
A Modi�ed Recurrent Cascade-CorrelationNetwork for Radar Signal Pulse DetectionN. Karunanithi2E-378, Bellcore445, South StreetMorristown, NJ 07692Phone: (201) 829-4466Fax: (201) 829-5888karun@faline.bellcore.com D. WhitleyDept. of Computer ScienceColorado State UniversityFort Collins, CO 80523whitley@cs.colostate.edu D. NewmanTexas Instruments5825 Mark Dabling Blvd.MS 3712Colorado Springs, CO 809191 Problem StatementThe signal detection problem that we studied involves identifying radar signal pulses in one of severalchannels that span a frequency range. The signals are such that a valid signal causes \false signals",or \splatter" to appear in surrounding channels. These \false signals" should not be detected. Alsoit is necessary that there should not be a \false alarm" whenever there is no signal. The problem isfurther complicated by the fact that more than one valid signal may simultaneously exist across multiplechannels.The input signal for the detector is a logarithmic envelope of the amplitude of pre�ltered outputs ofradar returns. The actual pulse may occur anywhere within the envelope and can be of variable duration.There are 24 basic \signal events" in our data set and each signal event can occur somewhere across21 channels (labeled 1 through 21). Of the 24 basic signal events, 10 are multiple pulse cases whilethe remaining 14 are single pulse cases. A signal event is called a single pulse (SP) if the pulse occurson only one of the 21 channels at any given instance. A signal event is said to be a multiple pulse(MP) case if the useful pulses occur simultaneously on more than one channel. All signal events areof equal duration and each signal event is represented in terms of approximately 2000 equally spacedsamples that are 1 nanosecond apart. (However, the actual pulses within the signal events can be ofvariable duration.) If all 21 channels are considered then all signal events can be represented in termsof 1.008 million time slices. The signal space can be further characterized as highly sparse because: 1)not all signal events contain target pulses, and 2) only a small fraction of the samples within a channelcontain useful information (i.e., those samples that represent the region where the pulse is present). Theproblem requires not only identifying whether the pulse is present (amplitude detection) in the signalevent but also to locate the position as well as the duration of the pulse within the channel. Thereare several outputs in the signal detector corresponding to the width of the pulse, time of arrival andfrequency information. The outputs from the detector are then fed to a postprocessing unit for furtheranalysis. The objective of this study was to develop a connectionist network that can detect the presenceof pulse(s) in signal events.Over the past 3 years we have trained neural networks for the radar signal pulse detection problemusing 1) traditional back-propagation (Rumelhart, Hinton and Williams 1986), 2) a genetic hill-climbingalgorithm (Whitley et al. 1990), 3) a non-recurrent Cascade-Correlation learning architecture (Fahlmanand Lebiere 1990) and 4) a variant of Jordan-style recurrent net (Jordan 1986) developed by the Cascade-Correlation algorithm. The back propagation algorithm was a standard form using momentum. Ourempirical data indicate that the Cascade-Correlation algorithm produces superior results compared tothe other two algorithms, both in terms of learning speed (approximately 50 times faster that thebackpropagation) and in terms of generalization (Whitley and Karunanithi 1991; Whitley 1992). Herewe present results from only the Cascade-Correlation correlation algorithm.



2 Experimental Approach2.1 A Training Data Selection MethodIn this study, it is assumed that all 24 signal events occur on either channel 10 or channel 11. Thus,it became necessary to test for all 24 signal events on both channels 10 and 11. (Note that this resultsin a total of 48 signal events to be tested.) Among 24 signal events on each channel, only 8 were usedfor selecting training data because they typify most of the peculiarities present in the signal space. Ofthese 8 selected signal events 6 were single pulse cases and the remaining 2 were multiple pulse cases.Selecting samples from these selected signal events at random may not produce a meaningful trainingset because majority of the samples belong to noninformative regions. In order to study the in
uence oftraining data selection method, �ve training sets (of sizes 364, 434, 546, 634 and 815 respectively) wereconstructed by manually selecting samples from both transition and nontransition regions. Furthermore,the number of samples from each signal event was also varied depending on the duration and nature ofthe pulse as well as the noise characteristics of the signal events.Since the signals occurring on a particular channel can be a�ected by the interference from the adjacentchannels, an equal number of samples from the two side channels (one above and one below) were alsoincluded in the training set. These samples could be helpful in identifying \splatters". In the singlepulse case, channel 11 was considered as the main channel and channels 10 and 12 as the side channelswhereas in the multiple pulse case, both channels 10 and 11 were considered as the main channels. (Inthe multiple pulse case, if channel 10 was considered as the main channel then channels 9 and 11 wouldact as the side channels; on the other hand, if channel 11 was the main channel then channels 10 and 12would be the side channels.) Some of the signal events are shown in solid lines at the top of Figures 1through 4. The dash lines at the bottom of these �gures represent the target pulses.2.2 Network Models UsedIn order to evaluate the generalization performance of connectionist networks, both feedforward networksand a variant of Jordan style recurrent networks were examined. The input layer of the feedforwardnetwork had 8 inputs (1 signal + 7 delays) corresponding to the main channel and 4 inputs (1 signal+ 3 delays) for each side channel. The output layer of the networks had six units corresponding to thewidth of the pulse, time of arrival and frequency information. The tapped delay line was added to theinput because the actual hardware implementation of the signal detector would incorporate delay lineson the input terminals.Since the training sets have more samples from the transition regions, the feedforward network wassuccessful in detecting both the rising and falling edges of the pulse but had di�culty in recognizingthe middle of the pulse, especially if the pulse had a long duration. This problem can partially beaddressed by using a training set that has a large number of midpulse samples. However, if the networkhas to detect pulses based only on amplitude information and if there are two or more inputs that aresimilar but their outputs are opposite then it is possible for the network to produce an incorrect output.Increasing the size of the training set is of no avail because the feedforward networks cannot performone-to-many mapping. To address this situation, the network must develop contextual information inthe form of memory based on the previous state (or, output) values. The recurrent network models canbe used to address this issue.One logical choice for the recurrent network model would be to use Elman's recurrent network (Elman1990) which is simple and is capable of developing memory based on hidden unit activations of theprevious time steps. However, the Elman network can produce meaningful result only when the samplesare presented in a continuous fashion. Hence the sampling strategy used for constructing the trainingsets precludes the use of Elman network because samples were selected only from a subset of discretelocations. So, as an alternative we used a variant of Jordan style recurrent networks with \teacherforced" training outputs. In this network the recurrent connections from the output layer were fed tothe hidden units. All the recurrent connections had a �xed weight of strength 1.0. Under teacher forcedtraining, the teacher outputs at the time t� 1 were used as the feedback at time t. The output of thenetwork at time t was a function of the current input and the previous output. Thus, training this styleof Jordan network is equivalent to training a feedforward network in which the input consists of boththe actual input at time t and the target output at time t � 1. The resulting Jordan network had 16input units for the tapped delay inputs and 6 additional input units for the feedback from the output



layer. However, when a Jordan network is tested for generalization the actual output of the network(not the target output) are recirculated as the input to the feedback input units. In this study, both thefeedforward network and the Jordan style networks were developed and trained using Fahlman et al'sCascade-Correlation algorithm (Fahlman et al. 1990).2.3 Hardware Implementation ConsiderationSince the Cascade-Correlation algorithm adds one unit for each hidden layer and each hidden unitreceives fan-in connections from all the earlier hidden units as well as the input layer the resultingnetworks can be very deep and may not be appropriate for analog hardware implementation becauseof the noise problem. To facilitate hardware implementation, a modi�cation was made to the Cascade-Correlation algorithm such that it builds a 2 hidden layer network instead of a deep multilayer network(Karunanithi 1992). The modi�ed algorithm constructs networks by adding a prede�ned number ofhidden units to the �rst hidden layer and as many units in the second hidden layer as needed. In theexperiments reported here, approximately 20 hidden units were added to the �rst hidden layer. (Thesize of the �rst hidden layer was empirically determined by trial-and-error.) While constructing hiddenlayers, the algorithm adds hidden units only in a lateral fashion. Thus, the hidden units in the �rsthidden layer receive fan-in connections only from the input layer and the units in the second hiddenlayer receive fan-in connections from both the input and the �rst hidden layers. (We also experimentedwith an another version of the Cascade-Correlation algorithm which developed nets with 1 hidden layer.However, the resulting generalization and the size of the network were not satisfactory.)3 ResultsIn order to evaluate the generalization performance of di�erent network models it is necessary to usea proper test set. Since the networks were trained using a very small subset of signals on the main(channel 11) and the side channels, it would be appropriate to test the networks by using the remainingsamples that were not part of the training set. So a test set containing 96,000 samples from all 48 signalevents (24 signal events on channels 10 and 11 respectively) was constructed.To evaluate the in
uence of di�erent training sets, the generalization performance of feedforward net-works trained using 5 training sets were compared. The results reported here are from the networksthat produced the best results. In order to compare the performance of the networks, the outputs areclassi�ed into di�erent categories such as \Correct +", \Correct -", \Noisy +", \Noisy -", \False +"and \False -". A response is classi�ed as \Correct +" if the network's output matches the target pulsein terms of its location, amplitude and duration. A \Correct -" response occurs if the output of thenetwork is low for the entire duration of the signal event in the absence of a pulse. Responses that arepositive, but either the duration is wrong or turns on and o� during the signal are indicated as \Noisy+". \Noisy -" responses occur when the network very brie
y indicates a signal; these responses appearto be brief enough that they can be identi�ed and ignored. A \False +" response occurs when thenetwork comes on for a su�cient duration at places where there is no target pulse. A \False -" occursif the network does not indicate a signal at places where there is a pulse. Some typical outputs of amultilayer feedforward network trained using 815 samples are illustrated in Figures 1 through 4. Thetopmost 4 graphs in each �gure (solid lines) represent the actual signals that appeared on channels 9through 12. The \dotted" lines represent the six outputs of the network and the \dashed line" representthe envelope of the target events.Figure 1 represents the output of the network for the single pulse signal event 1 on channel 11 (SP1-Ch11). This is one of the single pulse signal events from which training samples were selected. Of 2000samples in SP1-Ch11, only 42 are selected for training. This signal event is included in this illustrationin order to show how well the network learned to detect the entire pulse only from limited trainingsamples. In this case, the response of the network was classi�ed as \Correct +" because both the actualoutput and the target envelope of the pulse are exactly the same.
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O6Figure 1: Generalization result of a multilayerFFN network trained with 815 samples for SP1-CH11.
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O6Figure 2: Generalization result of a multilayerFFN network trained with 815 samples for SP1-CH10.

0 500 1000 1500 2000
O

u
tp

u
ts

  
  
  
  
  
In

p
u
t 

S
ig

n
a
ls

  
  
  
  
  
 

Time

Channel 9

Channel 10

Channel 11

Channel 12

O1
O2
O3
O4
O5
O6Figure 3: Generalization result of a multilayerFFN network trained with 815 samples for SP7-CH11.
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The output of the network for one of the side channels (SP1-CH10) is illustrated in Figure 2. Eventhough the side channel signal also has similar amplitude as that of the main channel signal, the networkwas very successful in detecting that the signal event is a single pulse case in an adjacent channel.Figure 3 illustrates the \Correct +" response of the network for a single pulse signal event (SP7-CH11)that was not part of the training set. Figure 4 represents another test case (SP8-CH11) in which thenetwork produced a \Noisy +" response. SP8-CH11 is one of the di�cult signal events because theamplitude of the signal was not high.Figures 1 through 4 illustrate the response of the network only for 4 of 48 test cases. A summary of thenetwork response for all 48 signal events is presented in Table 1. In this table, the signal events that aremarked 
 were sampled for training data. The \X" in each row denotes the response of the networkfor that particular signal event. Table 2 shows the e�ect of training size. The �rst column representsthe signal types and the channels on which the network was tested. (For example, SP*-Ch11 indicatesthat all SP signal events on channel 11 were considered in obtaining these results.) The values in eachrow represents the number of times the network classi�ed the signal events into that particular categoryand were obtained by combining both the + and - responses. By comparing the values across eachcolumn, the following observations can be made: i) the network response in majority of the test caseswere correct, and ii) as the training set size was increased the generalization performance of the networkhas also increased considerably across all signal types. This trend can be seen not only across di�erentpulses but also across the channels. Thus, these results suggest that generalization can be improved byproperly selecting training samples from the regions in which the actual pulses occur.Classi�cation Classi�cationSignal Correct Noisy False Signal Correct Noisy FalseEvent + � + � + � Event + � + � + �SP1-CH11 
 X SP1-CH10 
 XSP2-CH11 
 X SP2-CH10 
 XSP3-CH11 X SP3-CH10 X XSP4-CH11 X SP4-CH10 XSP5-CH11 X X SP5-CH10 XSP6-CH11 
 X SP6-CH10 
 XSP7-CH11 X SP7-CH10 X XSP8-CH11 X SP8-CH10 XSP9-CH11 
 X SP9-CH10 
 XSP10-CH11
 X SP10-CH10
 XSP11-CH11 X SP11-CH10 XSP12-CH11 X SP12-CH10 XSP13-CH11
 X SP13-CH10
 XSP14-CH11 X SP14-CH10 XMP1-CH11 X MP1-CH10 XMP2-CH11 X MP2-CH10 XMP3-CH11 X MP3-CH10 XMP4-CH11 X X MP4-CH10 XMP5-CH11 
 X MP5-CH10
 XMP6-CH11 X MP6-CH10 XMP7-CH11 
 X MP7-CH10
 XMP8-CH11 X MP8-CH10 XMP9-CH11 X MP9-CH10 XMP10-CH11 X MP10-CH10 XTable 1: Generalization results of a multilayer feedforward network trained with 815 samples.In order to study the generalization performance of the two hidden layer network another learning exper-iment was conducted using feedforward nets constructed by the modi�ed Cascade-Correlation algorithm.A summary of comparative test results are shown Table 3. The results in Table 3 suggests that the dif-ference in performance between the multilayer feedforward network and the 2 hidden layer feedforwardnetwork is not signi�cant. The 2 hidden layer feedforward network has improved its performance overthe multilayer network in terms of the number of \Correct" and \Noisy" classi�cations for Sp*-Ch11,SP*-Ch10 and MP*-Ch11. However, the 2 hidden layer network did not reduce the number of \False"classi�cations in all cases. On the other hand, the multilayer network's performance is slightly betterthan the 2 hidden layer network in all categories of MP*-CH10. Thus, these results suggest that onecould use a 2 hidden layer feedforward network to get almost the same performance as that of a deepnetwork.



Signal Classi�cation Training Set SizeEvent 364 434 564 634 815SP*-CH11 Correct 7 8 9 10 10Noisy 8 7 5 5 5False 0 1 0 1 0SP*-CH10 Correct 5 5 6 7 7Noisy 8 7 6 6 6False 5 5 5 5 3MP*-CH11 Correct 6 7 7 7 7Noisy 5 4 2 3 3False 1 1 2 1 1MP*-CH10 Correct 5 7 7 7 9Noisy 5 3 3 2 1False 1 1 1 1 0Table 2: Generalization results of multilayer feedforward networks trained with di�erent training sets.Signal Classi�cation Network Model UsedEvent Multilayer FFN with JN withFFN 2 hid. layer 2 hid. layerSP*-CH11 Correct 10 11 13Noisy 5 2 1False 0 1 1SP*-CH10 Correct 7 11 12Noisy 6 1 1False 3 3 1MP*-CH11 Correct 7 7 9Noisy 3 2 1False 1 1 0MP*-CH10 Correct 9 8 9Noisy 1 2 1False 0 1 0Table 3: Generalization results of di�erent network models trained with 815 samples.To evaluate how well the modi�ed Jordan network performs, another experiment was conducted usingmodi�ed Jordan nets constructed by the modi�ed Cascade-Correlation algorithm. The modi�ed Jordannetwork also had the almost same number of hidden units as that of the feedforward networks with 2hidden layers. The performance of the two hidden layer Jordan network is shown in the last column ofTable 3. It is clear that the performance of the two hidden layer Jordan network is better than both themultilayer feedforward network and the two hidden layer feedforward network in SP*-CH10, SP*-CH11and MP*-CH11 and as good as that of the best feedforward network (i.e., the multilayer feedforwardnetwork) in MP*-CH10. The number of \Correct" classi�cations of the modi�ed Jordan network hasconsiderably increased in single pulse cases (on both channel 10 and 11) as well as in multiple pulse caseson channel 11. Also, the number of \False" and \Noisy" classi�cations has been considerably reducedin all signal events. Thus, these results suggest that the modi�ed Jordan network model is better thanthe feedforward networks in this signal detection application. This improvement in performance of themodi�ed Jordan network may be due to the fact that the network is able to maintain the output signaluntil it detects the trailing edge of the pulse using the previous state information. The use of the previousstate information is helpful not only in identifying correct duration of the pulse but also in suppressingnoisy inputs.4 SummaryThis paper demonstrated the applicability of training data selection methods for improving generalizationin connectionist networks using a problem that is closely related to a real world application. The resultspresented here show that the performance of the connectionist networks can be improved by increasingthe training set size with samples from regions in which useful information is available, Thus selectingtraining data according to their importance should be preferred over a random sample. However, thisdata selection method can be applied only to domains in which the problem space is known and wherethe data is readily available.



It is also demonstrated how di�erent network models can be used to improve generalization in connec-tionist networks. The results from the modi�ed Jordan style recurrent network suggested that a simplefeedback from the output layer can be valuable in developing a limited contextual information for thenetwork. Furthermore, this style of recurrent network is simple to implement and allows the network toprocess inputs that are temporally discontinuous.The applicability of the modi�ed Cascade-Correlation algorithm is also demonstrated. One main advan-tage with the modi�ed Cascade-Correlation algorithm is that it can produce a two hidden layer networkwhich is easy to implement in hardware. Furthermore, the 2 hidden layer networks have simpler layeredconnections than the multilayer networks developed by the standard Cascade-Correlation algorithm.One drawback of the modi�ed algorithm is that the number of hidden units in a 2 hidden layer networkmay be larger than an equivalent multilayer network. However, it is quite straight forward to identifythe redundant units in such networks and prune them without too much additional e�ort.ReferencesElman, J. L. (1990). \Finding Structure in Time", Cognitive Science, no. 14, pp. 179-211, 1990.Fahlman, S. E., and Lebiere, C. (1990). \The Cascaded-Correlation Learning Architecture". School ofComputer Science, Carnegie Mellone University, Tech. Rep. CMU-CS-90-100, Feb. 1990.Jordan, M. I. (1986). \Attractor Dynamics and Parallelism in a Connectionist Sequential Machine",Proc. 8th Annual Conf. of the Cognitive Science, pp. 531-546, 1986.Karunanithi, N. (1992). \Generalization in the Cascade-Correlation Architecture: Some Experimentsand Applications". Ph.D. Dissertation, Computer Science Dept., Colorado State Unive rsity, FortCollins, CO, Fall 1992.Rumelhart, D., Hinton, G., and Williams, R. (1986). \Learning Internal Representations by ErrorPropagation", Parallel Distributed Processing, Vol. I, MIT Press, pp. 318-362, 1986.Whitley, D. (1992). \Solving Signal Detection and Sonar Problems Using Neural Networks". FinalReport, The Colorado Institute of Arti�cial Intelligence, 1992.Whitley, D., and Karunanithi, N. (1991). \Generalization in Feedforward Neural Networks". Proc. Int.Joint Conf. on Neural Networks, Seattle, WA., Vol. II, 77-82, July 1991.Whitley, D., Starkweather, T., and Bogart, C. (1990). \Genetic Algorithms and Neural Networks:Optimizing Connections and Connectivity", Parallel Computing, vol. 14, pp. 347-361, 1990.


