Identifying Fault-Prone Software
Modules Using Feed-Forward Networks:
A Case Study

N. Karunanithi
Room 2E-378, Bellcore
435 South Street
Morristown, NJ 07960

E-mail: karun@faline.bellcore.com

Abstract

Functional complexity of a software module can be measured in
terms of static complexity metrics of the program text. Classify-
ing software modules, based on their static complexity measures,
into different fault-prone categories is a difficult problem in soft-
ware engineering. This research investigates the applicability of
neural network classifiers for identifying fault-prone software mod-
ules using a data set from a commercial software system. A pre-
liminary empirical comparison is performed between a minimum
distance based Gaussian classifier, a perceptron classifier and a
multilayer layer feed-forward network classifier constructed using
a modified Cascade-Correlation algorithm. The modified version
of the Cascade-Correlation algorithm constrains the growth of the
network size by incorporating a cross-validation check during the
output layer training phase. Our preliminary results suggest that
a multilayer feed-forward network can be used as a tool for iden-
tifying fault-prone software modules early during the development
cycle. Other issues such as representation of software metrics and
selection of a proper training samples are also discussed.!

!Presented at the 1993 Neural Information Processing Systems (NIPS*93), Conference,
Denver, Colorado.

1 Problem Statement

Developing reliable software at a low cost is an important issue in the area of soft-
ware engineering (Karunanithi, Whitley and Malaiya, 1992). Both the reliability
of a software system and the development cost can be reduced by identifying trou-
blesome software modules early during the development cycle. Many measurable
program attributes have been identified and studied to characterize the intrinsic
complexity and the fault proneness of software systems. The intuition behind soft-
ware complexity metrics is that complex program modules tend to be more error
prone than simple modules. By controlling the complexity of software modules
during development, one can produce software systems that are easy to maintain
and enhance (because simple program modules are easy to understand). Static
complexity metrics are measured from the passive program texts early during the
development cycle and can be used as a valuable feedback for allocating resources
in future development efforts (future releases or new projects).

Two approachs can be applied to relate static complexity measures with faults
found or program changes made during testing. In the estemative approach regres-
sions models are used to predict the actual number of faults that will be disclosed
during testing (Lipow, 1982; Gaffney, 1984; Shen et al., 1985; Crawford et al., 1985;
Munson and Khoshgoftaar, 1992). Regression models assume that the metrics that
constitute independent variables are independent and normally distributed. How-
ever, most practical measures often violate the normality assumptions and exhibit
high correlation with other metrics (i.e., multicollinearity). The resulting fit of the
regression models often tend to produce inconsistent predictions.

Under the classification approach software modules are categorized into two or more
fault-prone classes (Rodriguez and Tsai, 1987; Munson and Khoshgoftaar, 1992;
Karunanithi, 1993; Khoshgoftaar et al, 1993). A special case of the classifica-
tion approach is to classify software modules into either low-fault (non-complex) or
high-fault (complex) categories. The main rationale behind this approach is that
the software managers are often interested in getting some approximate feedback
from this type of models rather than accurate predictions of the number of faults
that will be disclosed. Existing two-class categorization models are based on lin-
ear discriminant principle (Rodriguez and Tsai, 1987; Munson and Khoshgoftaar,
1992). Linear discriminant models assume that the metrics are orthogonal and that
they follow a normal distribution. To reduce multicollinearity, researchers often use
principle component analysis or some other dimensionality reduction techniques.
However, the reduced metrics may not explain all the variability if the original
metrics have nonlinear relationship.

In this paper, the applicability of neural network classifiers for identifying fault
proneness of software modules is examined. The motivation behind this research 1is
to evaluate whether classifiers can be developed without usual assumptions about
the input metrics. In order to study the usefulness of neural network classifiers, a
preliminary comparison is made between a simple minimum distance based Gaus-
sian classifier, a single layer perceptron and a multilayer feed-forward network devel-
oped using a modified version of Fahlman’s Cascade Correlation algorithm (Fahlman
and Lebiere, 1990). The modified algorithm incorporates a cross-validation for con-
straining the growth of the size of the network. In this investigation, other issues

such as selection of proper training samples and representation of metrics are also
considered.

2 Data Set Used

The metrics data used in this study were obtained from a research conducted by Lind
and Vairavan (Lind and Vairavan, 1989) for a Medical Imaging System software.
The complete system consisted of approximately 4500 modules amounting to about
400,000 lines of code written in Pascal, FORTRAN, PL/M and assembly level.
From this set, a random sample of 390 high level language routines was selected
for the analysis. For each module in the sample, program changes were recorded
as an indication of software fault. The number of changes in the program modules
varied from zero to 98. In addition to changes, 11 software complexity metrics
were extracted from each module. These metrics range from total lines of code
to Belady’s bandwidth metric. (Readers curious about these metrics may refer to
Table T of Lind and Vairavan, 1989.) For the purpose of our classification study,
these metrics represent 11 input (both real and integer) variables of the classifier.

A software module is considered as a low fault-prone module (Category I) if there
are 0 or 1 changes and as a high fault-prone module (Category II) if there are 10
or more changes. The remaining modules are considered as medium fault category.
For the purpose of this study we consider only the low and high fault-prone modules.
Our extreme categorization and deliberate discarding of program modules is similar
to the approach used in other studies (Rodriguez and Tsai, 1987; Munson and
Khoshgoftaar, 1992). After discarding medium fault-prone modules, there are 203
modules left in the data set. Of 203 modules, 114 modules belong to the low
fault-prone category while the remaining 89 modules belong to the high fault-prone
category. The output layer of the neural nets had two units corresponding to two
fault categories.

3 Training Data Selection

We had two objectives in selecting training data: 1) to evaluate how well a neural
network classifier will perform across different sized training sets and 2) to select
the training data as much unbiased as possible. The first objective was motivated
by the need to evaluate whether a neural network classifier can be used early in the
software development cycle. Thus the classification experiments were conducted
using training samples of size S = %, %, L %, %, 19—0 fraction of 203 samples belonging
to Categories T and II. The remaining (1-S) fraction of the samples were used for
testing the classifiers. In order to avoid bias in the training data, we randomly
selected 10 different training samples for each fraction S. This resulted in 6 X 10
(=60) different training and test sets.

4 Classifiers Compared

4.1 A Minimum Distance Classifier

In order to compare neural network classifiers and linear discriminant classifiers we
implemented a simple minimum distance based two-class Gaussian classifier of the

form (Nilsson, 1990):

X = Cil = ((X = Ci)(X =)2
where Cj, ¢ = 1,2 represent the prototype points for the Categories I and II, X is
a 11 dimensional metrics vector, and ¢ is the transpose operator. The prototype
points C7 and (5 are calculated from the training set based on the normality as-

sumption. In this approach a given arbitrary input vector X is placed in Category
Tif | X — C1] < |X = C4| and in Category IT otherwise.

All raw component metrics had distributions that are asymmetric with a positive
skew (i.e., long tail to the right) and they had different numerical ranges. Note
that asymmetric distributions do not conform to the normality assumption of a
typical Gaussian classifier. First, to remove the extreme asymmetry of the original
distribution of the individual metric we transformed each metric using a natural
logarithmic base. Second, to mask the influence of individual component metric on
the distance score, we divided each metric by 1ts standard deviation of the training
set. These transformations considerably improved the performance of the Gaussian
classifier. To be consistent in our comparison we used the log transformed inputs
for other classifiers also.

4.2 A Perceptron Classifier

A perceptron with a hard-limiting threshold can be considered as a realization of a
non-parametric linear discriminant classifier. If we use a sigmoidal unit, then the
continuous valued output of the perceptron can be interpreted as a likelihood or
probability with which inputs are assigned to different classes. In our experiment we
implemented a perceptron with two sigmoidal units (outputs 1 and 2) corresponding
to two categories. A given arbitrary vector X is assigned to Category I if the value
of the output unit 1 is greater than the output of the unit 2 and to Category II
otherwise. The weights of the network are determined iteratively using least square
error minimization procedure. In almost all our experiments, the perceptron learned
about 75 to 80 percentages of the training set. This implies that the rest of the
training samples are not linearly separable.

4.3 A Multilayer Network Classifier

To evaluate whether a multilayer network can perform better than the other two
classifiers, we repeated the same set of experiments using feed-forward networks
constructed by Fahlman’s Cascade-Correlation algorithm. The Cascade-Correlation
algorithm is a constructive training algorithm which constructs a suitable network
architecture by adding one hidden (layer) unit at a time. (Refer to Fahlman and
Lebiere, 1990 for more details on the Cascade-Correlation algorithm.) Our initial
results suggested that the multilayer layer networks constructed by the Cascade-
Correlation algorithm are not capable of producing a better classification accuracy

than the other two classifiers. An analysis of the network suggested that the re-
sulting networks had too many free variables (i.e., due to too many hidden units).
A further analysis of the rate of decrease of the residual error versus the number
of hidden units added to the networks revealed that the Cascade-Correlation algo-
rithm is capable of adding more hidden units to learn individual training patterns
at the later stages of the training phase than in the earlier stages. This happens
if the training set contains patterns that are interspersed across different decision
regions or what might be called “border patterns” (Ahmed, S. and Tesauro, 1989).
In an effort to constrain the growth of the size of the network, we modified the
Cascade-Correlation algorithm to incorporate a cross-validation check during the
output layer training phase. For each training set of size S, one third was used
for cross-validation and the remaining two third was used to train the network.
The network construction was stopped as soon as the residual error of the cross-
validation set stopped decreasing from the residual error at the end of the previous
output layer training phase. The resulting network learned about 95% of the train-
ing patterns. However, the cross-validated construction considerably improved the
classification performance of the networks on the test set. Table 1 presented in
the next section provides a comparison between the networks developed with and
without cross-validation.

Training | Hidden Unit Error Statistics
Set Size Statistics Type I Error | Type II Error
S in% Mean | Std | Mean | Std | Mean | Std
Without Cross-Validation
25 5.1 1.5 24.64 7.2 16.38 6.4
33 6.2 1.8 20.24 8.4 17.27 5.5
50 7.4 1.8 18.30 7.4 18.65 6.4
67 9.7 1.7 15.78 6.5 18.05 7.1
75 10.4 1.8 14.54 7.6 16.85 7.3
90 11.2 1.6 10.33 7.2 17.73 8.3
With Cross-Validation
25 1.9 1.3 20.19 5.4 12.11 4.7
33 2.2 1.0 18.24 5.5 12.40 4.1
50 2.0 0.9 17.41 5.6 15.04 5.2
67 2.7 1.1 14.32 5.8 14.08 5.5
75 2.7 1.3 13.27 7.0 13.84 5.4
90 2.9 1.2 9.77 9.4 15.47 5.1

Table 1: A Comparison of Nets With and Without Cross-Validation.

5 Results

In this section we present some preliminary results from our classification experi-
ments. First, we provide a comparison between the multilayer networks developed
with and without cross-validation. Next, we compare different classifiers in terms
of their classification accuracy. Since a neural network’s performance can be af-
fected by the weight vector used to initialize the network, we repeated the training
experiment 25 times with different initial weight vectors for each training set. This

resulted in a total of 250 training trials for each value of S. The results reported here
for the neural network classifiers represent a summary statistics for 250 experiments.

The performance of the classifiers are reported in terms of classification errors.
There are two type of classification errors that a classifier can make: a Type I error
occurs when the classifier identifies a low fault-prone (Category T) module as a high
fault-prone (Category II) module; a Type II error is produced when a high fault-
prone module is identified as a low fault-prone module. From a software manager’s
point of view, these classification errors will have different implications. Type I
misclassification will result in waste of test resources (because modules that are less
fault-prone may be tested longer than what is normally required). On the other
hand, Type IT misclassification will result in releasing products that are of inferior
quality. From reliability point of view, a Type II error is a serious error than a Type
I error.

No. of Patterns Error Statistics
S | Training | Test Gaussian Perceptron | Multilayer Nets
% Set Set | Mean | Std | Mean | Std | Mean | Std
Type I Error Statistics
25 50 86 13.16 4.7 16.17 5.5 20.19 5.4
33 66 77 11.44 | 4.0 11.74 3.9 18.24 5.5
50 101 57 12.45 3.2 11.58 3.2 17.41 5.6
67 136 37 9.46 4.1 10.14 3.9 14.32 5.8
75 152 28 8.57 5.4 9.15 5.8 13.27 7.0
90 182 12 14.17 7.9 4.03 4.3 9.77 9.4
Type Il Error Statistics
25 50 67 15.61 4.2 15.98 7.8 12.11 4.7
33 66 60 15.46 4.6 15.78 6.6 12.40 4.1
50 101 45 16.01 5.1 16.97 6.8 15.04 5.2
67 136 30 16.00 5.4 16.11 7.6 14.08 5.5
75 152 23 17.39 5.8 18.39 6.3 13.84 5.4
90 182 9 21.11 6.3 19.11 5.6 15.47 5.1

Table 2: A Summary of Type I and Type II Error Statistics.

Table 1 compares the complexity and the performance of the multilayer networks
developed with and without cross-validation. Columns 2 through 7 represent the
size and the performance of the networks developed by the Cascade-Correlation
without cross-validation. The remaining six columns correspond to the networks
constructed with cross-validation. Hidden unit statistics for the networks suggest
that the growth of the network can be constrained by adding a cross-validation
during the output layer training. The corresponding error statistics for both the
Type I and Type II errors suggest that an improvement classification accuracy can
be achieved by cross-validating the size of the networks.

Table 2 illustrates the preliminary results for different classifiers. The first two
columns in Table 2 represent the size of the training set in terms of S as a per-
centage of all patterns and the number of patterns respectively. The third column
represents the number of test patterns in Categories I (1st half) and the IT (2nd half).
The remaining six columns represent the error statistics for the three classifiers in

terms of percentage mean errors and standard deviations. The percentages errors
were obtained by dividing the number of misclassifications by the total number of
test patterns in that Category. The Type I error statistics in the first half of the
table suggest that the Gaussian and the Perceptron classifiers may be better than
multilayer networks at early stages of the software development cycle. However,
the difference in performance of the Gaussian classifier is not consistent across all
values of S. The neural network classifiers seem to improve their performance with
an increase in the size of the training set. Among neural networks, the perceptron
classifier seems to perform classification than a multilayer net. However, the Type
IT error statistics in the second half of the table suggest that a multilayer network
classifier may provide a better classification of Category II modules than the other
two classifiers. This is an tmportant results from the reliability perspective.

6 Conclusion and Work in Progress

We demonstrated the applicability of neural network classifiers for identifying fault-
prone software modules. We compared the classification efficacy of three different
pattern classifiers using a data set from a commercial software system. Our pre-
liminary empirical results are encouraging in that there i1s a role for multilayer
feed-forward networks either during the software development cycle of a subsequent
release or for a similar product.

The cross-validation implemented in our study is a simple heuristics for constraining
the size of the networks constructed by the Cascade-Correlation algorithm. Though
this improved the performance of the resulting networks, it should be cautioned that
cross-validation may be needed only if the training patterns exhibit certain charac-
teristics. In other circumstances, the networks may have to be constructed using
the entire training set. At this stage we have not performed complete analysis
on what characteristics of the training samples would require cross-validation for
constraining the network growth. Also we have not used other sophisticated struc-
ture reduction techniques. We are currently exploring different loss functions and
structure reduction techniques.

The Cascade-Correlation algorithm always constructs a deep network. Each addi-
tional hidden unit develops an internal representation that is a higher order sig-
moidal computation than those of previously added hidden units. Such a complex
internal representation may not be appropriate in a classification application such
as the one studied here. We are currently exploring alternatives to construct shallow
networks within the Cascade-Correlation frame work.

At this stage, we have not performed any analysis on how the internal represen-
tations of a multilayer network correlate with the input metrics. This is currently
being studied.

References

Ahmed, S. and G. Tesauro (1989). “Scaling and Generalization in Neural Networks:
A Case Study”, Advances in Neural Information Processing Systems 1, pp 160-168,
D. Touretzky, ed. Morgan Kaufmann.

Crawford, S. G., McIntosh, A. A. and D. Pregibon (1985). “An Analysis of Static
Metrics and Faults in C Software”, The Journal of Systems and Software, Vol. b5,
pp- 37-48.

Fahlman, S. E. and C. Lebiere (1990). “The Cascaded-Correlation Learning Ar-
chitecture,” Advances in Neural Information Processing Systems 2, pp 524-532, D.
Touretzky, ed. Morgan Kaufmann.

Gaffney Jr., J. E. (1984). “Estimating the Number of Faults in Code”, IEEE Trans.
on Software Eng., Vol. SE-10, No. 4, pp. 459-464.

Karunanithi, N, Whitley, D. and Y. K. Malaiya (1992). “Prediction of Software
Reliability Using Connectionist Models”, IEEE Trans. on Software Eng., Vol. 18,
No. 7, pp. 563-574.

Karunanithi, N. (1993). “Identifying Fault-Prone Software Modules Using Con-
nectionist Networks”, Proc. of the Ist Int’l Workshop on Applications of Neural
Networks to Telecommunications, (IWANNT’93), pp. 266-272, J. Alspector et al.,
ed., Lawrence Erlbaum, Publisher.

Khoshgoftaar, T. M., Lanning, D. L. and A. S. Pandya (1993). “A Neural Network
Modeling Methodology for the Detection of High-Risk Programs”, Proc. of the 4th
Int’l Symp. on Software Reliability Eng. pp. 302-309.

Lind, R. K. and K. Vairavan (1989). “An Experimental Investigation of Software
Metrics and Their Relationship to Software Development Effort”, IEEE Trans. on
Software Eng., Vol. 15, No. 5, pp. 649-653.

Lipow, M. (1982). “Number of Faults Per Line of Code”, IEEE Trans. on Software
Eng., Vol. SE-8, No. 4, pp. 437-439.

Munson, J. C. and T. M. Khoshgoftaar (1992). “The Detection of Fault-Prone
Programs”, IEFEE Trans. on Software Eng., Vol. 18, No. b, pp. 423-433.

Nilsson, J. Nils (1990). The Mathematical Foundations of Learning Machines, Mor-
gan Kaufmann, Chapters 2 and 3.

Rodriguez, V. and W. T. Tsai (1987). “A Tool for Discriminant Analysis and
Classification of Software Metrics”, Information and Software Technology, Vol. 29,
No. 3, pp. 137-149.

Shen, V. Y., Yu, T., Thebaut, S. M. and T. R. Paulsen (1985). “Identifying Error-
Prone Software: An Empirical Study”, IEEE Trans. on Software Eng., Vol. SE-11,
No. 4, pp. 317-323.

