom 2E-378, Bellcore445, South Street, Morristown, NJ 07960karun@faline.bellcore.comAbstractA large number of execution-time based reliability growth modelshave been proposed for estimating reliability of software systems. Oneof the key assumptions made in almost all of the models is that thecomplete code for the system is available before testing starts and thatthe code remains frozen during testing. However, this assumption isoften violated in large software projects because usually the code isdeveloped in parts. This paper demonstrates the applicability of theneural network approach to the problem of developing an extendedsoftware reliability growth model in the face of continuous code churn.In this preliminary study, neural network reliability models with andwithout the code churn information are compared using a data setfrom a large telecommunication system. The results suggest that theneural network model with the code churn information is capable ofproviding a more accurate prediction of future faults than the modelwithout the code churn information.1 IntroductionA large number of dynamic reliability models for have been proposed forestimating reliability growth of software systems. These analytic models de-scribe the failure process as a function of execution time (or calendar time)



and are based on many simplifying assumptions [8]. One of the key assump-tions made by many of the existing analytic models is that the code sizeremains unchanged during testing. This assumption may not be valid formost large software systems because the program undergoes change duringdevelopment.Evolving programs can introduce a variety of complications for both soft-ware engineers and the software reliability estimate. For software engineers,an evolving program becomes a moving target during testing. Furthermore,the testing team cannot have uniform con�dance on all parts of an evolvingprogram because the code which is included early on would be exercisedmore often than the parts that are included later. From software reliabilityestimation point of view, the program evolution introduces complications ine�orts such as data collection, modeling, analysis and interpretation. Thus,in the face of program evolution the existing execution time based softwarereliability growth models may not be able to provide a trustworthy estimatewithout proper extensions.In order to deal with a continuously evolving code (or \code churn")Dalal and McIntosh [2] proposed a simple extension to a Poisson processmodel and empirically demonstrated that adding the code churn informationcan improve the �t of the model. This paper demonstrates the applicabil-ity of the neural network approach to the problem of modeling softwarereliability growth in the face of continuous code churn. In this preliminaryempirical study, neural network reliabilitymodels with and without the codechurn information are compared using a data set from a large telecommuni-cation system. The results suggest that the neural network model with thecode churn information is capable of providing a more accurate predictionof future faults than the model without the code churn information.2 The Data SetThe data set used for this study is from a large telecommunication sys-tem consisting of approximately 7 million non-commentary source lines [2].The particular release for which the reliability model is applied had around400,000 new or changed non-commentary source lines (NCNCSL). Sincethe testing was performed in a highly distributed environment the time wasmeasured in \sta� days". The \sta� day" metric represents the amount oftime a tester actually spends every day on testing the current release. Figure1 illustrates the continuous code churn as a function of sta� days. The ver-tical (dashed) line indicates the date on which the system was frozen. Afterthe \soft freeze", no functionality was added to the system and subsequentchanges re
ect only fault �xes. Though several subsystems were deliveredat the start of the testing, only a subset of them were actually tested. This



0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e 

C
od

e 
Si

ze
 (K

LO
C

) 

Cumulative Staff Days

Raw NCNCSL
Prorated NCNCSL

Soft Freeze

Figure 1: Code Churn Vs. Cumulative Sta� Days.necessitated a proper adjustment to the initial NCNCSL. The dotted linein Figure 1 shows the adjusted code size.3 Model Development3.1 Dalal and McIntosh ModelThe basic model of Dalal and Mallows [1] on which the extended model isbuilt is given by �(ti) = �i(1� e��(ti�ti�1))where �(ti) is the mean number of faults found at time ti, �i is the numberof faults at the beginning of the i-th interval and � is the rate parameter.The number of remaining faults at time ti is equal to �ie��(ti�ti�1). Theextended model which incorporates code churn is given by,�i+1 = g(�ie��(ti�ti�1); ci; �) i = 1; : : : ; nwhere g(x; c; �) is a general (yet unspeci�ed) function and ci is the size ofthe code added at the end of i-th interval. If there was no code added in aninterval then the corresponding ci = 0. Typically, the extended model canalso be expressed asg(x; c; �) = x+ g1(c; �) + g2(x; c; �)



with g1 = g2 = 0 whenever c = 0. This formulation can be interpreted asfollows.The number of faults in the code after the code churn =f the number of faults immediately before the code churn g +f the number of faults in newly delivered code g +f the number of faults in the code because of the interactions between thetwo sets of faultsg.As a �rst step approximation, it is assumed that the function g2(x; c; �) =0. This is equivalent to saying that there is no additional faults due tointeraction of the existing code and the newly added code. Next, theyassume that the structure of g1 is an identity function and that c is equalto NCNCSL at i-th delivery (i.e., g1(c; �) = �g1(c)). Finally, they simplifythe model by assuming that the additional faults in the newly added codeis proportional the size of the code. Thus, the resulting model is given by,g(�ie��(ti�ti�1); ci; �) = �i+1 = �ie��(ti�ti�1) + �ciwhere �i+1 is the number of faults in the system at the beginning of (i+1)stinterval. The corresponding expression for the cumulative fault, M (ti), isgiven by, M (ti) = M (ti�1) + �i(1� e��(ti�ti�1))where M (ti�1) is the cumulative faults found at the end of the (i � 1)stinterval. Note that the above expression has the structure of an autoregres-sive process. One of the important claims made by Dalal et. al., [1] is thatthe �t of the extended model is considerably superior than that of the basicmodel.3.2 The Neural Network ApproachApplicability of neural network models to software reliability growth pre-diction has been demonstrated by Karunanithi et al. [5, 6, 7]. Two impor-tant conclusions of these studies are: i) the neural network approach is a\black box" approach (i.e., the neural networks are capable of developingan appropriate model for the failure process from the training data) andii) the modi�ed Jordan style [4] networks with \Teacher Forced" trainingare capable of providing a more accurate predictions than the feed-forwardnetworks.The network models used in the previous research[5, 6, 7] had the ac-cumulated time (ti) as the free variable and the cumulative faults (M (ti))as the dependent variable. From the modeling point, they are analogousto the traditional execution time based software reliability growth models.However, the networks used in the present study have an additional input



C i

it

JN
M(t i )

M(t i-1)Figure 2: A Modi�ed Jordan Style Neural Network.(Ci) for the cumulative code churn. Figure 2 represents an abstract modelof the modi�ed Jordan style network used in this study. The dotted line inFigure 2 represents the feed-back from the output (M (ti�1)) required forrealizing the Jordan style network. For simplicity, it is assumed that thenetwork operates only in discrete time-steps. The \box" (JN) representsthe neural network.4 Prediction ResultsEven if the �t of a model is good, that does not guarantee that its predic-tions will always be accurate. A good model also should provide accuratepredictions of future faults. In order to assess the predictive capability ofthe model we used two extreme prediction horizons: the next-step prediction(NSP), for the cumulative faults at the end of the next time step; and theend-point prediction (EPP), for the cumulative faults at the end of the testphase. When an extended model like the one developed in this paper is usedfor predicting future events, one has to know not only the execution timecorresponding to a future day but also a precise information about the codechurn. We solved this issue by using the size of the code corresponding tothe �nal value of the code churn in the training data to all future predictions(i.e., the value of the code size of the last point in the training data wasconsidered as the size of the �nal code). Note that this issue does not ariseif we do not use the code churn information.The neural networks cannot predict well without su�cient training data.This is analogous to using insu�cient data to estimate the parameters ofa stochastic model. In our prediction experiment, the size of the training



set was gradually increased from a minimal set consisting of all data pointsbefore the \soft freeze" up to a set with all but the last point in the failurehistory. In order to gauge the predictive quality of the neural network modelwe used the average relative error (ARE) used by Malaiya et al. [9]. Theaverage relative error measure is de�ned asARE = 1n � k � 1 n�1Xi=k+1 �����M (ti)� M̂ (ti)M (ti) �����where n is the number of points in data set, k is the number of points in thetraining set corresponding to the soft freeze and n� k � 1 is the predictionwindow. ARE provides a summary of how well the model predicts across awindow of the future failure history. The predictive performance of the neu-ral network models for the two extreme prediction horizons are summarizedin Table 1. The \Mean" and \SD" represent the mean and the standarddeviation of the ARE measure over 50 trials. These results suggest thatthe network with the code churn information is capable of providing a moreaccurate prediction than the network without the code churn information.Neural Network NSP EPPModel Mean SD Mean SDWithout Code Churn 3.834 1.883 26.342 8.417With Code Churn 2.955 1.803 17.27 5.837Table 1: A Summary of Prediction Results in Terms of ARE.5 ConclusionWe demonstrated that one can easily extend the execution time based neuralnetwork framework to incorporate the code churn information. Our prelimi-nary results suggest that incorporating the code churn information can helpboth the �t as well as the predictive accuracy of the neural network models.However, we do note that the results presented here are preliminary andthey have yet to be compared with the results of the existing models. Thiswill be explored in future.Often, one is interested in not only predicting the cumulative faults butalso other quantities such as the rate of occurrence of failure, mean timeto failure etc. The extended neural network model developed in this study



represent only the cumulative faults. However, if one is interested in thefailure rate expression, it is straightforward to derive it from the expressionfor the cumulative faults using the method outlined in [7].References[1] Dalal, S. R. and Mallows, C. L., \Some Graphical Aids for DecidingWhen to Stop Testing Software", IEEE J. Selected Areas in Commu-nications., Vol. 8, No. 2, pp. 169-175, 1990.[2] Dalal, S. R. and McIntosh, A. A., \Reliability Modeling and Whento Stop Testing for Large Software Systems in the Presence of CodeChurn: Analysis and Results for TIRKS Release 16.0", Bellcore, TM-ARH-021705, Aug. 1992.[3] Fahlman, S. E. and Lebiere, C., \The Cascaded-Correlation LearningArchitecture", School of Computer Science, Carnegie Mellone Univer-sity, Tech. Rep. CMU-CS-90-100, Feb. 1990.[4] Jordan, M. I., \Attractor Dynamics and Parallelism in a Connection-ist Sequential Machine", Proc. of the 8th Annual Conf. of the Cog.Science, 1986, pp. 531-546.[5] Karunanithi, N., Whitley, D. and Malaiya, Y. K., \Prediction of Soft-ware Reliability Using Connectionist Models", IEEE Trans. on Soft-ware Eng., Vol. 18, No. 7, pp. 563-574, July 1992.[6] Karunanithi, N., Whitley, D. and Malaiya, Y. K., \Using Neural Net-works in Reliability Prediction", IEEE Software, Vol. 9, No. 4, pp.53-59, July 1992.[7] Karunanithi, N. and Malaiya, Y. K., \The Scaling Problem in NeuralNetworks for Software Reliability Prediction", Proc. 1992 Int. Symp.on Soft. Rel. Eng., pp. 76-82, Oct. 1992.[8] Littlewood, B., \Theories of Software Reliability: How Good AreThey and How Can They Be Improved?", IEEE Trans. on SoftwareEng., Vol. SE-6, No. 5, pp. 489-500, Sep. 1980.[9] Malaiya, Y. K., Karunanithi, N. and Verma, P., \Predictability ofSoftware Reliability Models", IEEE Trans. Reliability, Vol. 41, No. 4,pp. 539-546, Dec. 1992.


