
Identifying Fault-Prone SoftwareModules Using Feed-Forward Networks:A Case StudyN. KarunanithiRoom 2E-378, Bellcore435 South StreetMorristown, NJ 07960E-mail: karun@faline.bellcore.comAbstractFunctional complexity of a software module can be measured interms of static complexity metrics of the program text. Classify-ing software modules, based on their static complexity measures,into di�erent fault-prone categories is a di�cult problem in soft-ware engineering. This research investigates the applicability ofneural network classi�ers for identifying fault-prone software mod-ules using a data set from a commercial software system. A pre-liminary empirical comparison is performed between a minimumdistance based Gaussian classi�er, a perceptron classi�er and amultilayer layer feed-forward network classi�er constructed usinga modi�ed Cascade-Correlation algorithm. The modi�ed versionof the Cascade-Correlation algorithm constrains the growth of thenetwork size by incorporating a cross-validation check during theoutput layer training phase. Our preliminary results suggest thata multilayer feed-forward network can be used as a tool for iden-tifying fault-prone software modules early during the developmentcycle. Other issues such as representation of software metrics andselection of a proper training samples are also discussed.11Presented at the 1993 Neural Information Processing Systems (NIPS*93), Conference,Denver, Colorado.



1 Problem StatementDeveloping reliable software at a low cost is an important issue in the area of soft-ware engineering (Karunanithi, Whitley and Malaiya, 1992). Both the reliabilityof a software system and the development cost can be reduced by identifying trou-blesome software modules early during the development cycle. Many measurableprogram attributes have been identi�ed and studied to characterize the intrinsiccomplexity and the fault proneness of software systems. The intuition behind soft-ware complexity metrics is that complex program modules tend to be more errorprone than simple modules. By controlling the complexity of software modulesduring development, one can produce software systems that are easy to maintainand enhance (because simple program modules are easy to understand). Staticcomplexity metrics are measured from the passive program texts early during thedevelopment cycle and can be used as a valuable feedback for allocating resourcesin future development e�orts (future releases or new projects).Two approachs can be applied to relate static complexity measures with faultsfound or program changes made during testing. In the estimative approach regres-sions models are used to predict the actual number of faults that will be disclosedduring testing (Lipow, 1982; Ga�ney, 1984; Shen et al., 1985; Crawford et al., 1985;Munson and Khoshgoftaar, 1992). Regression models assume that the metrics thatconstitute independent variables are independent and normally distributed. How-ever, most practical measures often violate the normality assumptions and exhibithigh correlation with other metrics (i.e., multicollinearity). The resulting �t of theregression models often tend to produce inconsistent predictions.Under the classi�cation approach software modules are categorized into two or morefault-prone classes (Rodriguez and Tsai, 1987; Munson and Khoshgoftaar, 1992;Karunanithi, 1993; Khoshgoftaar et al., 1993). A special case of the classi�ca-tion approach is to classify software modules into either low-fault (non-complex) orhigh-fault (complex) categories. The main rationale behind this approach is thatthe software managers are often interested in getting some approximate feedbackfrom this type of models rather than accurate predictions of the number of faultsthat will be disclosed. Existing two-class categorization models are based on lin-ear discriminant principle (Rodriguez and Tsai, 1987; Munson and Khoshgoftaar,1992). Linear discriminant models assume that the metrics are orthogonal and thatthey follow a normal distribution. To reduce multicollinearity, researchers often useprinciple component analysis or some other dimensionality reduction techniques.However, the reduced metrics may not explain all the variability if the originalmetrics have nonlinear relationship.In this paper, the applicability of neural network classi�ers for identifying faultproneness of software modules is examined. The motivation behind this research isto evaluate whether classi�ers can be developed without usual assumptions aboutthe input metrics. In order to study the usefulness of neural network classi�ers, apreliminary comparison is made between a simple minimum distance based Gaus-sian classi�er, a single layer perceptron and a multilayer feed-forward network devel-oped using a modi�ed version of Fahlman'sCascade Correlation algorithm(Fahlmanand Lebiere, 1990). The modi�ed algorithm incorporates a cross-validation for con-straining the growth of the size of the network. In this investigation, other issues



such as selection of proper training samples and representation of metrics are alsoconsidered.2 Data Set UsedThe metrics data used in this study were obtained froma research conducted by Lindand Vairavan (Lind and Vairavan, 1989) for a Medical Imaging System software.The complete system consisted of approximately 4500 modules amounting to about400,000 lines of code written in Pascal, FORTRAN, PL/M and assembly level.From this set, a random sample of 390 high level language routines was selectedfor the analysis. For each module in the sample, program changes were recordedas an indication of software fault. The number of changes in the program modulesvaried from zero to 98. In addition to changes, 11 software complexity metricswere extracted from each module. These metrics range from total lines of codeto Belady's bandwidth metric. (Readers curious about these metrics may refer toTable I of Lind and Vairavan, 1989.) For the purpose of our classi�cation study,these metrics represent 11 input (both real and integer) variables of the classi�er.A software module is considered as a low fault-prone module (Category I) if thereare 0 or 1 changes and as a high fault-prone module (Category II) if there are 10or more changes. The remaining modules are considered as medium fault category.For the purpose of this study we consider only the low and high fault-prone modules.Our extreme categorization and deliberate discarding of program modules is similarto the approach used in other studies (Rodriguez and Tsai, 1987; Munson andKhoshgoftaar, 1992). After discarding medium fault-prone modules, there are 203modules left in the data set. Of 203 modules, 114 modules belong to the lowfault-prone category while the remaining 89 modules belong to the high fault-pronecategory. The output layer of the neural nets had two units corresponding to twofault categories.3 Training Data SelectionWe had two objectives in selecting training data: 1) to evaluate how well a neuralnetwork classi�er will perform across di�erent sized training sets and 2) to selectthe training data as much unbiased as possible. The �rst objective was motivatedby the need to evaluate whether a neural network classi�er can be used early in thesoftware development cycle. Thus the classi�cation experiments were conductedusing training samples of size S = 14 ; 13 ; 12 ; 23 ; 34 ; 910 fraction of 203 samples belongingto Categories I and II. The remaining (1-S) fraction of the samples were used fortesting the classi�ers. In order to avoid bias in the training data, we randomlyselected 10 di�erent training samples for each fraction S. This resulted in 6 X 10(=60) di�erent training and test sets.



4 Classi�ers Compared4.1 A Minimum Distance Classi�erIn order to compare neural network classi�ers and linear discriminant classi�ers weimplemented a simple minimum distance based two-class Gaussian classi�er of theform (Nilsson, 1990): jX �Cij = ((X �Ci)(X �Ci)t)1=2where Ci, i = 1; 2 represent the prototype points for the Categories I and II, X isa 11 dimensional metrics vector, and t is the transpose operator. The prototypepoints C1 and C2 are calculated from the training set based on the normality as-sumption. In this approach a given arbitrary input vector X is placed in CategoryI if jX � C1j < jX � C2j and in Category II otherwise.All raw component metrics had distributions that are asymmetric with a positiveskew (i.e., long tail to the right) and they had di�erent numerical ranges. Notethat asymmetric distributions do not conform to the normality assumption of atypical Gaussian classi�er. First, to remove the extreme asymmetry of the originaldistribution of the individual metric we transformed each metric using a naturallogarithmic base. Second, to mask the in
uence of individual component metric onthe distance score, we divided each metric by its standard deviation of the trainingset. These transformations considerably improved the performance of the Gaussianclassi�er. To be consistent in our comparison we used the log transformed inputsfor other classi�ers also.4.2 A Perceptron Classi�erA perceptron with a hard-limiting threshold can be considered as a realization of anon-parametric linear discriminant classi�er. If we use a sigmoidal unit, then thecontinuous valued output of the perceptron can be interpreted as a likelihood orprobability with which inputs are assigned to di�erent classes. In our experiment weimplemented a perceptron with two sigmoidal units (outputs 1 and 2) correspondingto two categories. A given arbitrary vector X is assigned to Category I if the valueof the output unit 1 is greater than the output of the unit 2 and to Category IIotherwise. The weights of the network are determined iteratively using least squareerror minimization procedure. In almost all our experiments, the perceptron learnedabout 75 to 80 percentages of the training set. This implies that the rest of thetraining samples are not linearly separable.4.3 A Multilayer Network Classi�erTo evaluate whether a multilayer network can perform better than the other twoclassi�ers, we repeated the same set of experiments using feed-forward networksconstructed by Fahlman's Cascade-Correlation algorithm. The Cascade-Correlationalgorithm is a constructive training algorithm which constructs a suitable networkarchitecture by adding one hidden (layer) unit at a time. (Refer to Fahlman andLebiere, 1990 for more details on the Cascade-Correlation algorithm.) Our initialresults suggested that the multilayer layer networks constructed by the Cascade-Correlation algorithm are not capable of producing a better classi�cation accuracy



than the other two classi�ers. An analysis of the network suggested that the re-sulting networks had too many free variables (i.e., due to too many hidden units).A further analysis of the rate of decrease of the residual error versus the numberof hidden units added to the networks revealed that the Cascade-Correlation algo-rithm is capable of adding more hidden units to learn individual training patternsat the later stages of the training phase than in the earlier stages. This happensif the training set contains patterns that are interspersed across di�erent decisionregions or what might be called \border patterns" (Ahmed, S. and Tesauro, 1989).In an e�ort to constrain the growth of the size of the network, we modi�ed theCascade-Correlation algorithm to incorporate a cross-validation check during theoutput layer training phase. For each training set of size S, one third was usedfor cross-validation and the remaining two third was used to train the network.The network construction was stopped as soon as the residual error of the cross-validation set stopped decreasing from the residual error at the end of the previousoutput layer training phase. The resulting network learned about 95% of the train-ing patterns. However, the cross-validated construction considerably improved theclassi�cation performance of the networks on the test set. Table 1 presented inthe next section provides a comparison between the networks developed with andwithout cross-validation.Training Hidden Unit Error StatisticsSet Size Statistics Type I Error Type II ErrorS in% Mean Std Mean Std Mean StdWithout Cross-Validation25 5.1 1.5 24.64 7.2 16.38 6.433 6.2 1.8 20.24 8.4 17.27 5.550 7.4 1.8 18.30 7.4 18.65 6.467 9.7 1.7 15.78 6.5 18.05 7.175 10.4 1.8 14.54 7.6 16.85 7.390 11.2 1.6 10.33 7.2 17.73 8.3With Cross-Validation25 1.9 1.3 20.19 5.4 12.11 4.733 2.2 1.0 18.24 5.5 12.40 4.150 2.0 0.9 17.41 5.6 15.04 5.267 2.7 1.1 14.32 5.8 14.08 5.575 2.7 1.3 13.27 7.0 13.84 5.490 2.9 1.2 9.77 9.4 15.47 5.1Table 1: A Comparison of Nets With and Without Cross-Validation.5 ResultsIn this section we present some preliminary results from our classi�cation experi-ments. First, we provide a comparison between the multilayer networks developedwith and without cross-validation. Next, we compare di�erent classi�ers in termsof their classi�cation accuracy. Since a neural network's performance can be af-fected by the weight vector used to initialize the network, we repeated the trainingexperiment 25 times with di�erent initial weight vectors for each training set. This



resulted in a total of 250 training trials for each value of S. The results reported herefor the neural network classi�ers represent a summary statistics for 250 experiments.The performance of the classi�ers are reported in terms of classi�cation errors.There are two type of classi�cation errors that a classi�er can make: a Type I erroroccurs when the classi�er identi�es a low fault-prone (Category I) module as a highfault-prone (Category II) module; a Type II error is produced when a high fault-prone module is identi�ed as a low fault-prone module. From a software manager'spoint of view, these classi�cation errors will have di�erent implications. Type Imisclassi�cation will result in waste of test resources (because modules that are lessfault-prone may be tested longer than what is normally required). On the otherhand, Type II misclassi�cation will result in releasing products that are of inferiorquality. From reliability point of view, a Type II error is a serious error than a TypeI error. No. of Patterns Error StatisticsS Training Test Gaussian Perceptron Multilayer Nets% Set Set Mean Std Mean Std Mean StdType I Error Statistics25 50 86 13.16 4.7 16.17 5.5 20.19 5.433 66 77 11.44 4.0 11.74 3.9 18.24 5.550 101 57 12.45 3.2 11.58 3.2 17.41 5.667 136 37 9.46 4.1 10.14 3.9 14.32 5.875 152 28 8.57 5.4 9.15 5.8 13.27 7.090 182 12 14.17 7.9 4.03 4.3 9.77 9.4Type II Error Statistics25 50 67 15.61 4.2 15.98 7.8 12.11 4.733 66 60 15.46 4.6 15.78 6.6 12.40 4.150 101 45 16.01 5.1 16.97 6.8 15.04 5.267 136 30 16.00 5.4 16.11 7.6 14.08 5.575 152 23 17.39 5.8 18.39 6.3 13.84 5.490 182 9 21.11 6.3 19.11 5.6 15.47 5.1Table 2: A Summary of Type I and Type II Error Statistics.Table 1 compares the complexity and the performance of the multilayer networksdeveloped with and without cross-validation. Columns 2 through 7 represent thesize and the performance of the networks developed by the Cascade-Correlationwithout cross-validation. The remaining six columns correspond to the networksconstructed with cross-validation. Hidden unit statistics for the networks suggestthat the growth of the network can be constrained by adding a cross-validationduring the output layer training. The corresponding error statistics for both theType I and Type II errors suggest that an improvement classi�cation accuracy canbe achieved by cross-validating the size of the networks.Table 2 illustrates the preliminary results for di�erent classi�ers. The �rst twocolumns in Table 2 represent the size of the training set in terms of S as a per-centage of all patterns and the number of patterns respectively. The third columnrepresents the number of test patterns in Categories I (1st half) and the II (2nd half).The remaining six columns represent the error statistics for the three classi�ers in



terms of percentage mean errors and standard deviations. The percentages errorswere obtained by dividing the number of misclassi�cations by the total number oftest patterns in that Category. The Type I error statistics in the �rst half of thetable suggest that the Gaussian and the Perceptron classi�ers may be better thanmultilayer networks at early stages of the software development cycle. However,the di�erence in performance of the Gaussian classi�er is not consistent across allvalues of S. The neural network classi�ers seem to improve their performance withan increase in the size of the training set. Among neural networks, the perceptronclassi�er seems to perform classi�cation than a multilayer net. However, the TypeII error statistics in the second half of the table suggest that a multilayer networkclassi�er may provide a better classi�cation of Category II modules than the othertwo classi�ers. This is an important results from the reliability perspective.6 Conclusion and Work in ProgressWe demonstrated the applicability of neural network classi�ers for identifying fault-prone software modules. We compared the classi�cation e�cacy of three di�erentpattern classi�ers using a data set from a commercial software system. Our pre-liminary empirical results are encouraging in that there is a role for multilayerfeed-forward networks either during the software development cycle of a subsequentrelease or for a similar product.The cross-validation implemented in our study is a simple heuristics for constrainingthe size of the networks constructed by the Cascade-Correlation algorithm. Thoughthis improved the performance of the resulting networks, it should be cautioned thatcross-validation may be needed only if the training patterns exhibit certain charac-teristics. In other circumstances, the networks may have to be constructed usingthe entire training set. At this stage we have not performed complete analysison what characteristics of the training samples would require cross-validation forconstraining the network growth. Also we have not used other sophisticated struc-ture reduction techniques. We are currently exploring di�erent loss functions andstructure reduction techniques.The Cascade-Correlation algorithm always constructs a deep network. Each addi-tional hidden unit develops an internal representation that is a higher order sig-moidal computation than those of previously added hidden units. Such a complexinternal representation may not be appropriate in a classi�cation application suchas the one studied here. We are currently exploring alternatives to construct shallownetworks within the Cascade-Correlation frame work.At this stage, we have not performed any analysis on how the internal represen-tations of a multilayer network correlate with the input metrics. This is currentlybeing studied.ReferencesAhmed, S. and G. Tesauro (1989). \Scaling and Generalization in Neural Networks:A Case Study", Advances in Neural Information Processing Systems 1, pp 160-168,D. Touretzky, ed. Morgan Kaufmann.



Crawford, S. G., McIntosh, A. A. and D. Pregibon (1985). \An Analysis of StaticMetrics and Faults in C Software", The Journal of Systems and Software, Vol. 5,pp. 37-48.Fahlman, S. E. and C. Lebiere (1990). \The Cascaded-Correlation Learning Ar-chitecture," Advances in Neural Information Processing Systems 2, pp 524-532, D.Touretzky, ed. Morgan Kaufmann.Ga�ney Jr., J. E. (1984). \Estimating the Number of Faults in Code", IEEE Trans.on Software Eng., Vol. SE-10, No. 4, pp. 459-464.Karunanithi, N, Whitley, D. and Y. K. Malaiya (1992). \Prediction of SoftwareReliability Using Connectionist Models", IEEE Trans. on Software Eng., Vol. 18,No. 7, pp. 563-574.Karunanithi, N. (1993). \Identifying Fault-Prone Software Modules Using Con-nectionist Networks", Proc. of the 1st Int'l Workshop on Applications of NeuralNetworks to Telecommunications, (IWANNT'93), pp. 266-272, J. Alspector et al.,ed., Lawrence Erlbaum, Publisher.Khoshgoftaar, T. M., Lanning, D. L. and A. S. Pandya (1993). \A Neural NetworkModeling Methodology for the Detection of High-Risk Programs", Proc. of the 4thInt'l Symp. on Software Reliability Eng. pp. 302-309.Lind, R. K. and K. Vairavan (1989). \An Experimental Investigation of SoftwareMetrics and Their Relationship to Software Development E�ort", IEEE Trans. onSoftware Eng., Vol. 15, No. 5, pp. 649-653.Lipow, M. (1982). \Number of Faults Per Line of Code", IEEE Trans. on SoftwareEng., Vol. SE-8, No. 4, pp. 437-439.Munson, J. C. and T. M. Khoshgoftaar (1992). \The Detection of Fault-PronePrograms", IEEE Trans. on Software Eng., Vol. 18, No. 5, pp. 423-433.Nilsson, J. Nils (1990). The Mathematical Foundations of Learning Machines, Mor-gan Kaufmann, Chapters 2 and 3.Rodriguez, V. and W. T. Tsai (1987). \A Tool for Discriminant Analysis andClassi�cation of Software Metrics", Information and Software Technology, Vol. 29,No. 3, pp. 137-149.Shen, V. Y., Yu, T., Thebaut, S. M. and T. R. Paulsen (1985). \Identifying Error-Prone Software: An Empirical Study", IEEE Trans. on Software Eng., Vol. SE-11,No. 4, pp. 317-323.


