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1 IntroductionThe motivation for this study was to estimate 
ows at an ungauged site on the HuronRiver, Michigan, to provide data for assessing how future alterations to 
ows woulda�ect habitat for smallmouth bass (Bovee 1992). In order to quantify habitat variability,it was necessary to relate previously recorded habitat samples taken over a period ofseveral years to the stream
ow occurring at the time of each sample. U.S. GeologicalSurvey stream gauging stations located about 30 km upstream and 20 km downstreamfrom the sampling site have continuous records since 1960. Two other gauging stationsin the vicinity were discontinued in 1977 and 1982.Flows in streams and rivers are complex processes that are in
uenced by many factorssuch as the watershed topography, vegetation cover, soil types, channel characteristics,groundwater aquifers, precipitation distribution, snow melt, rural and urban activities,etc. Engineering project design and environmental impact analysis often require theestimation of stream
ows, or their statistical properties, at ungauged sites. A varietyof methods have been developed for this purpose including parametric models for syn-thesizing stream
ows from basin characteristics and meteorological data (Beven 1989,Chow 1964), and empirical models for interpolating or extrapolating data from gaugedsites (Chow 1964; Crawford and Linsley 1966). Parametric models are expensive andtime consuming to apply, and are normally employed only when insu�cient data existto utilize a simpler empirical method.Su�cient data were available in this situation to apply the most commonly used em-pirical method for interpolating and extending stream
ow records: a power model �t tothe log transform of the 
ow data (Chow 1964). This analysis was performed for theHuron River with a spreadsheet using 13 years of daily data. A short period of recordfrom a discontinued gauge was used to test the power model. Bovee (1992) attempted2



to improve the results by re�ning the analysis in two ways. First he smoothed the databy taking averages over every �ve-day period ("�ve-day non-overlapping averages") toaccount for the travel time between stations. Under this smoothing, for example, days1 through 5 are used to produce 1st average value, and days 6 through 10 for the 2ndaverage value and so on. Second he divided the data into twelve monthly data sets and�t a separate power curve to each data set using the spreadsheet program. The datamanipulation involved a great deal of manual e�ort and provided many opportunities formistakes. The objective of this preliminary research was to examine an alternative em-pirical method with the hope of achieving three things: 1) greater accuracy, 2) increasedconvenience for the user to develop an appropriate model for the 
ow history and 3)evaluate various data representations.Recently, neural networks have been successfully applied to many applications in civilengineering (Cheu et al. 1991; Moselhi et al. 1991; Ramirez and Arghya 1991) and struc-tural engineering (Kamarthi et al. 1992; Furuta et al. 1991; Hajela et al. 1991; Xihui etal. 1991) as well as in many other �elds (Weigend et al. 1990; Karunanithi et al. 1992a& 1992b; Karunanithi 1992c). Feed-forward neural networks are most widely used inthese applications. The networks are trained using the standard error back-propagationalgorithm. However, one major limitation of this training algorithm is that the archi-tecture of the network has to be �xed in advance. This means that the end user mustdesign a suitable architecture by a costly trial-and-error approach. If the architecture istoo small the network may not have su�cient degrees of freedom to correctly learn the
ow process. On the other hand, if the network is too large then it may not convergeduring training or it may over�t the data and memorize the 
ow history rather thangeneralize it. This paper evaluates the applicability of the neural network approach us-ing the Cascade-Correlation algorithm developed by Fahlman and Lebiere (1990). TheCascade-Correlation algorithm is a constructive algorithm that can automatically syn-thesize a suitable network architecture as part of its training process. We selected the3



Cascade-Correlation algorithm for this study because our objective was to evaluate thepredictive capability of di�erent neural network models rather than concentrate on is-sues such as selection of a suitable architecture for the network and convergence of thelearning algorithm.Our preliminary results suggest that the neural network approach is capable of pro-viding a more accurate prediction compared to the power model. Our results also suggestthat the neural network approach may not require any transformation or smoothing onthe data set. An analysis performed on the structure of the networks developed by theCascade-Correlation algorithm shows that the neural networks are capable of adaptingtheir complexity to match changes in the 
ow history.2 Overview of Neural NetworksArti�cial Neural Networks are a computational metaphor which was inspired by studiesof the brain and nervous systems in biological organisms. They represent highly idealizedmathematical models of our present understanding of such complex systems. Typically,a neural network consists of a set of layered processing units and weighted interconnec-tions. Neural networks operate on the principle of learning from a training set. Thereexists a variety of neural network models and learning procedures. (Readers not familiarwith neural networks may refer to Lippmann (1987); or any introductory book on neuralnetworks such as Rumelhart et al. (1986) for more details.) Two well-known classes ofneural networks that can be used for prediction applications are: feed-forward networksand recurrent networks. In a feed-forward network the weighted connections feed activa-tions only in the forward direction from the input layer to the output layer. On the otherhand, in a recurrent network additional weighted connections are used to feed previousactivations back into the network. In this paper we focus on only feed-forward networks.Learning in neural networks involves adjusting the weights of interconnections. The most4



commonly used training algorithm for feed-forward networks is the back-propagation algo-rithm by Rumelhart, Hinton and Williams (1986). (A clear overview of the feed-forwardnetwork and the back-propagation algorithm can be found in Kamarthi et al. (1992) inan earlier issue of this journal.) The back-propagation algorithm is a gradient descentmethod in which weights of the connections are updated using partial derivatives of errorwith respect to weights. However the standard back-propagation algorithm can trainonly on a network of predetermined size. Both the accuracy of predictions and a net-work's learning ability can be severely a�ected if the architecture is not suitable. Thisimplies that for a given application the problem of specifying a suitable architecture mustbe addressed �rst. Finding a suitable network architecture can be a very time consum-ing exercise. Instead, we use the Cascade-Correlation architecture algorithm (Fahlmanand Lebiere 1990) which can synthesize an appropriate architecture and train the neuralnetworks simultaneously. This algorithm is summarized next.2.1 The Cascade-Correlation AlgorithmThe Cascade-Correlation algorithm is an e�cient constructive training algorithm devel-oped by Fahlman and Lebiere (1990). This algorithm combines the idea of incrementalarchitecture and learning in its training procedure. In brief, training starts with a mini-mal network consisting of an input and an output layer. Note that this minimal network(without a hidden unit) is a one-layered network and that it is equivalent to a linearmodel. If the training algorithm can no longer reduce the residual error, then it stopsthis phase of training, and enters the next phase for training a potential hidden unit.The potential hidden unit has associated connections (or, weights) from the input layerand all preexisting hidden units, but not towards the output layer. Weights associatedwith the potential hidden units are optimized by a gradient ascent method so as to max-imize the correlation between its output and the residual error of the network. When5



a potential hidden unit is trained, weights associated with the output layer are keptunchanged. Once a potential hidden unit is added to the network, it becomes a newhidden unit and its incoming weights are frozen for the rest of the training period. Afterinstalling a hidden unit, the training updates weights of all connections that directly feedthe output layer. This dynamic expansion of the network continues until the problem issuccessfully learned. Thus the Cascade-Correlation algorithm automatically constructsa suitable network architecture for a given problem. Other major advantages in usingthe Cascade-Correlation algorithm include i) more consistency in solving problems andii) an order of magnitude faster learning than the standard back-propagation algorithm(Whitley and Karunanithi 1991).A typical feed-forward network trained by the back-propagation algorithm (BP-network)and a network synthesized by the Cascade-Correlation algorithm (CASCADE-network)are shown in Figures 1(a) and 1(b). Note that the CASCADE-network in Figure 1(b)has direct connections between the input layer and the output layer as well as lateralconnections to each new hidden unit from all previously added hidden units. In theCASCADE-network each hidden unit is equivalent to a separate hidden layer.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Insert Fig. 1 about here.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :2.2 The Proposed Network StructureMost neural networks are constructed using the widely known sigmoidal unit with alogistic activation function. The output response of a typical sigmoidal unit is boundedover a 0.0 to 1.0 range. This means that the user has to scale the output variable of6



the problem using a known maximum value. Especially in applications such as the river
ow prediction it may not be possible to set a priori a reasonable maximum value. Useof an inaccurate maximum value for scaling the output variable can severely a�ect thepredictive capability of the neural network models. A solution to the scaling problem ispresented next.The input-output responses of processing units are shown in Figure 2. Figure 2(a)shows how a typical processing unit works. First, net is computed as a sum of weightedinputs. Then net is transformed to an output value by applying an activation function.Figure 2(b) shows the activation function of a sigmoidal unit, which is the most widelyused form in neural network models. The output of a sigmoidal unit is given by:Output = 11 + e�net (1)where net is the weighted input from all incoming units.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Insert Figure 2 about here.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Figure 2(c) represents the solution in terms of a clipped linear function. Instead ofusing a sigmoidal unit in the output layer one can use a linear unit with a clipped linearfunction. The output of a clipped linear unit is given by:Output = 8><>: net if net > 00 otherwise (2)By replacing the sigmoidal output unit with a clipped linear unit the network can produceany positive value as its output. However, one di�culty with this clipped linear functionis that it does not have a continuous derivative for net � 0. The derivative must becontinuous in order for these learning algorithms to work correctly. A simple alternative7



for the above clipped linear function is to make it a 1=net type function for net < 0.This will force the output of the linear unit to drop to zero very quickly when net < 0.This type of function can provide a well behaved, non-zero derivative for all parts of theactivation function while adding a negligible value to the output for net � 0. The actualactivation function examined in this paper is given by,Output = 8><>: net if net > 01=(a� b�net) otherwise (3)where a and b are constants. The derivative of this modi�ed function is given by,@Output@net = 8><>: 1 if net > 0b=(a� b�net)2 otherwise (4)By setting b = a2 the derivative reduces to 1.0 at net = 0. However it is necessary toselect a reasonable value for a so that the \output" (eqn. 3) rapidly drops to zero whennet < 0. In our experiments we used the following values: a = 100:0 and b = 10000:0.In the following application, the 
ow rate of the Huron river varied from a minimumof 20 cfs up to a maximum of 3500 cfs. We mapped the hydrograph to a small \openrange" by dividing each value by 100. This smaller range improved the learning speed ofthe neural network. This 1-to-1 mapping a�ects neither the accuracy of prediction northe precision of the output.2.3 Training Neural NetworksNeural networks are trained with a set of typical input/output pairs called the trainingset. The �nal weight vector of a successfully trained neural network represents its knowl-edge about the problem. In general, it is assumed that the network does not have any apriori knowledge about the problem before it is trained. So at the beginning of trainingthe network weights are initialized with a set of random values. In our experiments the8



network weights were initialized with a set of uniform random values drawn between -1.0and 1.0. During training the weights are adjusted so as to reduce the residual error ofthe training set. Since the Cascade-Correlation algorithm adjusts not only the network'sweights but also the structure of the network (i.e., the number of weights in the network)care must be exercised to see that the �nal network is neither too complex nor too sim-ple. In this algorithm the complexity of the network is inversely related to the value of aunit free parameter called \Error Index Threshold". This parameter represents the rootmean square of sum squared residual error of the training set normalized by the standarddeviation of the training outputs. Thus by controlling this parameter we can constrainthe number of hidden units added to the network. After examining a few values, wesettled for a value of 0.15 for the Error Index Threshold because the resulting networksprovided a better prediction results than other values.53 Flow Estimation for The Huron River3.1 Problem De�nitionBovee (1992) conducted a study to assess the impact of altering 
ows in the Huron River,Michigan, on the habitat for smallmouth bass. In order to quantify habitat variability,it is necessary to relate previously recorded habitat samples to the stream
ow occurringat the time each sample was taken. Figure 3 is a schematic diagram of the principalfeatures in the subbasin. The segment of river used for the habitat study extends fromZeeb Road, about 20 km upstream from Ann Arbor, to Bell Road about 15 km aboveZeeb Road.5However, a default value of 0.20 seems to be fairly robust across many other problems that we havestudied. 9



: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Insert Figure 3 about here.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :The town of Dexter marks the mid-point of the study area and delineates the \upper"section from the \lower" basin. Separate �sh population and habitat data have beencollected in both the upper and lower sections to provide spatial as well as temporalrelationships. Mill Creek is the only signi�cant tributary in the subbasin, and it entersthe Huron in the lower section. Four U. S. Geological Survey gauging stations are locatedin the area as shown by the boxes in Figure 3.The periods of record since 1960 for each of the gauging stations are indicated inFigure 4. The solid lines in the �gure represent the periods of record. The dashed linesin Figure 4 represent the missing data.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Insert Figure 4 about here.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :The year 1960 was selected as the starting point for the analysis in order to providecontinuous concurrent data streams at four sites. The gauges at Hamburg (H) and AnnArbor (A) have continuous records from 1960 to the present. The gauge at Dexter (D)has a continuous record from 1960 to 1972, and again from 1976 to 1977. The gauge atMill Creek (M) has a continuous record from 1960 to 1982.The problem was to estimate the 
ows in the upper and lower sections on speci�eddates between 1978 and 1990 given the 
ows at Hamburg and Ann Arbor on those dates.Analyses of the data during the period of concurrent record indicated that the 
ow inthe lower section below the con
uence with Mill Creek could be assumed to be equal tothe 
ow at Ann Arbor. However, the 
ow above Mill Creek could not be assumed to10



be equal to the 
ow at Hamburg because of signi�cant ungauged lateral in
ow betweenHamburg and Dexter. A method was needed to estimate the 
ow at Dexter based onthe observed 
ows at Hamburg and Ann Arbor.3.2 Application of The Power ModelThe following two-station power model was applied (Chow 1964).D = �0A�1H �2 (5)where,D = the discharge measured at Dexter,A = the discharge measured at Ann Arbor,H = the discharge measured at Hamburg, and�0; �1 and �2 are model coe�cients.The corresponding logarithmically transformed regression model is given by:log(D) = log(�0) + �1 log(A) + �2 log(H ) (6)In experiment 1, coe�cients were estimated by least square regression of Equation 6to daily 
ows over the period of concurrent record, 1960-1972, using the QuattroProspreadsheet program (Borland 1991). (However, it should be noted that this trainingperiod may not be su�ciently long enough to capture low frequency variations in the
ow process.) The model was tested by comparing predicted values at Dexter, D̂ , withthe observed values D during the two year period 1976 and 1977. Figure 5 is a graphof the observed 
ows at Dexter (indicated by the solid line) and the predicted values(indicated by the dashed line). The time scale on the horizontal axis is in terms of dayssince the beginning of water year 1976. Water years run from October 1 to September30, and are identi�ed by the calendar year in which the water year ends. For example in11



the Figure 5, day 1 is October 1, 1975, day 32 is November 1, 1976, day 95 is January 1,1976, and so on. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Insert Figure 5 about here.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :The model provides an adequate estimate of 
ows during the test period except forthe extreme events around day 175 which are considerably underestimated.Residual errors were quanti�ed in two ways:1) The square error (se) sei = (D̂ i �D i)2 (7)2) The relative error (re) rei = �����(D̂i �Di)Di ����� x100 (8)where i is an index on the observation in the data set. The mean square error (mse) isde�ned by: mse = 1n nXi=1 sei (9)Both the relative error (re) and square error (se) measures presented in this discussionare based on the 
ow values and not on the log transforms. The mean square error of thelog transform is minimized, of course, for the regression of Equation 6, and may producebiased estimators (McCuen, Leahy and Johnson 1990). However, we are interested in thecomparison of the predicted 
ow with the observed 
ow, and not directly in the accuracywith which the polynomial, Equation 6, �ts the transformed data. Likewise the meanrelative error (mre) is de�ned by: mre = 1n nXi=1 rei (10)12



The square error (se) and the relative error (re) provide di�erent types of informa-tion about the predictive capabilities of the model. Figure 6 is a plot of the se for eachobservation and demonstrates that this measure is more sensitive to errors at high 
owthan at low 
ow. The se is a good measure for indicating goodness-of-�t at the high
ows. Figure 7 is a plot of the re for observation and provides a more balanced perspec-tive of the goodness-of-�t at moderate 
ows. The mse and the mre are 11,763 and 11.9respectively for the two year test period.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Insert Figures 6 and 7 about here.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Figure 6 shows that the largest prediction errors are associated with the high runo�events around Day 150. This error may be related to snowmelt in the headwaters ofthe Huron. The only meteorological station in proximity to the Dexter gauge is at theUniversity of Michigan campus at Ann Arbor. Rainfall is not distinguished from snowfallat this station, so adding total precipitation to a power model would not signi�cantlyimprove its accuracy. So an analysis was made to see if the addition of Mill Creek tothe power model would improve the predictions for the test period. This was also just amatter of curiosity because the Mill Creek records ends in 1982 and could not be usedto estimate 
ows at Dexter during the required period from 1983 through 1990. As itturned out, adding Mill Creek to the power model increased the mse and the mre byabout 7% for the two year test period.Bovee (1992) attempted to improve the results by re�ning the analysis in two ways.First, in experiment 2, he smoothed the data by using �ve-day averages to account forthe travel time between gauging stations (i.e., the 
ow rate was averaged over every13



consecutive �ve day period to produce a series of �ve-day average values). The powermodel was �t to the 13 years of smoothed data and then tested against smoothed datafor the two year test period. The mse was reduced to 6,372 and the mre was reduced to7.5.Second, in experiment 3, he divided the smoothed data into 12 monthly data sets.That is, he put all of the January data from the 13 years into one data set, all of theFebruary data into another set, and so on. Then the power model was separately �t foreach data set using the spreadsheet. The mothly models were tested by using appropriatemonthly data sets corresponding to the two year test period. The resulting mse and mrewere 12,598 and 8.5 respectively. It is interesting to note that the error measurementsactually increased when the number of models was increased from one to twelve. Anexamination of the data for the month of March provided an explanation. The 13 yearsof March 
ows used for the regression were relatively low compared to the unusually(record) high runo� in March 1976 of the test data. Thus the power model developedsolely from previous March data was a worse predictor of March 1976 
ows than thepower model developed from the aggregation of 
ows from all months.3.3 Application of Neural Network ModelsThe neural network approach was evaluated using three testing experiments (appliedto the power model) in order to compare the two techniques in terms of accuracy andconvenience of use. Two neural network architectures were evaluated in this study. Thenetworks are shown in Figure 8. The output layers of these networks were constructedusing a clipped linear unit (proposed in the previous section) while the hidden layerswere constructed using the sigmoidal unit. Figure 8(a) shows a standard feed-forwardnetwork with three inputs and one output (NN1). The inputs H, M and A represent thedischarges recorded at Hamburg, Mill Creek and Ann Arbor respectively. The output D14



represents the corresponding discharges observed at the Dexter gauge. As in the powermodel, the values of H;M;A and D represent daily values for the experiment 1 and�ve-day averages for the experiments 2 and 3.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Insert Fig. 8 about here.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :The �ve-day non-overlapping averaging used for the experiments 2 and 3 acts as alinear �lter for reducing abrupt 
uctuations in the hydrograph. However, this type ofsmoothing may or may not be appropriate. Alternatively, we can avoid this type ofsmoothing and let the network do its own preprocessing. So we modi�ed the structureof the NN1 network to feed daily values on the input side instead of �ve-day averages.The resulting network, NN2, is shown in Figure 8(b). The �ve-day window consists of(t�4; t�3; t�2; t�1; t) where t represents the current day, t�1 the previous day, t�2 theday before the previous day and so on. However, for experiments (2) and (3), the outputsfor the network NN2 had the same values as that of NN1. Since we wanted to train theNN2 model with the same number of training patterns as that of NN1, we presented thedata in a di�erent format: On the input side we used a �ve-day sliding window such thatthe 1st instance of the window is formed by days t through t� 5, and the 2nd instanceby days t + 1 through t � 4 and so on. On the output side we used the corresponding�ve-day moving averages rather than the �ve-day non-overlapping averages.Since the Cascade-Correlation algorithm is stochastic in nature, it is possible forthe algorithm to produce networks with varying size and di�erent �nal weight vectors6.Table 2 illustrates variations in the size of the networks. Such a variation in the size6The variations are due to the random number generator used to initialize the weight vectors of thenetwork and the incoming connection weights of candidate hidden units.15



of the network may introduce variation (or uncertainty) in the prediction result. Onepossible way to reduce such a variation in predictions is to conduct a large number ofMonte-Carlo trials and take their average (or the best value). So, for each experiment wetrained both NN1 and NN2 50 times with di�erent sets of initial weights and averagedtheir predictions.The training set for the �rst experiment consisted of the daily 
ows during the con-current period 1960 through 1972, a total of 4748 observations. The test set consisted ofthe daily 
ows during the two-year test period 1976 and 1977, a total of 731 observations.Several preliminary runs were made with and without the Mill Creek data to assess thein
uence of the Mill Creek data on the predictive accuracy of the neural network model.Our preliminary results show that, unlike in the power model, the neural network's pre-dictive accuracy is not a�ected by the inclusion of the Mill Creek data. The mse andthe mre are 7,272 and 7.6 respectively for the network that included the Mill Creekdata, whereas, the corresponding values for the network without the Mill Creek data are10,247 and 8.0 respectively. A similar di�erence in performance was observed in otherexperiments also. Thus including the Mill Creek data improved the predictive accuracyof the neural networks. One possible reason for this improvement in predictive accuracymay be due to the fact that the neural network is able to utilize the Mill Creek data asadditional information rather than as a source of noise. Based on this observation weincluded the Mill Creek data in the remaining two experiments also.Figure 9 is a graph of the observed 
ows at Dexter (indicated by a solid line) andthe predicted values of NN1 (indicated by a dashed line) for the experiment (1). Weincluded this graph to illustrate how a typical neural network predicts the daily 
ow.The predicted values of NN1 in Figure 9 represent the predictions of a network that had16 hidden units. For comparison purpose we also included bar graphs for the se and there in Figures 10 and 11 respectively. 16



: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Insert Figures 9, 10 and 11 about here.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :From the graphs in Figures 5 and 9 it is not clear which model is better. However,a close examination of the predicted values during the high runo� period (from 130-thday to 180-th day) suggests that the NN1 model is able to predict the high runo�s moreaccurately than the power model.The mre of the NN1 model and the power model are 12.4 and 11.9, and the corre-sponding mse are 11,365 and 11,763 respectively. A comparison of bar graphs in Figures6 and 10 clearly suggests that the neural network model NN1 is a more accurate predictorof high runo�s than the power model. These graphs also suggest that both models havea similar predictive accuracy during low 
ows. We found a similar observation in otherexperiments as well as for the neural network model NN2.Next, we conducted the remaining two experiments with these two network mod-els. The training set for the second experiment consisted of the smoothed data, non-overlapping �ve-day averages, a total 949 points in the training set and 146 points inthe test set. The training set for the third experiment consisted of the smoothed datadivided into 12 monthly sets with a separate network �t to each set, as was the approachwith the power model. A summary of results for all three experiments and a comparisonof the predictive accuracy of these models are presented next.3.4 ResultsTable 1 presents a summary of prediction results. The �rst three rows in Table 1 (under\Testing Error") contain the errors from the testing set, whereas the remaining threerows (under \Training Error") contain the residual from the training set. The training17



set error was measured by feeding the training set (or, the data set used for estimatingregression coe�cients) itself as the test input. The training set errors are included toindicate the accuracy of models' �t with the training data.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Insert Table 1 about here.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :First, we compare the predictive accuracy of NN1 and the power model in terms ofmse. In experiments 1 and 3 the neural network model seems to have a slight edge overthe logarithmic regression model. On the other hand, in experiment 2 the logarithmicmodel seems to be slightly more accurate than the neural network model NN1. Sincethe di�erence in error in all three experiments are not very signi�cant we can concludethat there is no clear winner among these competing models. However, the mre measureseems to indicate that the power model is slightly more accurate than the NN1 model.This could be misleading to some extent because a model may be more accurate overallbut it may not be a good predictor of high runo�s. If the hydrograph is dominated byrelatively a large number of low 
ow measures and a few high runo�s then the modelmay tend to learn low 
ow rates more accurately than high 
ow rates. Thus mse isconsidered as the appropriate measure for comparison.Next, we compare the predictive accuracy of the NN2 model with the NN1 modeland the power model. The mre values of the NN2 model are higher than the two othermodels in most of the cases. However, the mse values of the NN2 model are signi�cantlylower than the other two models in all three experiments. This suggests two things:1) the NN2 model is a more accurate predictor than other two models and 2) allowingthe network to have a �ve-day window is more useful than feeding �ve-day averages.Another observation to be made from these results is that the neural network models are18



not a�ected by the Mill Creek hydrograph. This suggests that, unlike the power model,the neural network models are less vulnerable to additional noise in the data.4 Discussion4.1 Complexity of the ModelsThe testing set results in the previous section suggest that the neural network models aremore accurate predictors than the power model. However, it is not clear how and whyneural networks predict better than the power model. In this section we provide a simpleanalysis on the network structure so as to provide further insights into their modelingcapability. As pointed out earlier, the Cascade-Correlation algorithm develops networksof varying complexity to match the complexity of the training set. This is illustratedin Table 2 in terms of the number of hidden units used. The \Min" and \Max" valuesrepresent the minimum and the maximum number of hidden units used during 50 trials.The Standard Deviation (SD) gives an indication about the amount of variability in thenumber of hidden units used.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Insert Table 2 about here.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :In experiment 1, the NN1 model used on the average 15.92 hidden units whereas inexperiment 2 the average has decreased to 1.16. This clearly suggests that the smoothinghas considerable e�ect on the size of the resulting nets. In experiment 3, the above valueswere calculated after combining the averages obtained for 12 calendar months separately.The di�erent models associated with di�erent individual months displayed very di�erentcomplexity. The network learned the 
ow history of January, May, July and August19



without any hidden unit in all 50 trials while it used at least one hidden unit for theremaining eight months. Especially for the month of December the network used as manyas 17 hidden units on a few trials. This suggests that the networks developed by the NN1model are capable of adopting their complexity to the complexity of the data.The NN2 model always used a signi�cantly smaller number of hidden units than theNN1 model. In experiment 1, the network learned without a hidden unit in 33 trials andwith one hidden unit in the remaining 17 trials. It should be noted that networks withno hidden units are linear models. In experiment 2, the network managed to learn the
ow history without a hidden unit in 39 trials, with 1 hidden unit in 10 trials and with2 hidden units in the remaining trial. In experiment 3, the NN2 model learned the 
owhistory without a hidden unit for the months of February and April through July andwith a variable number of hidden units for the remaining months. As in the NN1 model,the NN2 model also used maximum number of hidden units for the month of December.One reason why the NN2 model needed fewer hidden units than the NN1 model may bedue to the fact that it had inputs with explicit time-lag information, whereas, the NN1model had inputs that did not have su�cient time-lag information. This also suggeststhat the time-delay window used in the NN2 model might have helped the network todevelop a more appropriate smoothing than the �ve-day averaging.The connection weights of a trained network are kept frozen during testing. Thismeans that we can express the actual computation performed by a network in termsof an equivalent mathematical expression. Such expressions can be helpful for furtherunderstanding and analysis. In what follows next we give equivalent expressions forboth the NN1 and NN2 models. Since it may not be possible to enumerate expressionsfor all possible networks we restrict ourselves to those networks that used zero, one ortwo hidden units. (Note that for the networks with 3 or more hidden units, it is quitestraightforward to extend the equations given below.) The expressions developed below20



are only for net � 0 because we are interested only in positive outputs.For the NN1 model without a hidden unit, the network is equivalent to a simple linearmodel of the form D̂(t) =WI;OI(t) (11)where D̂(t) is the 
ow at the Dexter gage at time t and WI;O = [wb;o;wH;o;wM;o;wA;o] isa weight vector that represents the connections from the input layer to the output unit.Here wb;o represents the weight of the connection from a special unit called the bias unitwhose output is always 1. The remaining three weights (wH;o;wM;o;wA;o) correspond toconnections from the Hamburg, Mill Creek and Ann Arbor gauges respectively. Thecolumn vector I(t) = [1;H(t);M(t);A(t)]T is a transpose of the input vector at time t.For a network with 1 hidden unit the equivalent nonlinear model is given by thefollowing expression D̂(t) =WI;OI(t) +WH;OHU(t) (12)The �rst term in equation 12 represents a linear model similar to that of a network withzero hidden unit (equation 11). The weight vector WH;O = [wh1;o] in the second term inthe equation 12 represents the weight of the connection from the hidden unit (h1) to theoutput unit. The activation vector HU(t) = [h1(t)]T in the above expression representsthe output of the hidden unit. Since the hidden unit is a sigmoidal unit, the activationof the hidden unit is given by h1(t) = 11 + e�(WI;h1I(t)) (13)where WI;h1 is the weight vector for the connections from the input units to the hiddenunit h1. Thus the second term of the equation 12 represents the nonlinear component ofthe model. Note that this network has 9 weighted connections (5 input connections ofthe output unit and 4 inputs connections of the hidden unit).21



Similarly for a network with 2 hidden units the resulting expression isD̂(t) =WI;OI(t) +WH;OHU(t) (14)where WH;O = [wh1;o;wh2;o] is a two component weight vector from the hidden units h1and h2, and HU(t) = [h1(t);h2(t)]T is the activation vector of the hidden units. Theactivation of the �rst hidden unit h1(t) is same as that of a network with 1 hidden unit(equation 13), while the activation of the second hidden unit is a second order sigmoidalexpression, h2(t) = 11 + e�(WI;h2I(t)+wh1;h2h1(t)) (15)Note that the hidden unit h2 receives input not only from the input units and the biasunit but also from the �rst hidden unit (via the weight wh1;h2).By following the above steps, we can write similar expressions for the NN2 model.Since the NN2 model has a �ve-day window for each of the three inputs the correspondinginput and weight vectors should be modi�ed accordingly. Thus for the NN2 model themodi�ed weight vector for the connections from the input layer to the output unit isWI;O = [wb;o;wH(t�4);o; � � � ;wH(t);o;wM(t�4);o; � � � ;wM(t);o;wA(t�4);o; � � � ;wA(t);o]:The modi�ed input vector with a �ve-day window is given byI(t) = [1;H(t� 4); � � � ;H(t);M(t� 4); � � � ;M(t);A(t� 4); � � � ;A(t)]T:Similarly the weight vectors WI;h1 and WI;h2 feeding the hidden units h1 and h2 canbe rewritten to accommodate the additional inputs. However, vectors HU(t) and WH;Oneed not be modi�ed. By substituting these modi�ed vectors in equations 11 through 15we can obtain equivalent expressions for the NN2 model with zero, 1, or 2 hidden units.The above equations imply that the resulting models (i.e., networks) become progres-sively complex with the addition of each hidden unit. Thus, the neural network approach22



is able to develop complex models using appropriate degrees of linear and nonliner com-ponents to match the complexity of the 
ow process represented by the training set. This
exibility is not available in the power model.4.2 Computational RequirementThe Cascade-Correlation algorithm is a very e�cient algorithm. It trained the NN2networks within a few hundred iterations and the NN1 networks within a few hundred toa few thousand iterations depending on the number of hidden units installed. However,from the computational point of view, the neural network approach may seem to beless advantageous over solving the power model using a spreadsheet program, becausethe user may have to train the network several times to reduce the variations in theprediction results. But, such a direct comparison between a spreadsheet program anddeveloping neural network models with the Cascade-Correlation algorithm may not bemeaningful for the following reasons: 1) the neural network approach used here is a\black box" approach (i.e., the user need not spend time in searching for an appropriateanalytic model for the 
ow process), and 2) there is no need for transforming the data(for example, using a logarithmic transformation) to �t a model to the data.5 ConclusionsThis paper evaluated the applicability of neural networks with a clipped linear outputunit for river 
ow prediction and presented some preliminary results. The mse values forthe testing period suggest that, among the two neural network models considered, theNN2 model seems to be a more accurate predictor than the power model. This suggeststhat representing the input using a �ve-day window is more useful than the �ve-dayaverages. A comparison of re values indicate that the neural networks are capable of23



predicting the high runo�s better than the power model. Our results also suggest that,unlike the power model, the neural network models are less a�ected by the data on theMill Creek tributary and that it may not be necessary for the user to do any smoothingor transformation on the input data.The neural network approach is a \black box" approach and the user need not knowmuch about the 
ow process. The Cascade-Correlation algorithm makes the applicabilityof the neural network approach quite easy because it relieves the user from concentratingon the issues such as convergence of the learning algorithm and the selection of a suitablearchitecture for the network. Our analysis on the size of the networks suggests thatthe Cascade-Correlation algorithm is capable of adapting the complexity of the neuralnetworks to match the complexity of the training set. This 
exibility is not available inanalytic model such as the power model because the complexity of the model is �xed apriori.However, we do note that the neural network approach is a new approach for thisapplication and further research is needed to fully understand its modeling capability.Hence, we plan to further investigate the applicability of the neural network approachin the following directions: 1) applying these neural network models for predicting othermissing 
ow histories, 2) comparing the predictive accuracy of our neural network modelswith parametric models, and 3) exploring the applicability of recurrent networks.AcknowledgementsThe authors would like to thank Dr. Scott Fahlman for providing the initial code forhis algorithm. We sincerely appreciate the reviewers for their valuable comments ande�orts. 24
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Appendix II: NotationsThe following symbols are used in this paper:A(t) = discharge measured at Ann Arbor at time t;b = label of the bias unit;D(t) = discharge measured at Dexter at time t;bD(t) = predicted 
ow at Dexter at time t;Di = actual observed 
ow at Dexter corresponding to the input i;bDi = predicted 
ow at Dexter for the input i;HU(t) = activation vector of hidden units at time t;H(t) = discharge measured at Hamburg at time t;hi = label of the hidden unit i;hi(t) = output activation of hidden unit i at time t;I(t) = transpose of the input to the neural network at time t;M(t) = discharge measured at Mill Creek at time t;n = number of points used in the test set;NN1 = 3-input, 1-output neural network;NN2 = 15-input, 1-output neural network;o = label of the output unit;�re = mean of the percentage relative prediction error;sse = sum square error;net = weighted sum of inputs to a neuron;t = time index of the current point;(t� i) = time index of the ith point prior to the current point;WI;O = weight vector from the input layer to the output unit;WH;O = weight vector from hidden units to the output unit;WI;hi = weight vector from the input layer to the hidden unit hi;wi;j = weight from unit i to unit j; and�0; �1; �2 = parameters of the power model.28
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Table 1: Testing and Training Errors of Neural Networks and the Power Model.Experiment Power Model NN1 NN2Type mse mre mse mre mse mreTesting Errors1 11,763 11.9 11,365 12.4 7,044 8.02 6,372 7.5 7,272 7.6 1,522 8.33 12,598 8.5 10,221 8.9 10,104 9.5Training Errors1 2,782 12.3 1,800 11.2 991 8.52 1,415 8.4 995 8.0 249 8.53 952 7.1 681 7.6 670 7.9
40



Table 2: A Summary of Hidden Units Used in Neural NetworksExperiment NN1 NN2Type Average Min Max SD Average Min Max SD1 15.92 12 21 2.07 0.34 0 1 0.482 1.16 1 2 0.37 0.24 0 2 0.483 2.53 0 17 3.45 0.58 0 5 0.97
41
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Figure CaptionsFigure 1: A Typical BP-network and a CASCADE-network.Figure 2: A Typical Processing Unit Used in the Output and Hidden Layers of aNeural Network.Figure 3: The Huron River and the Mill Creek Tributary.Figure 4: Flow Records Used in This Study.Figure 5: Observed Vs. Predicted Flows at Dexter by the Power Model for the TestingPeriod 1976 and 1977.Figure 6: Square Error of the Power Model for Flows at Dexter for the Testing Period1976 and 1977.Figure 7: Relative Error of the Power Model for Flows at Dexter for the TestingPeriod 1976 and 1977.Figure 8: Neural Network Models Used for Prediction.Figure 9: Observed Vs. Predicted Flows at Dexter by the NN1 Model for the TestingPeriod 1976 and 1977.Figure 10: Square Error of the NN1 Model for Flows at Dexter for the Testing Period1976 and 1977.Figure 11: Relative Error of the NN1 Model for Flows at Dexter for the TestingPeriod 1976 and 1977.
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