Appears in 1998 International Symposium on Memory Management

Very Concurrent Mark-&-Sweep Garbage Collection
without Fine-Grain Synchronization

Lorenz Huelsbergen
lorenz@research.bell-labs.com

Phil Winterbottom
philw@plan9.bell-labs.com

Bell Labs
Lucent Technologies
Murray Hill, NJ, 07974, USA

Abstract

We describe a new incremental algorithm for the concur-
rent reclamation of a program’s allocated, yet unreachable,
data. Our algorithm is a variant of mark-&-sweep collec-
tion that—unlike prior designs—runs mutator, marker, and
sweeper threads concurrently without explicit fine-grain syn-
chronization on shared-memory multiprocessors. A global,
but infrequent, synchronization coordinates the per-object
coloring marks used by the three threads; fine-grain synchro-
nization is achieved without locking via the basic memory
consistency guarantees commonly provided by multiproces-
sor hardware. We have implemented two versions of this
algorithm (called VCGC): in the Inferno operating system
and in the SML/NJ ML compiler. Measurements, compared
to a sequential generational collector, indicate that VCGC
can substantially reduce worst-case pause latencies as well as
reduce overall memory usage. We remark that the degrees of
freedom on the rates of marking and sweeping enable explo-
ration of a range of resource tradeoffs, but makes “optimal”
tuning for even a small set of applications difficult.

1 Introduction

Garbage collection—the automatic reclamation of a pro-
gram’s spent and unreachable storage—is a valuable systems
implementation technique. By automatically identifying ac-
cessible and hence potentially in-use data, garbage collection
(GC) shoulders the error-prone task of memory allocation
and deallocation for the programmer. In doing so, GC can
improve code quality and programmer productivity.

In addition to the benefit of providing a high degree of
safety at the language level, garbage collection becomes vi-
tal in systems where independent, perhaps untrusted, pro-
grams must efficiently coexist in a shared address space.
In a distributed system, for example, code can migrate be-
tween compute nodes and may need to cross security mem-
branes [10, 15]. An imported piece of code may need to
share storage with other imported code; it is the operating
system’s responsibility to recover such storage only when no
programs—Ilocal or remote—have live pointers into it. In

a system with GC, programs cannot generate a pointer to
data they do not own; this eliminates a large class of secu-
rity problems without the imposition (by the hardware and
OS) of memory protection.

Garbage collection, however, incurs costs that manifest
themselves as combinations of increased memory usage, run-
time overheads on data accesses, and long latencies that
disrupt a program’s execution. The requirements of large
memory and fast processor render many current GC imple-
mentations unusable on small clients (e.g., mobile communi-
cators); long collection latencies impair deployment of GC in
programs that require some degree of “real time” operation
(e.g., communications protocols such as Fox [5] or interac-
tive window systems). Conventional stop-&-copy collectors
[9, 22], for example, require substantial additional storage
for making copies of live data. Even high-performance gen-
erational collectors [25, 27, 18] periodically siphon all data
from memory through the processor and into another area
in memory. Mark-&-sweep collectors (e.g., [19, 7, 4]), on the
other hand, have the disadvantage that they must continu-
ally step through the entire set of free and in-use program
objects.

To address garbage collection’s inherent costs, collector
designers incorporate concurrency into their designs (e.g.,
[4, 2, 23, 12, 11, 26, 7]) both to interleave computation with
collection (thereby reducing GC latencies) and to delegate
the task of GC to additional processors in a parallel machine
(thereby standing to improve overall performance). Exist-
ing concurrent GC algorithms loosely fall into one of two
classes: variations on mark-&-sweep collection (e.g., [7, 26])
and incremental stop-&-copy collectors (e.g., [11, 2, 23, 12]).
Practical mark-&-sweep designs to date do not expose max-
imal concurrency: sweeping must strictly follow marking,
they cannot overlap in time. (Lamport [17] and Queinnec,
et al. [24] describe approaches that do overlap marking and
sweeping. As we discuss (§3), their approaches are impracti-
cal due to quadratic-time marking and fine-grain mutator—
marker synchronization.) Incremental stop-&-copy collec-
tors, on the other hand, still require the large memories
inherent in generational collection.

This paper’s algorithm—called Very Concurrent Garbage
Collection (VCGC)—also uses concurrency to offset GC’s
costs, but does so with a variation on the mark-&-sweep
algorithm that, unlike its predecessors, has both of the fol-
lowing properties:

1. mutation, marking, and sweeping occur in parallel as

three separate threads; and

2. no synchronization is required between the mutator,
marker, and sweep threads.

By “no synchronization” we mean no locks, critical sections,
fetch-and-add primitives, etc. We assume only that the com-
puter’s memory system performs machine-word writes atom-
ically; that is, if location M holds = before y is written to
M, reads of M at any point in the computation and from
any processor will return either z or y, but never an “inter-
mediate” value (such as the high bits of z and the low bits
of y). Contemporary multiprocessor computers provide this
form of memory atomicity.

Our algorithm does require infrequent global barrier syn-
chronization events to demarcate the algorithm’s phases—
experiments indicate that such events are separated in time
by many millions of instructions. Atomic machine-word
writes, and infrequent barriers, suffice to synchronize the
VCGC algorithm for multiprocessor operation. Extension
of the algorithm to multiple mutator threads necessitates
synchronization on allocation which may be avoided in part
by allocating from multiple lists or in multiple arenas simul-
taneously (§2.4 and §4.2).

VCGC, as do other concurrent collectors [28, 13], re-
quires a write (or read) barrier as a mechanism with which
the mutator communicates data-graph changes to the col-
lector. Our write barrier is asynchronous (non-blocking)
and requires no inter-processor coordination aside from the
aforementioned memory atomicity. We provide C source for
this barrier in an appendix.

We have built two VCGC implementations to demon-
strate that this algorithm is viable in real systems. The
systems differ radically in the characteristics (size, lifetime)
of the data they construct. This indicates that VCGC may
be applicable to a wide range of systems requiring auto-
matic storage management. Since marking and sweeping
occur concurrently, their respective rates may be adjusted to
“tune” memory usage, pause latency, and execution speed.
Our first implementation is in Inferno [15]. Inferno is a dis-
tributed operating system that supports mobile code. Stor-
age is collected by a reference-counting collection scheme
augmented with VCGC; reference counting assures the in-
stant reclamation of large objects (e.g., bitmaps) and VCGC
reclaims the cyclic structures that elude reference counting.
Via VCGC, Inferno is able to overlap lengthy transactions
(I/0O and communication) with collection. For example, user
input in Inferno occurs concurrently with GC.

Our second implementation is in the Standard ML of
New Jersey compiler [3] where we replace SML/NJ’s multi-
generational stop-&-copy collector [25] with VCGC. This
VCGC implementation uses an allocation arena (essentially
a zero-th generation) as a buffer; most objects do not sur-
vive early generations [18] and hence their allocation from
a storage list can be avoided. Empirical comparison, on a
uniprocessor, of VCGC and SML/NJ’s generational collec-
tor consistently finds large reductions (3X-7X) in the length
of maximum GC pauses with VCGC. Maximum VCGC
pauses are in the tens of milliseconds versus hundreds for
stop-&-copy generational collection. We also find substan-
tial reduction in overall memory usage—over 35% for one ap-
plication. The dramatic improvements in pause and memory
performance, however, come at the price of increased execu-
tion times. We argue that VCGC’s performance in SML/NJ
is comparable to that of traditional mark and sweep col-
lectors [19, 7, 4] and that further speed can be gotten by
execution on a multiprocessor.

The main contribution of this paper is the VCGC algo-
rithm; it is described in the next section. We discuss related
literature in Section 3. Section 4 describes the two VCGC
implementations and presents results.

2 VCGC Algorithm

Here we describe the Very Concurrent Garbage Collection
algorithm. We first review the conventional free-list alloca-
tion that underlies VCGC'’s allocator. Second, we give the
VCGC algorithm for a purely functional mutator, that is,
for programs without mutable state (references). In Sec-
tion 2.3, we then extend the core algorithm to admit muta-
tion via references. Finally, we describe how this algorithm
can support multiple mutator threads (§2.4).

2.1 Free-list Allocation

VCGC requires a conventional free-list allocator that con-
ceptually works as follows. (Implementations can avoid much
of the overhead that general free-list allocators incur; Sec-
tion 4 describes the allocator optimizations we implemented.)
Upon initialization, a free-list allocator parcels the memory
available for free-list allocation into one or more initially
free blocks." Free blocks are linked to form the free list. A
request for storage (by the mutator) scans the free list for
a block that fulfills the request. In the simplest schemes?,
upon finding the first such block, the allocator removes it
from the free list and hands it to the requester. When a
block is identified (by the sweeper) as no longer in use, it is
again placed on the free list. We require that it be possible
to find all blocks in the system and determine, for a given
block, whether or not it is currently allocated.

2.2 Functional Algorithm

Figure 1 contains the functional VCGC algorithm. VCGC
operates in epochs. The current epoch is the epoch de-
noted by the integer variable epoch (line a).> An epoch
creates three concurrent threads (lines e,f,g) for the mu-
tator, marker, and sweeper. We describe them separately
below. An epoch ¢ maps to one of three colors by the func-
tion:
COLOR(i) = i mod 3

All data (allocated objects) that are in use (i.e., not on the
free list) carry one of the three colors.

2.2.1 Mutator

The mutator is the application program. It is parameterized
by the color of the current epoch, called the mutator color
(line e in Figure 1). It allocates data by requesting space
from the free-list allocator (§2.1). Data thus allocated are
colored with the mutator color given by COLOR (epoch). Only
when no free block is available need the mutator wait for the
sweeper to reclaim one. Objects with mutator color must
be retained at least through the end of the current epoch.

There are no data races with the marker or sweeper since
the mutator is “color blind.” It only tags newly allocated
data with the current epoch’s color; it does not examine
colors as it traverses data.

Mutator-sweeper synchronization on free-list accesses can
be avoided by maintaining two free-list pointers—one for

1The terms “block” and “object” may be read interchangeably.
We use the term “block” for storage with content anonymous to the
operation being described.

2Extensions to this allocation scheme can select blocks based on
best fit rather than first fit, coalesce adjacent free blocks, etc. See
Knuth [14] for further details.

3The first epoch is numbered “2” to avoid “negative” epochs in
color computations. The epoch variable is a “big int” that does not
wrap. This declaration is solely expository since only the three most
recent epochs (including the current one) need be distinguished; two
bits of state suffice for this in practice.

(a) big int epoch = 2;
(b) root_set_t roots = {};
(c)

forever {

i) /* invariant:

)
m) epoch++;

7) suspend_thread mutator;
k) roots ¢ get_roots(mutator) ;
l delete_threads {mutator, marker, sweeper};

thread_t mutator, marker, sweeper;

)

) mutator < make_thread mutate (COLOR(epoch));

) marker ¢ make thread mark(roots, COLOR(epoch));

) sweeper < make_thread sweep(COLOR(epoch-2));

) barrier_sync {marker, sweeper};

all reachable data have COLOR(epoch) */

Figure 1: The VCGC algorithm operates as a series of epochs. An epoch concurrently (1) runs the mutator, (2) marks, with the current

epoch’s color (COLOR(epoch)), all data that were reachable in the previous epoch, and (3) reclaims any data marked with COLOR(epoch-2), the

mutator color of two epochs ago. The function COLOR(i) is defined as (i mod 3).

mutator allocation and the other for sweeper reclamation.
Thus, this producer-consumer handoff can occur without
explicit synchronization. (Implementation details of such a
mechanism are in Section 4.2.1.)

2.2.2 Marker

The marker thread is also parameterized by the current
epoch’s mutator color (line f in Figure 1). It is responsible
for bringing reachable data from the last epoch “up to date”;
these are data the mutator can reach and hence incorporate
into new data structures. Once initialized by the mutator,
only the marker may alter an object’s color. This is central
in allowing us to dispense with all fine-grain synchroniza-
tion. The marker recursively traverses data reachable from
the mutator’s root set* of the previous epoch. This root set
is copied from the mutator at the end of an epoch (line k)
for use by the marker in the next epoch.

The marker can reach data that have either the previous
epoch’s color (COLOR (epoch-1), called the marker color) or
the current epoch’s color (COLOR (epoch), the mutator color).
For each datum d encountered, the marker therefore does
one of two things. If the color of d is the marker color, d’s
color is changed to the mutator color and data reachable
from d are recursively marked in this fashion. Otherwise, if
d’s color is the mutator color, d is not changed or further
examined. In this latter case, d was—during this epoch—
previously examined by the mutator and d’s descendants are
known to have been marked.’

When the marker completes, the invariant that “all reach-
able data have the mutator color” (line i) holds. Note that
in the current epoch the marker will never encounter data
with COLOR(epoch-2) because at the end of the previous
mark phase (and epoch) all reachable data must have had
COLOR (epoch-1).

There is no mutator-marker race since the marker’s only
visible side effect is to change colors on objects tagged with
the previous epoch’s color. As noted above, the mutator is
oblivious to colors.

4All live data is reachable from the root set. This set usually
consists of program registers and stack entries.

5With extension to references (§2.3), data with the mutator’s color
could also have been allocated in the current epoch.

2.2.3 Sweeper

The sweeper thread is parameterized by COLOR(epoch-2),
called the sweeper color (line g in Figure 1). It exam-
ines every block of storage in the system. If block b has
sweeper color it may be deallocated and returned to the
free list; reclamation of b is safe because neither the mu-
tator nor marker can reach it. If b has COLOR(epoch) or
COLOR (epoch-1), it is skipped because it is still potentially
in use. (Blocks with marker color (COLOR(epoch-1)) will
either be marked with COLOR(epoch) during this epoch if
reachable from the root set or their color remains unchanged,
indicating that they have become garbage. Garbage thus
identified will be detected by the sweeper in the next epoch.)
It is simple matter for an implementation to make reclaimed
free lists available for mutator allocation without explicit
synchronization (§4).

There is no sweeper-mutator race and no sweeper-marker
race since the sweeper reads colors but does not write them.
The only color that may change from “underneath” the
sweeper is a marker color changing to the mutator color (re-
call, only the marker may change an object’s color). Marker
and mutator colors are, however, ignored by the sweeper;
the atomicity assumption (§1) constrains the values read to
valid colors. The sweeper only modifies (reclaims) blocks
with COLOR(epoch-2), which are inaccessible to the muta-
tor and marker.

Note that the interpretation of a concrete color changes as
the epoch changes. During epoch i, for example, all data
tagged with COLOR(i) are live because they were allocated
by the mutator in this epoch or were marked by the marker
with this color since they were reachable from the last root
set. Data tagged with COLOR(i-1) may or may not be en-
countered before epoch end by the marker and marked with
COLOR(i) depending on whether or not they are reachable
from the root set. Data tagged with COLOR(i-2) will be re-
claimed by the sweeper during epoch i; such data were not
marked in epoch ¢ — 1 since they were unreachable to the
marker, and hence to the mutator.

When the sweeper and marker threads have completed
their traversal of the system’s blocks and of the program’s
live data respectively, they rendezvous at a barrier synchro-
nization (line h). This barrier is the only synchronization

in the algorithm and occurs very infrequently (only after
complete marker/sweeper passes). All writes by all threads
must complete before the barrier exits to ensure that all
marker recolorings are visible to the next epoch’s sweeper.
At this point the mutator thread is suspended and the mu-
tator’s root set is copied and retained for marking in the
next epoch (line k). Thread state is reset (line [) and the
next epoch entered (line m).

2.3 Extension to References

State, in the form of mutable references, poses problems
for concurrent® garbage collectors since a subgraph G’ of
the dynamic data graph G may become temporarily discon-
nected from G. Since a collector’s marking phase traverses
G, subgraph G’ may now not be encountered and properly
marked. Yet G’ may later be reconnected to G in a place
already visited by the marker. In this scenario G’ has be-
come inaccessible to the marker before being marked. This
can result in G'’s data being incorrectly reclaimed while still
live.

For VCGC, the reference problem manifests itself as fol-
lows. During epoch i, the mutator fetches the content v of
reference cell r. It retains v (perhaps in a register) before
updating r with v'. That is, the mutator redirects r’s link
from pointing to v to pointing to v'. Data reachable from v
is still live, but potentially inaccessible to the marker since
the mutator may have altered the graph reachable from the
roots. That is, r may have held the only reference to v
and the marker may not have reached and marked v (via
r) before the mutator replaced it with v’. The solution to
this problem is to require the mutator to communicate the
replaced content v as a root to the concurrently running
marker thread.” In particular, the marker must process this
new root before epoch i + 1 can commence. In Wilson’s
classification [28], VCGC is a snapshot-at-the-beginning al-
gorithm since it retains the data reachable from the roots at
the beginning of an epoch into the next epoch.

Note that unlike conventional concurrent mark-&-sweep
algorithms [7] and including designs that mark during sweep
[17, 24], VCGC requires that the replaced object—and not
the target of the redirection—be marked (cf. Dijkstra, et
al’s shade operation [7]).

Figure 2 is the functional VCGC algorithm extended to
support reference update. Before an update to a reference,
the mutator places the current content of the reference in
a store set. The marker marks elements in the store set in
the same manner as it marks roots in the root set (§2.2.2).
The difference is that elements may appear in the store set
asynchronously during an epoch. The while loop handles
the (expectedly rare) case of marker completion followed by
a mutator store-set insertion immediately before mutator
suspension. Note that the sweeper is complete before the
while loop and need not be restarted in the loop body be-
cause neither mutator nor marker can generate this epoch’s
sweeper color.

To circumvent all fine-grain mutator/collector synchro-
nization in VCGC, the store set (write barrier) is imple-
mented as a non-blocking store list. (A C implementation
of such a store list is in the appendix.) During an epoch the
mutator builds a linked list of store roots, with new store

SReferences pose problems in conventional stop-&-copy collectors
as well since pointers from older to younger generations (due to ref-
erence updates) may introduce additional roots.

7An optimization is possible when v’s color is the mutator color:
v need not be communicated as a root since it and the data reachable
from it have been, or will be, encountered by the marker.

roots inserted at the head of the list. The marker traverses
this list until it revisits a position in the list it has previ-
ously visited. The marker sees the store list as “empty”
when it contains no elements or when the marker’s store-list
traversal ends at the head of the list. Of course the store set
may become non-empty as the mutator inserts additional
roots. When an epoch completes, the store list is reset to
the physically empty list. The appendix provides further
detail.

2.4 Multiple Mutators

VCGC straightforwardly admits multiple mutators. Each
mutator thread allocates objects of mutator color and main-
tains a separate store set for its references. The marker must
now examine multiple store sets instead of one. If allocation
is from a single free list, synchronization amongst muta-
tors is required on allocation. This synchronization can be
avoided by providing multiple free lists or by buffering allo-
cation in per-mutator allocation arenas.

3 Related Work

The VCGC algorithm of this paper is one in a long line
of mark-&-sweep algorithms starting with McCarthy’s [19].
Here we describe how VCGC differs from prior concurrent
mark-&-sweep algorithms. In particular, we contrast VCGC
with Dijkstra, et al.’s collector [7] and with Lamport’s [17]
and Queinnec, et al’s [24] “mark-DURING-sweep” (MDS)
extensions thereof. The MDS collectors partially attain our
goal—concurrent marking and sweeping—but differ funda-
mentally in design, which impacts their practical implemen-
tation. We also briefly describe other relevant approaches
to concurrent garbage collection. Jones and Lins’ book [13]
and Wilson’s survey [28] provide further details and context.

3.1 Dijkstra, et al.’s On-the-Fly Collector

Dijkstra, et al.’s incremental collector [7] introduced the well
known tricolor abstraction (white, gray, black) to reason
about mutator—collector interaction. VCGC too uses three
colors (mutator, marker, and sweeper), but does so in a sig-
nificantly different manner. With the tricolor abstraction,
objects in the root set are first grayed at the beginning of
a collection phase. A gray object x is marked black by the
marker, and z’s children grayed. As they are generated,
gray objects are queued for marking. Objects that retain
the white mark are garbage upon marker completion. At
this point, interpretation of white and black is reversed, and
the next collection phase initiated. Note that the interpre-
tation of gray does not change during a phase transition
with the tricolor abstraction. Furthermore, in Dijkstra, et
al.’s collector, sweeping must strictly follow marking since a
white object’s color may change (to gray and later to black)
at any point in the mark phase.

VCGC, in contrast, allows interleaving of marking and
sweeping. We can (unconventionally) cast VCGC using the
tricolors as follows. During an epoch the VCGC sweeper re-
claims white objects. The mutator allocates black objects.
The marker blackens gray objects. Note that—unlike stan-
dard tricolor marking—the marker does not encounter white
objects and hence never grays objects. When the mutator
modifies the data graph, it communicates with the muta-
tor to ensure that the overwritten object will be blackened
in the current epoch. At the end of an epoch, colors are
reinterpreted: black is remapped as gray, gray remapped

big int epoch = 2;
root_set_t roots = {},
root_set_t stores = {};

thread_t mutator, marker, sweeper;

forever {

mutator < make_thread mutate(stores, COLOR(epoch));
marker < make_thread mark(stores, roots, COLOR(epoch));
sweeper < make_thread sweep(COLOR(epoch-2));
barrier_sync {marker, sweeper};

suspend_thread mutator;

while (stores # 0) {

resume_threads {mutator, marker};

barrier_sync {marker};

suspend_thread mutator;

}

/* invariant:

all reachable data has COLOR(epoch) */

roots ¢ get_roots(mutator);
delete_threads {mutator, marker, sweeper};

epoch++;

Figure 2: VCGC algorithm for mutable references.

as white, and white remapped as black. When the epochs
change, gray objects—objects not reachable by the marker
and hence not promoted to black—become white by virtue
of this color remapping. It is not useful to state the conven-
tional invariant that the mutator may not create a pointer
from a black object to a white one because the mutator never
sees white objects.

3.2 Mark-DURING-Sweep Collectors

VCGC pipelines mark and sweep phases in a manner sim-
ilar to collector designs of Lamport [17] and Queinnec, et
al. [24]. Both prior “mark-DURING-sweep” collectors were
derived from Dijkstra, et al.’s algorithm [7]. Extra complex-
ity (five colors) allows them to find the same concurrency as
VCGC. However, both MDS collectors use Dijkstra’s atomic
shade operation in both mutator and marker. (Queinnec,
et al. require it in their sweeper as well.) That is, existing
MDS collectors require frequent inter-processor synchroniza-
tion amongst marker and mutator during typical computa-
tion because either may concurrently modify a color visible
to the other. VCGC requires no fine-grain synchronization
beyond that provided by memory read/write atomicity (§1);
this is possible because only the marker may change an ob-
ject’s color. Both previous MDS collectors are described
with quadratic-time markers which make their implementa-
tion yet more impractical. To our knowledge, neither prior
MDS approach has been implemented.

3.3 Other Concurrent Collectors

Steele’s compactifying collector [26] performs a coloring mark-
&-sweep collection, but does not interleave marking and
sweeping. Steele’s algorithm also requires fine-grain syn-
chronization between mutator and collector. An orthogonal
approach to concurrent mark and sweep collection is incre-
mental copying which provides an avenue for future VCGC
performance comparison. Baker designed an incremental
copying collector [4] based on the tricolor white-gray-black
abstraction. Halstead [11] extended Baker’s core scheme

to shared-memory multiprocessors by using fine-grain syn-
chronization on individual objects. Appel, Ellis, and Li [2]
propose using conventional memory-management hardware
to serve as the read barrier in Baker’s incremental copy-
ing collector [4]. Thereby they shift the granularity of the
barrier from individual objects to pages of objects. They re-
port pause latencies in an early ML compiler. Boehm uses
memory management hardware to run mark-sweep collec-
tion in parallel with the mutator [6], but serializes marking
and sweeping and requires mutator—collector synchroniza-
tion on object allocation. Concurrent replication-based col-
lectors [12, 23] designed for ML and implemented on parallel
machines have—as has VCGC on a uniprocessor—reduced
maximum pause latencies to tens of milliseconds. Unlike
replicating schemes, VCGC does not rely on properties of
the system being collected (e.g., pointer-equality semantics).
Doligez and Leroy [8] implemented a concurrent, hybrid,
stop-&-copy mark-&-sweep collector for ML. Their copy-
ing collector reclaims a processor’s local (i.e., cache) mem-
ory and the mark-&-sweep collector reclaims storage in the
shared global heap. Doligez and Leroy employ fine-grain
synchronization and do not overlap the collector’s mark and
sweep phases.

4 Implementations

This section describes implementations of VCGC in two sys-
tems: Inferno [15] and SML/NJ [3]. The two descriptions
are organized as an overview of the system in relation to
GC, followed by discussions of the implementation of the
free-list manager, colors, marker, sweeper, and mutator.

4.1 VCGC in Inferno

This section describes the hybrid reference-counting/VCGC
collector of the Inferno operating system.

4.1.1 Inferno

Inferno [15] provides a distributed, network computing en-
vironment in which resources are made transparently ac-
cessible from anywhere in the network. Inferno’s primary
use is to provide a secure information dial-tone for network
appliances and applications. The system treats application
code as a resource that can be deployed throughout the net-
work and run on a variety of clients or servers regardless of
their processor architecture or underlying operating system.
Code for the system is written in Limbo [16] and compiled
for a virtual machine called Dis [15]. An Inferno instance
contains either an interpreter, just-in-time compiler (JIT),
or both.

Inferno was designed to run in small devices with as lit-
tle as one megabyte of memory. Lazy algorithms like stop
and copy work well when there is substantially more free
memory than the working set to amortize the cost of col-
lections [28]. Reference counting (RC) has two properties
crucial to the Inferno environment. First, the cost of col-
lection is constant and bounded, which permits audio and
video encoders and decoders to run predictably. Second,
(non cyclic) memory structures are reclaimed immediately
after their last reference has been destroyed, making for a
very small memory footprint. However, it is well known
that RC does not detect cyclic garbage. By adding a con-
current collection algorithm (VCGC) that can coexist with
RC we retain RC’s advantages while incrementally reclaim-
ing cyclic garbage. Reference counting manages about 98%
of the objects while doing typical development (Limbo com-
piles, edits, runs, and debugs) in the Inferno window system
(written in Limbo). The flexibility of this hybrid model has
given Inferno real-time garbage collection while still allow-
ing a substantial amount of control by the programmer over
object lifetime.

A program running on the Dis virtual machine [15] con-
sists of a set of threads. Each thread has a program counter
and call stack but code and data may be shared with other
threads running on the machine. Threads are scheduled to
execute by the virtual machine rather than by the underly-
ing operating system (if any). This allows Dis to multiplex
many threads onto a single system process but also to con-
trol the interlocking of the heap. All threads occupy a single
logical heap which is constructed from a linked list of large
memory areas called regions. Memory within the regions
is organized as a free list using an unbalanced ternary tree.
Nodes in the tree are sorted by block size. As usual, adja-
cent free blocks are merged to control fragmentation. The
thread call stacks and module pointers—global data for the
currently executing modules—comprise the root set for In-
ferno GC.

During idle virtual-machine cycles, the GC thread runs
to collect unreferenced data; it may be preempted at any
time by a mutator thread becoming ready. This has proved
effective in reducing the latency of garbage collection by
overlapping it with I/0.

4.1.2 Inferno Marker & Sweeper

In Inferno, the VCGC marking and sweeping threads are
merged. In a scheduler quantum, the GC thread visits a
number of blocks in the heap by traversing the region table.
Collection latency can be modified by increasing or decreas-
ing the number of blocks visited in each quantum. The oper-
ation of the sweeper is trivial; the sweeper sets the RC of all
blocks with sweeper color to zero, forcing their immediate
deallocation. The Inferno marker uses a modified form of the

algorithm described in §2.2.2. The marker implementation
introduces a fourth static color into the algorithm, called
the propagator, to avoid keeping both a stack for root set
traversal and a store set of reference updates. (Techniques
such as this for avoiding recursive marking are cataloged by
Jones and Lins [13].) When an epoch begins each root is
marked as a propagator. A count of propagators created
during an epoch is maintained. When the marker reaches
an object with the propagator color it is recolored with the
mutator color and each pointer within the object is colored
as a propagator and the count of propagators incremented.
An epoch is complete when no new propagators are created
during a pass through the region table. (Introduction of a
propagator color requires a number of passes through the
heap proportional to the depth of the deepest data struc-
ture; this has not been problematic in practice since RC
reclaims most storage.)

4.1.3 Inferno Mutator

The Inferno mutator uses type descriptors, implemented as
variable-length bitmaps, to describe which words in an ob-
ject are pointers. Type descriptors allow the collector to tra-
verse the heap without requiring and searching for tagged
pointers. An object’s type, along with its color, is stored ad-
jacent to its data. The mutator copies references with the
virtual machine’s movp instruction which copies a reference
from source to destination and performs the actions required
by both garbage collectors—it increments and decrements
the reference counts of the source and destination operands
respectively. Since the source operand is a mutable reference
as described in Section 2.3, the mutator colors the object
the reference points to as a propagator and increments the
propagator count—this is equivalent to inserting the over-
written reference in the store set. Since there are only a
finite number of valid references in the heap, and all new
objects are created in the mutator color, it follows that an
epoch must terminate. While an epoch will terminate, many
passes through the heap may be required for it to do so. We
have not observed this potential problem in practice.

4.2 VCGC for SML/NJ

Here we describe a uniprocessor implementation of VCGC
in version 109.31 of the SML/NJ ML compiler; a future port
of this implementation to a multiprocessor stands to further
improve performance.

SML/NJ [3] is a compiler for Standard ML [21, 20], a
higher order and strongly typed language. ML programs are
written in a mostly functional style; that is, reference up-
dates are rare. The SML/NJ implementation is garbage col-
lected by Reppy’s multi-generational stop-&-copy collector
[25] which is written in C. The SML/NJ system allocates a
lot of small data at a rapid rate. On a set of common bench-
mark programs, we observed that over 90% of the allocated
data is less than 96 bytes in length. For an earlier compiler,
Appel reports that the system allocates a word of data for
every 3—7 machine instructions executed [1]. Furthermore,
most data (= 93%) dies before the current allocation arena
(typically a megabyte) is full. We use an allocation arena
to buffer objects and reduce demand on the mark-&-sweep
collector. Allocation in this buffer proceeds without color-
ing. When the allocation arena becomes full, live objects are
assigned a color and copied into space obtained from VCGC
free lists.

SML/NJ objects (e.g., records, arrays, strings, etc.) are
always tagged with a type and, when necessary, with a

length field [25]. This tag is four bytes in size and is used by
the runtime system and by the polymorphic-equality mecha-
nism to identify objects dynamically. Two bits of SML/NJ’s
data-object descriptor tag are used to hold the three colors
required for VCGC. The maximum size of variable-size ML
data (e.g., records, strings) is thus reduced by a factor of
four (to 2%3).

4.2.1 SML/NJ Free Lists

We implemented two kinds of free-list manager in the run-
time system. The first is a general-purpose free-list manager
that can store objects of any size. General-purpose free-list
managers perform buddy coalescing (see, e.g., [14]) to avoid
fragmentation. The second kind of manager is a fized-n free-
list manager that only handles data n words in length. In
contrast to the general-purpose manager, a fixed-n manager
is extremely fast since it never needs to do variable-size com-
putations. Moreover, a fixed-n list cannot fragment. Sweep-
ing is also fast in fixed-n managers since it involves only a
fixed-size pointer increment. As a further optimization, we
run-length encode contiguous free blocks—this speeds free-
list creation, sweeping, and allocation.

We instantiate fixed-n list managers for all word sizes
2 < n <512 since most SML/NJ objects are small. Larger
objects are handled by a single instance of a general-purpose
manager. Code objects are handled by another instance
of the general-purpose manager. (SML/NJ compiles to the
heap.) A separate manager for code is necessary since point-
ers into code need not point at the head of the enclosing code
object—during GC, it is necessary to map a code pointer to
the head of the code object that holds it. Given a heap
pointer p, we use SML/NJ’s implementation [1, 25] of a Big
Bag of Pages to “look up” which free-list manager, if any, is
managing p.

The free-list managers construct free lists on demand;
that is, when a free list [becomes empty, and the sweeper has
not reclaimed objects for I, additional storage (in C = 8K
byte chunks) is requested from the operating system. We
opted to extend the mutator’s free lists instead of waiting for
the sweeper to find appropriately sized garbage. Initially, no
space is allocated to a free list—an initial allocation request
creates the list. If objects of size m are never created, the
fixed-m manager will not occupy storage.

For each free list, we maintain two pointers, one to the
head of the list used for mutator allocation and one for lists
reclaimed by the sweeper. When the mutator’s list is ex-
hausted, it copies the sweeper’s pointer to its pointer and
clears the sweeper’s pointer. The sweeper, upon seeing a
clear pointer, deposits a reclaimed list there. This producer-
consumer handoff can be done without explicit synchroniza-
tion. At an epoch boundary, the sweeper’s list is appended
to the mutator’s.

4.2.2 SML/NJ Marker

When the allocation arena is full, SML/NJ enters the run-
time system and runs the GC threads. This first empties the
arena by copying its live data into the free lists and colors
the thus copied data with the current epoch’s mutator color.
The marker is then permitted to mark M objects. Marking
proceeds recursively via a stack. To date, we have found
a fixed 16 K mark stack to suffice; a future implementation
will dynamically extend the stack when necessary, or thread
the objects to be marked (cf. [13]).

A copy of the root set for the marker is obtained at the
end of an epoch when the marker and sweeper have com-

pleted. This condition signals that at the next fill of the
allocation arena, the root set is to be copied into the (now
empty) marker stack.

4.2.3 SML/NJ Sweeper

The sweeper sweeps S free-list chunks every time an allocation-
arena fill triggers GC. Recovered blocks are appended to
the current free list under construction, retained in a local
pointer. Contiguous free blocks are coalesced using run-
length encoding (§4.2.1). The sweeper periodically checks
if the mutator has acquired the last reclaimed list (clear
sweeper-list pointer). If so, it updates the sweeper list with
the list from the local pointer.

4.2.4 SML/NJ Mutator

Two minor compiler changes were necessary to use VCGC
with code generated by SML/NJ. The first was to reduce
the size of object length fields in descriptors to make space
for a color. The second was to emit code to build a store
list for VCGC (see §2.3). An element of the store list con-
tains both the address of the updated reference (to track
roots for copying into the allocation arena) and a pointer
to the reference’s prior contents (to track roots for VCGC
marking).

4.2.5 Results

Timings for SML/NJ benchmarks using VCGC and con-
ventional generational collection are in Table 1. We re-
port the maximum pause latency, largest working set, total
and GC times for compiling and running six ML bench-
marks. Pause latencies are in milliseconds, memory sizes
in megabytes, and run times in seconds using the notation
compile-time+ezecution-time. The knuth-bendix program
runs the Knuth-Bendix completion algorithm to produce a
decision procedure for term equality in a theory; life im-
plements Conway’s game of Life, mandelbrot computes el-
ements of its namesake’s set®, ray does some ray tracing,
simple performs fluid-dynamics computations, and tsp op-
timizes traveling salesman tours. Timings were done on an
unloaded 150Mhz R4400 SGI Challenge. Default compiler
settings and an allocation arena of one megabyte were used.

Our initial goal was to reduce pause latencies to below
100 milliseconds. It was easy to find M and S values (that
govern respectively the number of objects marked and the
number of blocks swept per allocation-arena fill) that re-
duced the maximum pause to tens of milliseconds. It was
however difficult to do so without increasing VCGC mem-
ory usage to beyond that of the generational collector. This
is in part due to the conservative nature of VCGC which
may retain floating garbage for a couple of epochs. The
numbers in Table 1 are the result of a revised goal—to
simultaneously minimize pause times and memory usage.
We experimentally settled on the (albeit ad hoc) settings
for M and S where ¥k = 4 and E is the current epoch
number. M =kD/(E + 1) + Ky where D is the number
of objects marked in the previous epoch and Kjr = 1000.
S =kC/(E 4+ 1) + Ks where C is the number of chunks cur-
rently appropriated by the free lists and Ks = 10. The
tunable VCGC parameters require further study.

Memory usage was measured by tracking the maximum
amount of OS memory held by the SML/NJ runtime at any

8The mandelbrot benchmark can be discounted because it requires
essentially no GC.

Max. Pause (ms)

Memory (MB)

Total Time (s)

GC Time (s)

knuth-bendix 79 20.5 17.3249.94 11.4147.10 | VCGC
404 22.3 7.42+3.27 2.46+0.53 | generational

life 80 16.6 7.14+13.82 5.20+7.06 | VCGC
314 21.9 2.3646.58 0.6840.09 | generational

mandelbrot 80 14.0 0.754+2.35 0.47+0.00 | VCGC
315 21.9 0.29+2.35 0.04+0.00 | generational

ray 79 16.4 8.86+27.82 5.50+16.86 | VCGC
314 21.9 3.84+11.69 0.91+0.04 | generational

simple 80 24.4 48.63+34.54 | 33.73+23.92 | VCGC
475 31.7 26.06+9.88 13.014-0.43 | generational

tsp 80 20.6 7.26+88.02 4.42460.93 | VCGC
516 32.8 3.13+31.02 0.65+41.45 | generational

Table 1: Uniprocessor timing results of ML programs using the SML/NJ compiler with VCGC collection, tuned to simultaneously reduce

maximum pause latency and memory usage.

compile-time+ execution-time.

time. This amount contains the compiler since it must be
resident to compile the application. Memory usage with
VCGC is reduced by as much as 37% in the case of tsp.
Other benchmarks show space reductions of over 30% (1life,
mandelbrot, ray, simple); knuth-bendix gains only 8%.
We note that our VCGC implementation does not contain
a valuable SML/NJ space optimization: stripping descrip-
tors from pairs as they are promoted from the allocation
arena. By moving colors out of descriptors, VCGC can per-
form similar optimizations and stands to improve locality
and further reduce space usage.

Pause latencies were measured by enabling system timers,
during GC, of the compiles and runs of the benchmarks.
Maximum VCGC pauses range from threefold reductions
(life, mandelbrot, ray) to sixfold reductions (tsp). The
two other data intensive applications (knuth-bendix and
simple) exhibit better than fivefold reduction in their max-
imum GC pause. As noted, one can trade an increase in
memory usage for even better pause performance and bet-
ter overall running times.

Overall VCGC performance suffers due to the goal of re-
ducing both pause times and memory. Total time increased
by as much as a factor of four and typically by a factor of two
to three. These times can be reduced by lengthening epochs
(less marking and sweeping per filled allocation arena) but
at the cost of more memory in which to float garbage. We
were able to approach to within about 30% of the genera-
tional times, but with larger memory sizes. (Pause times
were excellent, <20ms, however.) However, the VCGC mu-
tate, mark, and sweep threads do no more basic work than
the respective phases of traditional mark-&-sweep collectors
[19, 7, 4]. (To see this, simply delay the sweep thread until
marking is complete.) Furthermore, VCGC’s store set im-
plementation is not overly expensive compared to standard
barrier techniques (see Jones and Lins [13] or Wilson [28]).
We therefore claim that the VCGC measurements are fairly
indicative of mark-&-sweep collection (with an allocation
buffer) of SML/NJ programs in general and hence are not
due to the VCGC algorithm per se. We note that VCGC and
other concurrent mark-&-sweep collectors (e.g., [17, 24, 7])
float garbage and therefore require additional storage and
its associated processing beyond that of sequential mark-&-
sweep.

VCGC pause and runtime performance stands to greatly
improve from implementation on a multiprocessor that can
truly overlap marking, sweeping and mutation in time.

Comparison values are timings of SML/NJ’s generational collector.

Run times are written

5 Summary

We have designed and implemented a new variant of mark-
&-sweep storage reclamation called Very Concurrent Garbage
Collection. In this algorithm, the mutator, marker, and
sweeper threads operate concurrently within epochs; a novel
coloring scheme identifies recyclable data. We implemented
VCGC in the commercial Inferno operating system to de-
tect and reclaim discarded cyclic data. Our other imple-
mentation is in the SML/NJ ML compiler, where VCGC
can eliminate long GC pause latencies while reducing mem-
ory usage. Tuning VCGC for pause, memory, and execu-
tion performance—as well as characterizing its multiproces-
sor performance—are directions for further investigation.

Acknowledgements

Thanks to Eric Grosse, Brian Kernighan, Dave MacQueen,
Rob Pike, and the anonymous reviewers for valuable com-
ments.

References
[1] A. W. Appel. Compiling with Continuations. Cam-
bridge University Press, 1992.

[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time con-
current collection on stock multiprocessors. In Confer-
ence on Programming Language Design and Implemen-
tation, pages 11-20. Association for Computing Ma-
chinery, June 1988.

[3] A. W. Appel and D. B. MacQueen. A Standard
ML compiler. Functional Programming Languages and
Computer Architecture, 274:301-324, 1987.

[4] H. G. Baker. List processing in real time on a serial
computer. Communications of the ACM, 21(4):280—
294, April 1978.

[5] E. Biagioni, R. Harper, P. Lee, and B. G. Milnes. Sig-
natures for a protocol stack: A systems application of
Standard ML. In Proceedings of the Conference on Lisp
and Functional Programming, pages 55—64. Association
for Computing Machinery, June 1994.

[6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly
parallel garbage collection. In Conference on Program-
ming Language Design and Implementation, pages 157—
164. Association for Computing Machinery, June 1991.

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly garbage col-
lection: An exercise in cooperation. Communications
of the ACM, 21(11):966-975, November 1978.

D. Doligez and X. Leroy. A concurrent, generational
garbage collector for a multithreaded implementation
of ML. In Symposium on Principles of Programming
Languages, pages 113-123. Association for Computing
Machinery, 1993.

R. R. Fenichel and J. C. Yochelson. A Lisp garbage-
collector for virtual memory computer systems. Com-
munications of the ACM, 12(11):611-612, November
1969.

J. Gosling and H. McGilton. The Java language envi-
ronment: a white paper. Sun Microsystems, Inc., 1995.

R. H. Halstead, Jr. Implementation of Multilisp: Lisp
on a multiprocessor. In Proceedings of the Conference
on Lisp and Functional Programming, pages 9-17. As-
sociation for Computing Machinery, August 1984.

L. Huelsbergen and J. R. Larus. A concurrent copy-
ing garbage collector for languages that distinguish
(im)mutable data. In Principles and Practice of Par-
allel Programming, pages 73-82. Association for Com-
puting Machinery, May 1993.

R. Jones and R. Lins. Garbage Collection. John Wiley
& Sons, 1996.

D. E. Knuth. The Art of Computer Programming,
Volume 1: Fundamental Algorithms. Addison-Wesley,
Reading, MA, 1969.

Bell Laboratories. Inferno Developers Guide. Lucent
Technologies, Murray Hill, NJ, 1996.

Bell Laboratories. The Limbo Language Definition. Lu-
cent Technologies, Murray Hill, NJ, 1996.

L. Lamport. Garbage collection with multiple pro-
cesses: An exercise in parallelism. In Proceedings of the
International Conference on Parallel Processing, pages
50-54, August 1976.

H. Lieberman and C. Hewitt. A real-time garbage col-
lector based on the lifetimes of objects. Communica-
tions of the ACM, 26(6):419-429, June 1983.

J. McCarthy. Recursive functions of symbolic expres-
sions and their computation by machine. Communica-
tions of the ACM, pages 184-195, April 1960.

R. Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sciences,
17:348-375, 1978.

R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. MIT Press, 1990.

M. Minsky. A LISP garbage collector algorithm using
serial secondary storage. A.I. Memo 58, Massachusetts
Institute of Technology, 1963.

[23]

[24]

[25]

[26]

[27]

[28]

S. Nettles and J. O’Toole. Replication-based real-time
garbage collection. In Conference on Programming
Language Design and Implementation. Association for
Computing Machinery, June 1993.

C. Queinnec, B. Beaudoing, and J.-P. Queille. Mark
DURING Sweep, rather than Mark THEN Sweep. In
Conference on Parallel Architectures and Languages
Europe: PARLE, pages 224-237, 1989.

J. H. Reppy. A high-performance garbage collector for
Standard ML. Technical memorandum, AT&T Bell
Laboratories, January 1994.

G. L. Steele Jr. Multiprocessing compactifying garbage
collection. Communications of the ACM, 18(9):495—
508, September 1975.

D. Ungar. The Design and Evaluation of a High Per-
formance Smalltalk System. MIT Press, 1987.

P. R. Wilson. Uniprocessor garbage collection tech-
niques. In International Workshop on Memory Man-
agement. Springer Verlag, 1992.

typedef struct root_list {
root_t root;
struct root_list *next;
} root_set_t;

root_set_t *root_set = NULL; /% set of elements */

root_set_t *last = NULL; /* last root_set capture */
root_set_t *before_last = NULL; /* before_last root_set capture */
root_set_t *this = NULL; /* next element to remove */

/* invariant: ’this’ always lies between ’last’ and ’before_last’ inclusive. */

/% remove():
* Returns the next not yet removed element from ’root_set’, NULL if there currently isn’t an element in ’root_set’.
* Called only by the marker thread.
*/

root_set_t *remove()

{

root_set_t *tmp;

/* invariant: ’last’ and ’before_last’ elements, if non-NULL, have already been removed */
if (this == before_last) {
before_last = last; this = last = root_set;
}
if (this == before_last) return NULL;
tmp = this; this = this->next;
return tmp;

}

/* insert(x):
* Inserts list node ’x’ into the root_set for subsequent marker removal.
* Assumes a root has been encapsulated in a fresh list node ’x’ by caller.
* Called only by the mutator thread.
*/
void insert(root_set_t *x)
{
x->next = root_set;
MemoryBarrier(); /* force write of previous line to memory */
root_set = x;

}

/% done():
* Returns true if every element in the root set has been removed by marker.
* Must be called with both mutator and marker threads halted, and their memory reads/writes complete.
*/

bool_t done()

{

return before_last == root_set;

}

Appendix

The above C code provides non-blocking set functions for
implementing an asynchronous write barrier for the VCGC
algorithm. In particular, the code requires no explicit syn-
chronization even though the mutator may add roots (with
insert) to the set while the marker concurrently removes
roots (with remove). This write-barrier algorithm assumes
atomic machine-word memory writes, as defined in the in-
troduction (§1). Note that there is a read/write race with
the read of root_set in remove and the write to root_set
in insert. This race is tolerable, however, because mem-
ory writes are atomic and subsequent calls to remove will
retrieve the “missed” element(s). The insert function con-
tains a memory barrier that forces all pending writes to
memory on processors that may reorder writes; its operation
however is local to the executing processor and does not in-
volve inter-processor synchronization. Here it ensures that
the insertion (x->next = root_set) is seen by other proces-
sors before root_set is reset to x. Note that the root_set list
monotonically increases in length over time; it may imme-
diately be reclaimed when the mutator and marker threads
agree that the set is empty (i.e., when done succeeds).

10

