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Abstract

This paper describes the design and implementation of an interface to C for the SML/NJ ML com-
piler. The interface supplies ML datatypes with which programmers specify C types and C data. An
ML program uses these datatypes to register a foreign C function with the interface and to build spec-
i�cations of structured C data. The interface automatically instantiates C function arguments from C
data speci�cations upon foreign function application. Most C types, including aggregate and function-
pointer types, are supported. A runtime code generation technique converts ML closures to C-callable
function pointers. Function pointers allow C programs to call ML programs. We solve the problems due
to di�erences in data representation, function calling conventions, and storage management by copying
data between the ML and C heaps, converting representations and changing calling conventions in the
process. We �nd that this copying strategy provides adequate performance in practice. The interface is
portable in the sense that its implementation does not require changes to the SML/NJ compiler proper;
it is isolated in a pair of libraries (ML and C). The interface has already found use in several non-trivial
applications.

1 Introduction

The de facto method for distributing reusable software modules is through C language function libraries and
C++ language class libraries. This poses a severe problem for mostly-functional languages since the e�orts
in supporting their implementation are usually small relative to the industrial development of C-based tools
and libraries. The problem is not that such languages cannot be used to create competitive applications|
it has been persuasively demonstrated that mostly-functional languages are well-suited for system-level
programming (e.g., [5])|rather, it is di�cult, expensive, and arguably unproductive, for modern languages
to individually reproduce the functionality of extant C software libraries. Mostly-functional languages must
therefore exploit existing C libraries by providing C or C++ interfaces [6, 13]. To this end, we have designed
and implemented a general interface to C for the Standard ML of New Jersey (SML/NJ) ML compiler [3]
that ameliorates the issue of language interoperability.

Our interface allows SML/NJ programs1 to call arbitrary C functions, to create and manipulate C data
from within SML/NJ, and generally to exchange data with C-based applications. The interface supports
most2 C data types: int, short, long, char, union, struct, array, function, and pointer. Conversion
between ML functions (closures) and C functions (function pointers) is possible; this allows programmers

�Address: Room 2C-307, 600 Mountain Ave. Murray Hill, NJ 07974. Phone: (908) 582 4628

1Our interface design is also applicable to other language implementations with similar compilation and runtime strategies.
2Bit-�elds and enumeration types are currently absent.
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to write callback functions for user interfaces completely in ML, for example. We devised a runtime code
generation technique|similar to the one used in the esh Scheme/C interface [13]|that converts ML closures
to C function pointers without changes to SML/NJ's code generator. Since ML functions can be converted
to C function pointers, it follows that C programs can use this interface to call SML/NJ programs. The
interface is parameterized by the characteristics of the target C compiler including data-type sizes, aggregate
alignment, and byte order (endianness); it is therefore possible to instantiate interfaces for multiple C
compilers (i.e., data formats) in a portable fashion. This is useful for binary C data-�le transport between
applications, for example.

Our interface supports multiple type views for a function by admitting multiple registrations of the
function. This is useful because C often overloads the types of function arguments. Dynamic typing checks
that the arguments supplied by an ML program to a foreign function match the registered type; a type
mismatch in an application of a foreign function raises an ML exception at runtime.

Portability of the interface's implementation is also a concern. The design of SML/NJ enables rapid and
robust evaluation of ML programs through novel compilation techniques (e.g. [4, 2]) and e�cient run-time
storage management [12, 1]. A tradeo� however is that this design does not readily admit an interface to
C. SML/NJ's function calling convention and data representations di�er radically from C's. Reengineering
SML/NJ to directly support linkage with C would disrupt the extensively-tuned optimizations already in
place. This forces the implementation of the interface to consist of stand-alone libraries: a C library that
is part of the SML/NJ runtime system and an SML/NJ library that is loaded prior to foreign function
registration and their subsequent application in ML. Both libraries share a protocol that communicates
types and data between the two languages.

E�ciency of the interface is only a secondary concern. We assume that a call to a foreign function f

usually triggers considerable computation in f (e.g., an expensive system call); for otherwise f could simply
be coded in the native language. In particular, a call to f with parameter data of size n and return result of
size m requires work O(n +m) in our interface|the interface makes copies of parameters (with which the
foreign function f operates) and return values. In practical applications of this interface, we have not found
this ine�ciency limiting.

Several applications have been constructed using our C interface for SML/NJ. The most extensive ap-
plication to date is an ML interface to the Microsoft Win32 programmer interface [10]; over 1300 interfaced
Windows C function provide SML/NJ with graphics and window management functions, etc. Other appli-
cations include ML interfaces to Tcl/Tk [11] and to the Unix DBM database management functions.

The next section describes the major problems in interfacing a mostly-functional language to C. Sections 3
and 4 respectively describe the design and implementation of our C interface for SML/NJ; sections 5 and 6
contain directions for future work and a discussion of previous interface designs.

2 Issues and Architecture

The architecture of the SML/NJ compiler [3] and runtime system [12, 1] pose three major obstacles to a
foreign function interface: incompatible data representation, incompatible function calling conventions, and
automatic storage management (copying garbage collection). In this section we discuss these obstacles and
describe the interface architecture we designed to accommodate them.

2.1 Data Representation

SML/NJ di�ers from C in its representation of both base and aggregate data.
In SML/NJ, integers are represented as 31-bit numbers within a 32-bit machine word3; the extra (low-

order) bit is set to distinguish an integer from a pointer which is always word aligned (i.e., low-order bit
clear). This distinction is required by the SML/NJ garbage collector. In C, the integer type int usually
corresponds to an entire word, whereas the integer types short and long may respectively be a portion of
a word or multiples of words. Similarly, SML/NJ real values are always 64 bits whereas C compilers may
use di�erent sizes to represent the values of their float and double types. Characters are stored in bytes

3A 32-bit word size is assumed in this paper and is referred to as word.
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in SML/NJ and in most C implementations. SML/NJ strings are always null-terminated; C's \strings" are
pointers to characters (char *) which are sometimes|but not always|null-terminated.

Since aggregates are constructed from base values, the representation of the former is a�ected by the
representation of the latter. The physical layout of ML tuples, records, and arrays|as well as the rep-
resentation of datatypes|is not speci�ed by the language. C aggregates (struct, union and array data)
follow conventional C layout rules (cf. [8]). This complicates the interface because an invertible mapping
for aggregates is not always possible without explicit programmer directives. For example, an ML record
does not directly map to a C struct since the order of record members is dependent on the implementation
whereas lexical member order is vital for C programs.

2.2 Calling Convention

ML treats functions as having a single argument; tuples and currying provide for multiple arguments. The
SML/NJ compiler implements control-
ow via the continuation-passing style (CPS) [3, 14]. SML/NJ then
further performs many optimizations (e.g. [2]), some of which are calling convention speci�c [4]. In contrast,
a given C compiler's function calling convention is partly governed by the instruction-set architecture of the
target machine.4

A direct but unwieldy solution to this problem is to replace SML/NJ's backend with one that emulates
the conventions of C compilers. Such an approach however has severe disadvantages: (1) the compiler would
have to support (e�cient) code generation for many platforms, most with multiple C compilers and hence
slightly di�erent conventions; and, (2) the implementation would lose the bene�ts of CPS compilation, e.g.,
inexpensive continuations.

2.3 Copying Garbage Collection

A further interface issue concerns storage management. ML requires automatic storage management in the
form of garbage collection. Since ML abstracts from the notion of a physical machine address, implementa-
tions are free to use copying garbage collectors that may move a datum during its lifetime. (SML/NJ uses
generational copying collection [12, 1]). C programmers, conversely, have unrestricted access to a datum's
address and can, through encoding, e�ectively \hide" addresses from their storage manager, i.e. from malloc

and free. C programmers maintain the invariant that|unless explicitly moved|a datum at address p re-
mains at that address throughout its lifetime. Therefore, in a copy-collected ML implementation, data must
be \pinned down" before it can be safely passed to C; otherwise the GC may move it while C still has active
pointers to the old, now invalid, address. It does not su�ce to suspend ML GC during a call to C since a C
function can retain pointers for use by subsequent C calls. In the presence of function pointers, a C function
may also reenter ML which in general requires ML allocation and hence garbage collection.

2.4 Interface Architecture

Our interface design addresses the issues above as follows. Suppose ML calls the C function f with arguments
a0; : : : ; an and return value r. Using a supplied datatype (described below, x3.4), the ML program creates
ML data that corresponds to f 's n arguments. The interface understands the internal representation of this
datatype and, on initiation of the call, �rst copies f 's arguments to the C heap. In making this copy, the
interface changes data representation when necessary (e.g., removes SML/NJ's tag bit on integers). The
function f is then called with the converted arguments in the C heap. When f returns, its return value is
similarly copied and transformed back to the ML datatype. Copying ML data to and from the C heap in
this manner enables the interface, when necessary, to:

1. convert between data representations,

2. change function calling conventions via a dynamically-generated code wrapper, and to

3. generate a �xed address for data passed to C.

4On some processors (e.g., MIPS R4000) a small number of function arguments are passed in registers if possible; remaining
arguments are passed through the C stack.
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Figure 1: SML/NJ memory model. The ML heap resides in the runtime system's C heap and contains both ML data and

code. The C interface consists of an ML library and a C library along with a collection of user C functions. Control can 
ow

from the ML interface library to the C interface library, and vice versa, via the runtime system.

Figure 1 depicts SML/NJ's memory model (cf. [12, 1]). When SML/NJ starts, its runtime system|a
C and assembly language program|creates the ML heap within the conventional C heap. All ML code
and data is placed in this ML heap. Subsequent ML allocation occurs in the ML heap. Control can pass
between an ML program and the runtime system via set of assembly-language hooks that save and restore
ML register state. Among other services, the runtime system also performs I/O and manages storage.

The C interface consists of an ML library in the ML heap and a C library in the runtime system. Interfaced
C functions reside in the runtime system. The ML interface library provides functions for registering foreign
C functions and for specifying and manipulating C data. A call to an interfaced C function �rst enters the
C interface in the runtime (control 
ows along the arrows in Figure 1). When the C call completes, control
returns from the runtime to the ML caller. The next section describes the programmer's view of the ML
interface library and its interaction with the C interface library.

3 The Interface

The section's description of the ML interface to C models the order of the steps that a programmer uses to
interface a C function: interface instantiation for a target C compiler, C function linkage, C type and data
speci�cation, C function registration, and C function invocation. In this section we also describe auxiliary
functions for converting data between ML and C formats and a function for computing the sizes of C data.

3.1 Instantiation

The ML part of the interface is a functor parameterized by a structure matching the CC INFO signature of
Figure 2. Structures with CC INFO signatures describe the C compiler characteristics that are relevant to the
interface. An interface for a target C compiler is instantiated by applying the functor to a CC INFO structure.

A CC INFO structure describes the sizes, in bytes, of the C compiler's base types: int, short, long, char,
float, double, and pointer types.

The interface permits C struct and union types to use nonconventional alignment; that is, a non-NONE
structAlign or unionAlign �eld will use the supplied alignment to align struct and union types instead
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signature CC INFO =

sig

(* all sizes in bytes *)

val intSzB : int

val shortSzB : int

val longSzB : int

val charSzB : int

val floatSzB : int

val doubleSzB : int

val ptrSzB : int

val unionAlign : int optiona (* alternate alignment *)

val structAlign : int option (* alternate alignment *)

val bigEndian : bool

val nConventions : int (* number of calling conventions *)

end (* signature CC INFO *)

adatatype 'a option = SOME of 'a | NONE

Figure 2: Signature for a structure describing characteristics of a target C compiler: data sizes, aggregate alignment,

endianness, and the number of function calling conventions.

of the default alignment conventionally dictated by the member �eld's types (cf. [8]). Alternate alignments
are sometimes necessary for system-level programming, e.g., [10].

The bigEndian �eld is true (false) if the compiler stores 4-byte words with the low-order byte at the
lowest (highest) byte address in the word. A C compiler typically inherits this attribute from the host
computer.

The nConventions �eld indicates the number of function calling conventions that the target C compiler
supports.5

In practice we use a simple C program to automatically generate a CC INFO structure for a C compiler;
this program computes data sizes and probes for alignments and endianness.

3.2 Linkage with C Functions

We now describe the mechanism for adding a C function to the set of interfaced functions available to
SML/NJ programs. Suppose the C function f has been separately compiled and now resides in an object
�le or library. To make this function visible from SML/NJ, one includes an entry of the form

CFUNCTION("f", f);

in a runtime header �le designated for such entries. The macro CFUNCTION associates the string "f" with the
function's C symbol (address) f . This association allows SML/NJ to dynamically �nd the address f when
registering it from ML. It is now only necessary to recompile the a�ected portions of the runtime system and
link with the �le or library containing f 's object code.6 As a running example, consider the hypothetical
function create window as described by the ANSI C prototype:

int create window(void callback(int, int), struct point *pp); (1)

The arguments to create window are a function pointer and a pointer to a struct. The function pointer
must point to a function of two integer parameters and no return value. The point struct is declared as:

struct point f int x, y; g; (2)

5This is necessary, for example, when interfacing to functions in Microsoft Win32 libraries [10] since they are compiled using
a Pascal calling convention.

6It is straightforward to replace this static compile-time linkage mechanism with a dynamic one based on shared or
dynamically-linked libraries, for example.
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signature C CALLS =

sig
...

(* function calling convention *)

type convention = int

(* ctype: constructors for specifying C types *)

datatype ctype =

CcharT

| CintT | ClongT | CshortT

| CfloatT | CdoubleT

| CfunctionT of (convention * ctype list * ctype)

| CptrT of ctype | CaddrT

| CstringT

| CarrayT of (int * ctype) | CstructT of ctype list | CunionT of ctype list

| CvoidT
...

end

Figure 3: The ctype datatype in the C CALLS signature.

Parameter pp is perhaps an initialization structure (containing only a screen position, in this simple example).
To further this example, suppose that the function create window returns an integer handle h for the new
window and that the callback function receives h as its �rst parameter and an integer message code as its
second parameter for every event a�ecting window h. The entry in the SML/NJ runtime system

CFUNCTION("C create window", create window);

enables the C interface to �nd create window via the name "C create window". Note that the CFUNCTION
macro conveys no information about the type of the function that is being interfaced. We chose to specify
the type of an external function from within ML because C functions often overload parameters and return
results with multiple types. For example, in create window a NULL pp parameter might be used to select
default window placement. Speci�cation of a function's type in the ML interface library|instead of in the
C interface library|sidesteps this problem.

The signature of an instantiated C interface (C CALLS) is distributed among Figures 3{5; we now describe
this signature's datatypes and values.

3.3 C Type Speci�cation

In the interface, programmers describe the types of C data|such as the types of an interfaced function's
parameters and return values|with an ML datatype called ctype (Figure 3). C's base types map directly
to the nullary ctype constructors CcharT, CdoubleT, CfloatT, CintT, ClongT, and CshortT.

Aggregate types are speci�ed using base types (and existing aggregate types). The type of a C array
(CarrayT) carries a pair containing the number of array elements and their type (a ctype). C's struct and
union types are speci�ed as a list of the ctypes of their member �elds.

For C pointer types, the interface provides two constructors: CptrT and CaddrT. The CptrT constructor
enables construction of linked C data from within ML. The CaddrT constructor denotes an arbitrary C
address (e.g., a (void *) pointer); it serves as a handle to C addresses that can point to C data in the C
heap with unknown types (cf. [6]). Manipulation, in ML, of values of type CaddrT is described below (x3.4).

The CstringT constructor is shorthand for a null-terminated array of characters, i.e. a C (char *)

\string." Its inclusion in the set of ctypes was motivated by its frequent use in C programs.
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signature C CALLS =

sig
...

(* caddr: an abstract pointer type *)

eqtype caddr

val NULL : caddr

val free : caddr -> unit

val index : (caddr * int) -> caddr

val difference : (caddr * caddr) -> Word32.word

(* cdata: constructors for specifying instances of C data *)

datatype cdata =

Cchar of char

| Cint of Word32.word | Clong of Word32.word | Cshort of Word32.word

| Cfloat of real | Cdouble of float

| Cfunction of (cdata list -> cdata)

| Cptr of cdata | Caddr of caddr

| Cstring of string

| Carray of cdata Vector.vector | Cstruct of cdata list | Cunion of cdata

| Cvoid
...

end

Figure 4: The cdata datatype and the abstract caddr type in the C CALLS signature.

The CvoidT constructor is primarily used to indicate that a C function does not return a value. The other
common use of C's void declaration is to declare pointers to arbitrary types; CaddrT serves this purpose in
our interface.

The CfunctionT constructor describes the type of a C function pointer. The three components of the
constructor's argument tuple specify the function's calling convention7, the function's argument types (a
ctype list) and the type of its return value (a ctype).

In the create window example, struct point (2) has the ctype:

val CpointT = CstructT [CintT, CintT] (3)

Function create window's return value has CintT as its ctype. Its callback parameter has the ctype

val CcallbackT = CfunctionT (0, [CintT, CintT], CvoidT) (4)

and its pp parameter has, using the CpointT binding (3), the ctype: CptrT CpointT .

3.4 C Data Speci�cation

Figure 4 contains the portions of the C CALLS signature that comprise the cdata datatype. The cdata

datatype is used to specify|using ML data within an ML program|a particular instance of a C type. That
is, with cdata one describes the structure and content of C data. From a cdata value, the interface will
automatically construct, when necessary (before a C function call, for example), a C instance of this data
in the C heap. Constructors in the cdata datatype correspond to constructors in the previously described
ctype datatype (x3.3). Additionally, the cdata datatype requires the abstract caddr type to represent
arbitrary C addresses (see Figure 4).

7A calling convention is speci�ed with an integer 0; : : : ; nConventions� 1, where nConventions> 0. See x3.1 and x4.
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The constructors Cchar, Cdouble, Cfloat, Cint, Clong, and Cshort specify base C values. Where
possible, a cdata constructor carries the naturally-corresponding ML value.8 In the case of integer data,
we use the SML/NJ Word32.word type9 instead of int in order to minimize data-representations con
icts.
ML's real type is used to specify instances of C's float and double types.

Aggregate cdata types are speci�ed from base C data or recursively from existing aggregate cdata. The
array constructor Carray carries an immutable SML/NJ vector of cdata. We use SML/NJ vectors here
instead of arrays because the vector type re
ects the interface's copying semantics. Cstruct carries a list of
cdata that speci�es the content of the struct's member �elds. Cunion speci�es an instance of a C union

type and hence carries only a single member.
Application of the Cptr constructor to a cdata value speci�es a C pointer (one level of indirection) to

an instance of this data. The Caddr constructor carries values of type caddr. The caddr type is an abstract
type that represents a C address p without regard for the type of the data at p. Speci�cally, the interface
will never copy the data at p into the SML/NJ heap. Caddr is useful when, for example, a C function returns
a pointer to ML that ML will subsequently pass back to C. The interface supplies C's NULL pointer value
as a caddr value, as well as functions on caddrs that perform byte-based pointer arithmetic (index and
difference). The function free deallocates the storage pointed to by its caddr argument.10 This function
is included in the interface to provide explicit control over the lifetimes of cdata values transferred to the
C heap; see x3.5 and x3.8 below. The caddr type is similar to a handle to a C++ object in the Talk (Lisp)
interface [6].

Cstring speci�es a null-terminated C string constant. Cvoid speci�es the absence of a data value.
Cfunction carries an ML function. The carried function must map a list of cdata parameter values to

a cdata return result.
One can now specify data for the create window example (x3.2). The function

fun simpleWindowFn [Cint h, Cint msg] =

case msg of

0 => closeWindow h

| 1 => printWindow (h, "hello")
is a valid callback parameter to create window when tagged as a Cfunction:

val callbackParam = Cfunction simpleWindowFn (5)

A sample initialization structure for create window that places the window at the origin is:

val initParam = Cptr (Cstruct [Cint 0, Cint 0]) (6)

The create window function must now be registered in ML as a foreign C function before it can be applied
to callbackParam and initParam.

3.5 C Function Registration

Figure 5 completes the C CALLS signature with ML functions that register previously (x3.2) linked C functions.
The �rst argument to the registerCFn function is an integer that speci�es a calling convention for the

C function f being registered (see CfunctionT, x3.3). The next argument is a tuple giving the name of the
function (a string), the types of f 's parameters (a ctype list) and the type of f 's return value (a ctype).
The name is used to bind C's address for the function; the types are used to convert parameters and return
values. Application of a second argument to registerCFn produces an ML function f 0 that embodies the
actual call to f .

The value returned by the registered C function f 0 is a tuple (d,l). The value d is of type cdata and
contains f 's return value. The second tuple component, l, is a list of values of type caddr (x3.4). The
addresses in l point to the C storage dynamically allocated by the interface in calling f . In particular, l

8Interface instantiation (x3.1) raises an exception if SML/NJ's base types cannot, due to size, hold C's base types; i.e. an
extension to the cdata datatype is required to support 64-bit C integers.

9The Word32 structure provides signed and unsigned conversions to and from integers.
10The free function is a direct binding to the C library's free function, and thus inherits its semantics.
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signature C CALLS =

sig
...

exception DynamicTypeMismatch

(* function calling convention *)

type convention = int

(* registration functions *)

val registerCFn : convention ->

(string * ctype list * ctype) ->

(cdata list -> (cdata * caddr list))

val registerAutoFreeCFn : convention ->

(string * ctype list * ctype) ->

(cdata list -> cdata)

(* data conversion functions *)

val dataMLtoC : ctype -> cdata -> (caddr * caddr list)

val dataCtoML : ctype -> caddr -> cdata

(* sizeOf: number of bytes a ctype instance occupies in the C heap *)

val sizeOf : ctype -> int

...

end

Figure 5: Functions in the C CALLS signature to register C functions, to export and import data, and to compute C data

sizes. DynamicTypeMismatch is raised when the type of an argument to a C function does not match its registered type.
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contains pointers to C-heap copies of parameters and return values.11 The programmer must free (using,
e.g. app free l) the interface's copies when they are no longer needed; this mechanism is necessary since C
functions may, in general, retain pointers to their arguments. The function registerAutoFreeCFn is similar
to registerCFn except that it automatically frees all storage allocated by the interface|but not the storage
allocated during f 's execution, if any|before returning to ML.

Assume that the example function create window has been added to the SML/NJ runtime (x3.2) and
that the bindings CcallbackT (4) and CpointT (3) exist. The expression

val createWindow = registerAutoFreeCFn 0 ("C create window",CcallbackT,CptrT CpointT) (7)

registers create windowwith the ML interface library. Registration with registerAutoFreeCFn implies that
the function create window does not retain pointers to its (non function) parameters beyond the extent of
its execution; i.e., data in the struct pointed to by pp is accessed only during a call to create window.

3.6 Calling C from ML

The ML function f 0|derived from the C function f via registration|can now be applied to a cdata list

l that supplies f 's actual parameters. In addition to converting the parameter p 2 l to C format, our
interface checks that the type registered for p matches the type implied by p's cdata representation. If a
type mismatch occurs, the interface raises the DynamicTypeMismatch exception (cf. dynamic typing). In
practice, it is convenient to further shroud f 0 in a wrapper function whose type does not contain cdata.

In the example, application of createWindow (7) to callbackParam (4) and initParam (3)

val (Cint h) = createWindow callbackParam initParam (8)

invokes C's create window and produces(Cint h) where h is the new window's handle.

3.7 Calling ML from C

Calling ML from C is accomplished through function pointers. Suppose that the SML/NJ runtime provides
C's main entry point. Furthermore, suppose that the entry point to the C program is (re)named entry and
is extended to accept|in addition to argc, argv, etc.|a set of function pointers. An ML program need
then only register entry as a C function. It then calls entry with the set of ML functions that are available
to the C program.

As an example, consider the renamed main function of a C program:
int (*ML entry)(int); /* storage for an ML function */

int entry(int (*f)(int), int argc, char *argv[])

f
ML entry = f; /* save ML function for later use */
... /* continue with C program's main */

g
In addition to the conventional command-line arguments, entry's �rst parameter is an ML function that it
stores in ML entry for future application.

A model where the C program retains C's main is also possible, but is not described here.

3.8 Data Conversion Functions

The C CALLS interface structure (Figure 5) also provides two functions (dataMLtoC and dataCtoML) that
directly convert cdata in the SML/NJ heap to C data in the C heap and vice versa. The function dataMLtoC

ensures that its cdata speci�cation matches its ctype parameter before converting the former to its C form.
As with registerCFn (x3.5 above), dataMLtoC returns, in addition to the address of the converted datum,

11In our implementation (x4), function pointers created via Cfunction do not create deallocatable storage in the C heap and
hence are not included in the list l of storage pointers.
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a list of pointers to the C data allocated in building its C representation. This storage, though allocated
in the C heap, must be deallocated (with free) by the programmer when it is known to no longer be in
use. The function dataCtoML (the inverse to dataMLtoC) converts the C data structure at the address of its
caddr parameter to a cdata value; the ctype parameter again guides the conversion.

The ML sizeOf function computes the size (in bytes) that an instance of its ctype parameter occupies
in C (cf. C's sizeof operator).

The conversion and sizeof functions are useful for constructing and examining C data that must persist in
a �xed location over a period of multiple calls to C. For example, an alternate registration of create window

(x3.2) registers its second parameter as having type CaddrT instead of the type CptrT CpointT. Then, the
second parameter to createWindow could for example be the NULL caddr value or the caddr value produced
by an application of (dataMLtoC CpointT) to a cdata instance of a CpointT. The caddr would then be a
handle for the initialization structure which will now persist until explicitly deallocated.

4 Implementation

This section describes two key mechanisms at the core of our interface's implementation in version 108.5
of SML/NJ: Byte-code type descriptors guide the necessary data conversions and runtime code generation

e�ectively augments an ML function's closure with an additional entry point that conforms to the calling
convention of the target C compiler.

4.1 Interface Type Descriptors

The ML portion of the interface compiles ctype values into type descriptors. Type descriptors are byte-
code strings that contain the necessary type, size, and alignment information for a given C type. Type
descriptors and the cdata they describe 
ow across the interface. The C portion of the interface interprets
type descriptors in conjunction with cdata values to create instances of C data in the C heap. Conversely,
type descriptors guide the conversion of C data to ML cdata values.

The byte-code syntax consists of characters that denote a particular C type (e.g. I for integer) followed
by zero or more bytes of type-dependent size information. For example, the type descriptor for the ctype

CstructT [CcharT, CintT] (9)

in byte-code string format12 is:
"<8C1P3I4>" (10)

This describes an eight byte structure (<8� � �>) that contains a one-byte character (C1), three bytes of
padding (P3), and a four-byte integer (I4). The size of the structure is made explicit in the type descriptor
to permit the interface's interpreter to allocate space for the structure without having to inspect the byte-
codes for the structure's member �elds. Type-descriptor compilation inserts the padding bytes to align the
structure's integer �eld on a word boundary. The values supplied in the CC INFO structure for interface
instantiation (x3.1) govern type-descriptor compilation. Other types have similar byte-code representations
and compilation transformations; we do not further describe them here.

4.2 Function Pointers

We devised a dynamic mechanism to convert ML functions (closures) to C function pointers. It is similar to
the dynamic generation, in the C heap, of C functions in the esh Scheme/C interface [13]. Our mechanism
however supports copying garbage collection (as well as esh's conservative collection). Such a mechanism
is needed to support C function pointers without reengineering the SML/NJ compiler's backend; calling
convention conversion occurs completely in the C portion of the interface. Given an ML closure f , this
mechanism creates an additional entry point for f that adheres to the C compiler's calling convention. More
speci�cally, when handed a closure, the interface creates a three-component bundle that contains the closure
address, a type descriptor for the closure, and a code block that can �nd and invoke the closure. Figure 6

12Our implementation uses byte values instead of the (readable) ASCII codes used in this example.
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call to the above closure.

Address of ML closure

Closure’s type descriptor

0

−4
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Synthetic C function pointer

Figure 6: Conversion of ML closures to C function pointers. The entry code extracts the closure address from its header,

converts parameters, calls the closure, converts the closure's return value, and returns this result to its C caller. Parameter and

return value conversions are described by the pointer in the slot for the closure's type descriptor.

depicts such a bundle. A C function pointer to the ML closure is simply the address of the new bundle's
code block.

A bundled type descriptor guides the conversion of C parameters to cdata values for the closure's argu-
ment as well as the conversion of the closure's eventual cdata value back to C.

The code block is constructed in the C heap from a closure address and a fresh copy of a relocatable
assembly-language routine. This routine is C compiler and machine architecture speci�c; it must be supplied
by our interface for every target C compiler. Relocation is achieved through simple byte copying. The
routine must be relocatable in order to provide a unique function pointer for an ML closure|a generic
dispatch routine does not work here because, by virtue of being generic, it cannot be coupled to a speci�c
ML closure. More speci�cally, when handed the address p of an ML closure, the interface must produce a p0

that \behaves like" a C function pointer; when applied from within C, p0 must setup and perform a call to p.
If p0 were to point to a generic dispatch routine, this routine cannot know which ML closure (p in this case)
to dispatch. The address p must therefore be accessible given only p0. We achieve this by placing p in a fresh
memory block along with code for extracting p. This code block at p0|upon extraction of p|immediately
passes p to a C function that sets up the call to p (i.e. builds p's cdata argument), calls p, and upon p's
return �nally converts p's result to C format.

A �nal implementation concern ensures that collection of garbage SML/NJ code objects [12] updates the
closure addresses in bundles. Upon bundle construction, the location of the closure address in a bundle is
registered as a root with the SML/NJ garbage collector. This su�ces to correctly track movement of the
closure; that is, when the garbage collector moves the closure, it also updates the closure's address in the
bundle.

5 Future Work

Further work falls into one of two categories: design issues and implementation issues. We �rst discuss the
design issues.

The copying approach of our design poses several problems. It is ine�cient when large amounts of
data must traverse the interface or when ML and C must share mutable data. Although the caddr type
(x3.4) can be used to circumvent this problem, a design that avoids copies is desirable (e.g., [13], x6). Such
a design would require ML data representations to match those of the target C compilers as well as ML
code generation that uses C calling conventions for ML functions (cf. x2.4). An approach that uses explicit
programmer declaration of the ML data (and functions) that will be passed to C may prove to be a practical
middle ground.

A further disadvantage of our design is its inability to specify cyclic C data. To support cycles, the ctype
datatype (x3.3) must be modi�ed to permit speci�cation of such types and the C part of the interface would
have to detect cycles when converting data between representations.

The remaining issues are due to the current implementation of the design; we believe that these issues
can be resolved independent of the design. The implementation places restrictions on ML closures passed
to C as function pointers (x4.2). In particular, the current interface implementation only properly handles
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functions with functional control 
ow; functions that raise escaping exceptions or throw to an SML/NJ
continuation captured prior to the function's application may leave unreachable C data and state on the C
stack. Analyses to determine the set of expressions that may escape from an ML expression [15, 7] (and hence
from ML functions called by C) may provide some solution to this problem. Furthermore, an ML function|
once passed to C|will persist until the program terminates. This conservative behavior is necessary since C
may retain a pointer to an ML closure f after ML has abandoned all of its pointers to f . One must therefore
assume that C may access f in the remainder of the program's lifetime. In practice, persistent closures are
not problematic since one typically passes only a small set of functions to C; however, this problem requires
solution in order to guarantee the absence of space leaks.

Our implementation currently requires C function arguments and return values to �t in a machine word.
This is not a severe restriction since pointers �t in a machine word and one can introduce a level of indirection.
Removing this restriction requires rewriting the mechanism that calls an interfaced C function in architecture-
speci�c assembly language (word size arguments can be passed, using C, in a machine independent manner).

6 Related Work

ML runtime systems [9, 12], as well as systems for other mostly-functional languages (e.g. Lisp, Scheme,
Haskell), provide low-level access to C functions. Such raw interfaces su�ce to implement a language's run-
time support (I/O, etc.). In a raw interface, a called C function is passed a set of untranslated arguments;
that is, arguments are not automatically converted from the native system's representation to C's represen-
tation. This requires programmers to understand a compiler's internal representations and to explicitly write
C code to convert representations. Garbage collection also inhibits programming with a raw interface since
native and foreign storage must be explicitly allocated and freed. Direct linkage with C function libraries is
also not possible since explicit representation conversions are required. The automatic interface described in
this paper requires programmers to only specify the type of a C function from within ML; no additional C
code need be written.

Rose and Muller's Scheme environment [13] called (esh) provides a high-level interface to C that is closely
related to our interface for SML/NJ. The esh system provides basic Scheme objects that map directly to C
types. Objects carry tags that identify their (C) type. The cdata constructors (x3.4) in essence supply the
\tags" in our system. Rose and Muller's system never relocates storage; it is not clear how well they handle
long running programs that allocate much data. Non-copying GC strategies greatly simplify the design of
foreign function interfaces. esh furthermore inherits C's data representations for all basic types. Scheme
functions are used to lay out C data \in place" in esh's shared Scheme/C heap. Our interface adopts a
copying strategy since it must convert data representations and handle copying garbage collection. To pass
Scheme closures to C, esh dynamically generates C functions on the C heap; this is akin to the approach we
use (x4.2).

The Talk variant of Lisp provides a C++ class interface [6]. The interface is automatic|when given a C++

class declaration it generates Talk stub functions. As described, our interface requires explicit registration
of the types of interfaced C functions, but it is straightforward to have our interface automatically register
the functions named in a C header �le, for example. Since Talk interacts at the C++ class level, it can only
create complex data via class constructors. One cannot, in general call C functions with arbitrary C data
using the Talk/C++ interface. For passing Lisp functions to C++ as function pointers, Talk supplies a new
de�ning form; functions de�ned with this form are compiled with the C++ calling convention instead of the
default Talk convention. However, functions de�ned with this form may only be called from C++ and not
from Talk. In contrast, our interface supports function pointers in general.

7 Conclusion

We have designed an interface to C for ML and have implemented it in the SML/NJ compiler. The interface
makes explicit copies of a foreign function's parameters and return results in the C heap. This copying
strategy provides solution to problems caused by incompatible data representations, calling conventions, and
storage managers. Our ML interface to C is practical; many non-trivial C functions have been interfaced to
date.
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