2
2

A Test Generation Factory for Year 2000 Testing

David Carman, Siddhartha Dalal, Robert Farrell, Ashish Jain and Nachimuthu Karunanithi

 445 South Street, Bellcore, Morristown, NJ 07960.

Phone: 973-829-4466, Fax: 973-829-5981

Email: dwc@cc.bellcore.com, {sid,farrell,jain,karun}@bellcore.com
Abstract

We present a new factory-based approach for the year 2000 compliance testing of renovated systems. We leverage the key observation that essential business logic does not change during year 2000 renovation and, hence, reinvesting in creation of brand new test cases for the year 2000 compliance testing of a system is expensive and redundant. Under the proposed approach, a model for the date dependent business logic is extracted from the existing set of regression test cases for the system under test. In absence of regression test cases, our approach works equally well with test data files and/or usage scenarios captured using a capture/replay tool or from test documents. The extracted model is then populated with year 2000 sensitive dates with the proviso that the business rules of the application are not violated. New test cases are then generated using one of several efficient test generation strategies. Our result shows that the factory based approach can produce efficient test cases and hence bring about significant reduction in year 2000 compliance testing efforts.
 KEYWORDS: Year 2000, Testing, Automation, Factory Process, Regression, Testdata Generation, Testdata Optimization.
1. Introduction

Various studies have suggested that about 30 to 50% of the year 2000 renovation efforts are in testing[1,2]. With the countdown on, there is very little time left to perform these tests using traditional methods [2]. Thus, efforts to reduce the year 2000 compliance testing costs using innovative automation are widely needed. One way to reduce the year 2000 compliance testing cost is to reuse the business logic already embedded in the regression test cases of the system. This observation was empirically validated by our own involvement in the year 2000 testing efforts of several telecommunications Operation Support Systems (OSSs).

In this paper, we describe a new factory-based approach for the year 2000 compliance testing of renovated systems. Our implementation of the year 2000 test generation factory, called Year2000TGF(, is based on two important ideas: 1) reuse of the business logic of the existing regression test cases to produce new test cases and 2) implementation of efficient test generation algorithms to create test cases. Year2000TGF is a Web-based collaborative system that supports several widely used test harnesses and scripting languages, including Compuware Hiperstation, Bellcore MYNAH([6], JCL commands, as well as test data represented in ASCII files. We describe the process of modeling business logic and then running the factory to produce efficient new test cases. We present preliminary results and observations from several internal trials.

In this paper, the term test suite is used in a broader sense to refer to regression test cases written in any test automation language, an archive of test input/output data files, or snap shots of transactions captured using a recording tool. The term risky date is used to refer to a date value that is important for the year 2000 compliance testing.

The rest of the paper is organized as follows. In Section 2 we describe the year 2000 testing process using Year2000TGF. In Section 3 we describe the high-level architecture of Year2000TGF. In Section 4 we explain the inputs to the Year2000TGF and the steps involved in running the factory. In Section 5 we report our experience with Year2000TGF from several trials within Bellcore. In Section 6 we conclude the paper with a few suggestions for future enhancements.

2. Year 2000 Testing Approach
Figure 1 illustrates our year 2000 testing process that relies on the Year2000TGF system. Our approach to year 2000 testing is based on a team effort between the client and Year2000TGF consultants. From the testing perspective, software systems that need year 2000 remediation fall into two categories: systems using automated testing and those using manual testing. The process outlined here is applicable to both categories.

 Typically, systems that have automated testing in place have regression test suites represented in a test scripting language or ASCII files. In situations where there are no regression test cases, a year 2000 consulting company like Bellcore can work with the client to develop a test plan that will lend to repeatable test scenarios. It should be emphasized that creating a good test plan is a non-trivial task and may involve significant effort. Using a capture/replay tool for the purpose of test automation has several advantages. One of the major benefits of creating an automated regression test suite is that it can significantly reduce the testing efforts in future product enhancement and maintenance cycles.

After creating a test plan, year 2000 testing team will then work with the client to generate a regression test suite using a capture and replay tool such as MYNAH. However it should be noted that it is not always necessary to produce test cases using only capture and replay tool; clients can generate test cases using whatever tool they have or whatever testing practice they are currently familiar with. The Year2000TGF is script independent. Thus, the only requirement from the Year2000TGF’s point of view is that there should be a machine readable test suite(s). Once we have a machine readable test suite, then Year2000TGF consultants and the client will team together to use the Year2000TGF to generate efficient test cases for year 2000 compliance testing.

Figure 1. Year 2000 Testing Approach.

3. High-level Architecture of the Year2000TGF

Figure 2 illustrates the high-level view of the Year2000TGF. The Year2000TGF is a rule-based system that exploits existing regression test cases (or transactions) to produce efficient test cases for the year 2000 compliance testing. The Year2000TGF is independent of the test harness used to capture regression tests, and hence it is applicable to regression test suites implemented in any test scripting language. As shown in Figure 2, the core of the system consists of two important modules: a rule-based identification engine and an efficient test generator. A brief description of these modules is as follows.

The rule-based identification engine takes as input information about date fields (i.e., rules and patterns for identifying date sensitive fields), the test harness configuration and the regression test suite and produces an intermediate output file with date field usage information. This module also produces summary statistics to provide feedback to the user and detailed error log information for debugging the modeled business rules.

Figure 2: High-level view of the Year2000TGF

The test generator takes as input the date field usage information extracted by the identification engine, list of risky dates to be substituted, calendar and holiday information and constraints among dates fields, and produces a test case matrix by substituting risky dates in a manner which preserves the constraints. In addition to the set of risky dates provided by the user, the test generator may use some additional dates so as to meet certain constraints. For example, if a constraint specifies that the expiration date is five years after the inception date, then satisfying this constraint may require generation of new dates that are not in the user-supplied risky date set. While producing new test cases the generator should preserve not only the business constraints among risky date scenarios but also produce a minimum number of test cases using an efficient test generation algorithm. This requirement is very important for two reasons: to eliminate test cases that do not contribute to the year 2000 testing and to reduce the overall testing effort. To produce a minimal number of test cases we have implemented a test generation algorithm similar to the one in the AETG System [3,4,5], a Bellcore testing product.

4. Running the Test Generation Factory
The Year2000TGF is implemented as a web-based system. All of the interactions between the Year2000TGF and users occur through a web-based user interface that can be

[image: image1.png]{Application : Harness : [Cliont User
PurchaseOrder(Demo) MYNAH 4.3 |Appliod_Rescarch karun
SETUP TELP

(Gptions ||| Catalog | || Rules || Patierms
Input £ E =

Constraints | | Dates | || Tokens

SEAN {HELP
Input: |;Options T Run

Output:|Error Log {||Impact Aralysis || Tech Summary

GENERATE TEST CASES {HELP

inpm; {Options [Hon

Output:| Hoport [FNow Tasts

Beﬂc@ . Serul comemunts to
|oremmaronmor| S0RIHE (C) Belloore 1997 y2ktgt@hellcore.com

Figure 3. The main screen of the Year2000TGF

accessed through any standard web browser (such as Netscape Navigator or Microsoft Internet Explorer). Figure 3 shows a snap shot of the main screen of the Year2000TGF. The user interface allows Year2000TGF consultants and our clients to simultaneously collaborate during modeling and test generation phases even if they are geographic dispersed. To produce test cases using the Year2000TGF user must follow a three-step process.

1. SETUP: Clients and the Year2000TGF consultants collaborate during this step to model the business rules of regression test cases and to specify inputs. The SETUP section of the main screen is used to specify modeling information. Typically five necessary inputs are specified in this step: general options, catalog file, identification rules, constraints and risky dates. Under options, inputs such as the location of the test suite, test harness and the date formats to be used in new test cases etc., are specified to the system The catalog file is used to specify the hierarchy and dependence among test cases within the regression test suite. Rules are used to specify date field location information. Ten types of rules are supported by the system. These rules range from a simple offset rule (a rule that specifies the location of the date field using row, column coordinates on an IBM 3270 screen) to a complex rule that specifies date fields using a regular expression. Constraints are used to specify the relation among date fields. Two types of constraints are supported by the system: relational and periodic constraints. A relational constraint is used to represent an ordinal relation among date fields (e.g., billing-date > order-date, specifies that billing-date is always greater than order-date). A periodic constraint is specified if a fixed duration should be maintained between two date fields (e.g., billing-date >+10days receipt-date, specifies that billing-date is 10 days after receipt-date). Risky date values that the user wants to substitute in new test cases are listed under the Dates input. The system always supplies a set of default risky dates (e.g., 9/9/1999, 12/31/1999, 1/1/2000, 2/28/2000, 2/29/2000, and 3/1/2000) which can be augmented by the user.

2. SCAN: During this step, the Identification Engine identifies date fields and other relevant fields using the rules specified in Step 1. Apart from identifying date fields based on user specified rules, the Identification Engine will also try to identify date fields based on default date formats specified under the Patterns input. After parsing the test cases, the Identification Engine provides a detailed error log to the user for debugging rules. The error log also provides information about fields that the user might have missed in modeling. The Identification Engine also provides different levels of summary statistics. If there are errors in rules or fields have not been accounted for, the user may have to rerun the Identification Engine until all date fields are correctly modeled.

3. TEST GENERATION: After running the Identification Engine, the Test Generation step is executed. During this step, the user selects a proper generation algorithm to control the number of new test cases. While generating new test cases, the generator will produce only risky date combinations that do not violate user-specified constraints. The test generation engine produces new test cases in two different modes: multiple-copy and parameterization. If the user selects the multiple-copy option, the generator will produce a set of new test suites that ensure unique risky date value combinations are tested. Under the parameterization option, the generator will replace all the occurrences of literal date values with parameters. The generation engine also produces a harness-specific driver module and a date file containing risky date combinations to be used as data for the driver.
5. Sample Applications
We have been developing and field trialing the Year2000TGF for the past 12 months. From the very beginning our development strategy has been to use actual applications both in terms of requirements and test suites. With this strategy in mind, our initial prototype of the system was developed to handle test cases implemented with MYNAH version 4.3, IBM’s JCL, and plain ASCII files containing test data. During this development-experimentation phase, we used test cases from a widely used Bellcore service activation control system (SYS1). We used a test stream consisting of 12 test cases spanning over 266 files (SYS1-Test 1) as part of development and another test stream consisting of 356 test cases spanning over 3315 files (SYS1-Test 2) for stress testing. Our experience with these test streams have been very valuable and revealed several practical aspects of using a new technology in a real life situation. We used 5 risky dates to evaluate the efficiency of the Year2000TGF in terms of the number of test cases produced by the system.

 Efficiency of our test generation algorithm can be easily illustrated with the following example from SYS1-Test 1. There are seven date sensitive fields DVA, FCD, IAD, LAM, PTD, RID and WOT that appear in all test cases. The following ordinal constraints are applicable to these date fields:

DVA < FCD

FCD < IAD

IAD < LAM

LAM < PTD

PTD < RID

RID < WOT

If we use, for example, the following 5 risky date values 9/9/1999, 12/31/1999, 1/1/2000, 2/29/2000 and 3/1/2000 as input, the total number risky date combinations to be tested in an exhaustive manner will be 88125 per test case. However, our test generation algorithm, which exercises each risky date value at least once in each date field, cuts this combination to 11 possible scenarios. Such a reduction in new test cases is very crucial from year 2000 testing point of view.

After developing our initial version of the Year2000TGF, we trialed with two more product test teams. The first additional trial was a Bellcore OSS used for inventory control (SYS2). The sample test stream had 1 test case spanning over 112 files (Test 3). This trial revealed that in some applications such as SYS2, date fields have heavy dependence on the System clock. We addressed this situation by modeling the System clock as a special field. The second additional trial was to produce test cases to test a feature that implements telephone number portability (Test 4). This feature crosses 19 different software systems. In this trial we had a test stream consisting of 63 test cases spanning 125 files. A brief summary of various features of our experience with four different systems is shown in Table 1.

System Name
SYS1-Test 1
SYS1-Test 2
Test 3
Test 4

No. Test Cases
12
356
1
63

No. Files
266
3315
112
125

No. Rules
19
31
537
22

No. Date Formats
3
3
112
2

No. Constraints
0
6
6
13

Risky Dates Used
5
5
5
5

System Size: LOC
3.7M
3.7M
>1M
> 1M

Modeling Time
4 days
2 days
3 days
< 1 day

Net Test Cases

Created
18
13
12
76

Running Time
<1 Min
<10Min
3 Hr
<1 Min

 Table 1: A summary of statistics from Trials

As shown Table 1, the number of new test cases generated for year 2000 compliance testing are relatively very few given the complexity of the problem. One of the important factors for such a reduction in test cases can be attributed to the ability of the algorithm to exploit redundancy among test cases. We can also observe that the amount of time needed to model a regression test suite is very small compared to the traditional test generation approaches. This can be partially attributed to the fact that we worked with an SME who provided all the details about the business logic as well as to the Year2000TGF. The Year2000TGF is a very fast system and its run time depends on the number of date identification rules and the number of test files to be parsed.

6. Conclusion
 We presented the Year2000TGF, a rule-based factory for generating test cases for the year 2000 compliance testing. This factory is based on the observation that the business logic does not change during year 2000 renovation and reinvesting in creation of brand new test cases for the year 2000 compliance testing is very expensive. Our proposed approach takes advantage of the existing regression test cases and their business logic. We have presented an implementation that exploits the World Wide Web as an infrastructure for deploying such a factory. Year2000TGF now supports several widely used test harnesses such as Compuware’s Hiperstation, Bellcore’s MYNAH, and data files.

Our experience in several internal field trials showed that the Year2000TGF produces very few test cases by exploiting redundancy in typical regression test suites. Our experience also showed that the Year2000TGF could dramatically reduce the time involved in developing test cases for the year 2000 compliance testing. Since our factory is web-based, it can be used as a collaborative tool for generating test cases for the year 2000 problem by a team that is geographically dispersed.

In the future, we are planning to expand the Year2000TGF along these lines.

1. Extension of Year2000TGF for other applications: Although the system and method described herein are for year 2000 compliance test case creation, our system and method are applicable to any situation where mass changes following a consistent substitution pattern or rule were made to the source code. Examples of such changes are: an input parameter type change from numeric to alphanumeric, the units used to specify inputs to the system were changed from lbs to kgs, or GMT to EST, etc., telephone numbers were changed from seven digit to ten digit numbers. Our method can be used to test such changes easily and rapidly by employing a set of appropriate “risky” values to be used for enumerating output test case scenarios.

2. Extension of the Year2000TGF to accommodate other test harnesses such as Rational Software’s SQA, X-Runner and WIN-Runner from Mercury Interactive. Since our system is modular, extension to any of these test harnesses can be very easily accommodated.
Acknowledgement

 We would like to acknowledge the following people for their support, inputs and contributions: Rich DeMillo, Judy List, Paul Minkin, Kurt Gluck, Joel Remde, Nathan Petschenik and Larry Reynolds.

References

1. Capers Jones, The Global Economic Impact of the Year 2000 Software Problem, Software Productivity Research Inc., Version 4, September 1993.

2. Peter de Jager. A Taste for Testing. Column in Datamation. February 1997.

3. David M. Cohen, Siddhartha R. Dalal, Ajay Kajla, and Gardner C. Patton. The automatic efficient test generator (AETG) system. In Proceedings of the Fifth Int’l Symposium on Software Reliability Engineering, pages 303-309. IEEE Computer Society Press, November 1994.
4. David M. Cohen, Siddhartha R. Dalal, Jesse Parelius, and Gardner C. Patton. The combinatorial design approach to automatic test generation. IEEE Software, 13(5):83-88, September 1996.
5. David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton. The AETG System: An Approach to Testing Based on Combinatorial Design. IEEE Transactions on Software Engineering, 23(7):437-444, July 1997.
6. MYNAH System User Guide, Bellcore Practice BR 007-252-008, Issue 1, September 1996.
No Testing Program

 in Place

Testing Program

 in Place

Date Dimensional Automated Tests

 Year2000TGF

Automated Tests

Capture and Replay Tool

Repeatable Test Scenarios

Year 2000 Consultants/Client Teaming

Rules for replacing date sensitive data

Rules for identification of date sensitive data

Y2K Test Cases

Test Generator

Identification

Engine

Existing

Test Cases

 OR

Transactions

Summary Reports

Manual tests

(Year2000TGF is a Bellcore Trade Mark, and is Patent pending.

(MYNAH is a trademark of Bellcore. MYNAH is one of the most advanced test harnesses in the market. MYNAH produces Tcl scripts as part of capture and play action. For more details refer to Bellcore’s web site � HYPERLINK http://www.bellcore.com ��http://www.bellcore.com�.

PAGE

_953047687

