A Win32 Programming Interface for SML/NJ

Sheng Liang* Lorenz Huelsbergent

August 1995

Abstract

We have built a Win32 API function call interface for SML/NJ, making it possible to write ML
applications with a Microsoft Windows user interface. The interface includes the complete support
for all major components of the Win32 system, as well as two high-level libraries for constructing
menus and controls.

In this document, we give an overview of the SML Win32 interface, discuss how it was designed
and implemented, and show how it can be used to write a simple application.

*Department of Computer Science, Yale University, New Haven, CT 06520-8285. | i ang- sheng@s. yal e. edu
t AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ07974. 1 or enz@ esear ch. att. com

1 Introduction

This document gives an overview of a Win32 API function call interface for the Standard ML of
New Jersey (SML/NJ). The interface makes it possible to write ML applications with a Microsoft
Windows user interface. By using ML instead of, for example, C, programmers are able to take
advantage of ML’s strong static typing, higher-order functions, the module system and automatic
garbage collection. These features increase productivity and result in more reliable code. We will
argue that the SML Win32 interface meets the usability and reliability goals, and provides the right
level of abstraction and functionality. Here are the two major characteristics of our system:

e Our interface is complete. It includes support for window management, graphics, system
services (processes and threads, file 170, memory management, etc.!), security, multimedia,
and extension libraries (such as the Common Dialog Library). In total, there are more than
1300 functions and 500 Windows specific data structures.

o We follow a layered design. A low-level interface provides the full functionality and preserves
the naming conventions and function arguments of the Win32 C interface [1]. As a result, the
Win32 APl manuals [1] are a useful reference for Windows programming in ML. Familiarity
with Windows programming in C carries over to the ML framework. Our low-level interface
can be used to build various high-level libraries; e.g., a menu library constructs menus from
easy-to-read specifications in ML.

Win32 is the native system call interface in Windows NT. Windows 95 leaves out certain features
(such as security and Unicode), while providing a few extensions of its own (such as the Direct
Draw Game API). In addition, the Win32s compatibility package supports a subset of Win32, and
allows Win32 programs to run under the 16-bit Microsoft Windows 3.1.

The next section is a tutorial in which we design and implement a simple application. Section
3 provides an overview of the SML Win32 interface, followed by a discussion on its design and
implementation in Section 4.

We assume that the reader is familiar with ML [4]. This document only covers a small part
of Windows programming; the reader should consult one of many Windows programming books
(such as [3]) for more information.

2 An Example

In this section we construct aWin32 program in ML which allows the user to freely draw in awindow
by pressing down the left mouse button while moving the mouse. To simplify the presentation,
we first introduce a version with minimum capabilities, and later add a more sophisticated user
interface with menus and dialog boxes.

2.1 A Simple Drawing Program

Our simple program displays a drawing window with a title bar labeled “Dr aw” (Figure 1). The
user draws with the mouse, and terminates the program by double clicking the upper-left corner
of the window (as in a conventional Win32 application).

We will present the code in a literate-programming style, with code segments separated by expla-
nations. The entry point of our program, the dr aw function, begins with:

fun draw () =

1Some of these are not necessary for SML/NJ, whose standard library already provides support for various operating
system services.

Figure 1: A Simple Drawing Program

| et
val classNane = Wn32. RawStri ng. make "My Draw'

val wc = Wn32. mmkeWwhdd ass {
style = 0O,
| pf nWhdProc = W n32. nakeWhdPr oc wndPr oc,
chd sExtra
cbWhdExt r a
hl nst ance = Wn32. getlnstance (),
hl con = C . NULL,
hCursor = Wn32. | oadCursor(Cl.NULL, W n32.1DC ARROW ,
hbr Background = W n32. makel nt Handl e (
W n32. COLOR_W NDOW + 1),
| pszMenuName = Cl . NULL,
| pszCl assNanme = cl assNane}

:O,
:O,

val res = Wn32.registerd ass (Wn32.addr wc)

val _ = Wn32.freeWnStruct wc

Besides W n32, we use the SML/C interface module Cl . As with most Win32 applications, we
must first construct and register a window class. The code is slightly complicated by the fact that
Win32 functions frequently take pointers into the C heap as arguments, and return C strings and
structures. For example:

W n32. RawString. nake : string -> t_char ptr

converts an ML string to a C string (i.e., a character pointer). The C string is in turn passed (with
other required arguments) to:

W n32. makewhdC ass : {..., IpszCassNane : t_char ptr} -> wnd_cl ass

which allocates, initializes, and returns a window class structure (wnd_cl ass) in the C heap. Type
wnd_cl ass is notjusta C pointer to the structure, but also contains other bookkeeping information
needed by the SML/C interface. We can extract the C pointer to the structure by using:

W n32.addr : wnd_class -> wnd_class ptr

Due to the limitations of the current SML/C interface, we must explicitly free objects in the C
heap.? For example, after registering the window class, the C structure passed to makeWdd ass
is no longer needed. We call W n32. freeW nSt r uct to release the C heap memory occupied by
WC.

The most important field in a window class structure is | pf nWhdPr oc — the address of a
programmer defined call-back function invoked by Win32 to process the messages sent to any
window in this class. We will explain messages and define the wndPr oc function later; now we
return to the second part of the dr awfunction:

val w ndowNane = W n32. RawSt ri ng. make "Draw'

val wnd = Wn32. creat eW ndow (

cl assNane, (* class *)

wi ndowNane, (* nane *)

W n32. Ws_OVERLAPPEDW NDOW (* style *)

100, (* x *)

100, (*y ™)

300, (* height *)

200, (* width *)

Cl . NULL, (* parent *)

Cl . NULL, (* menu *)

W n32. getl nstance (), (* app. instance *)

Cl . NULL) (* extra info. *)
val _ = app Cl.free [classNanme, w ndowNane]
val _ = (Wn32. showwW ndow (wnd, W n32. SW SHOW ;

W n32. updat eW ndow wnd)

The above code creates a window and calls showW ndowand updat eW ndow to make it appear
on the screen. After the window is created, the C strings holding the names of the window and
window class can be freed. Note that C pointers are freed by Cl . f r ee, whereas Win32 structures
(e.g., wnd_cl ass) are freed by W n32. freeW nSt r uct .

To build an interactive drawing application, we must handle user inputs such as mouse clicks
and movements. The Win32 system generates a message for each input event, and manages per-
thread® message queues to store unprocessed messages. The last part of the dr aw function simply
enters a loop which repeatedly fetches and dispatches on the messages from the application’s
message queue:

val nmsg = Cl.malloc (Cl.sizeof Wn32.nmsgT)

fun eventLoop _ =
i f Wn32. get Message (msg, Cl.NULL, O, 0)
t hen
(W n32. di spat chMessage nsg;
event Loop ())
el se

0

in

2In the future, one could incorporate a weak pointer finalization mechanism to make the explicitdeallocation unnecessary.
3In contrast, the earlier 16 bit Windows 3.1 has one global message queue.

event Loop ();
W n32. unregi sterCl ass(cl assNane, W n32.getlnstance());
Cl.free nsg

end

We allocate an uninitialized message structure in the C heap using the SML/C interface functions
mal | oc and si zeof . W n32. nsgT contains the C type information about a Windows message
structure.

The W n32. get Message function retrieves a message from the message queue and places it
in the specified structure (msg). The event loop terminates when get Message sees a WWQUI T
message and returns f al se.

Before exiting the program, we unregister the window class (making it possible to later register
a class with the same name, i.e., “My Dr aw”). Finally, we free the storage used to hold messages.

The event loop passes all messages (other than WML.QUI T) to W n32. di spat chMessage, which
then invokes the pre-registered call-back function wndPr oc to carry out the main functionalities of
the drawing application. The wndPr oc function is defined as follows:

val lastPoint =ref {x =0, y = 0} (* renenber the last point *)

fun wndProc {w ndow = hWhd, nmessage = nessage,
w_param = wParam | _param = | Paran} =
if message = Wn32. WM DESTROY t hen
(W n32. post Qui t Message 0; 0)
else if nessage = Wn32. WM_LBUTTONDOMN t hen
(lastPoint := {x = Wn32.1oWrd | Param
y = Wn32. hi wrd | Parani;
0)
el se if nessage = W n32. WW_MOUSEMOVE t hen
if (Bits.andb (wParam Wn32. MK LBUTTON) <> 0) then
et val dc = Wn32. get DC hwd
val {x X, y =y} = !lastPoint
val x’ W n32.1 oWwbrd | Param
val y’ Wn32. hi Wwrd | Param
in
W n32. moveToEx(dc, x, y, ClI.NULL);
Wn32.1ineTo(dc, x', y');
W n32. rel easeDC(hWwhd, dc);
l[astPoint := {x =X, vy =Vy'};
0
end
el se
0
el se
W n32. def W ndowPr oc (hWhd, nessage, wParam | Param

The system passes a window call-back function the handle of the affected windows, the message
identifier, and two parameters. The exact interpretations of | _par amand w.par amvary with
messages, and could be ignored or treated as integers, pointers, etc.

When the application is terminated (by, for example, double clicking the upper-left corner of
the main window), the system generates a WM DESTROY message. WhdPr oc responds by calling
W n32. post Qui t Message which puts a WWMLQUI T in the message queue, causing the event loop
to terminate.

File Edit

Carienis
Search for

About Draw

Figure 2: A Drawing Program with Menu

WhdPr oc handles two mouse related messages (WMMOUSEMOVE and VWLLBUTTONDOVWN) to
perform the drawing. Note how the high and low words of the | _par amargument encode the
mouse cursor position. The actual drawing is performed by four Win32 graphics API functions:
get DC, moveToEXx, | i neTo,andr el easeDC. A call-back function must always pass the messages
it does not handle to def W ndowPr oc to invoke default actions.

We now have a simple but working Win32 program. Next we will make it more sophisticated
by adding menus and dialog boxes.

2.2 Menus, Controls and Dialog Boxes

Win32 menus are usually attached to the menu bar at the top of a window.* The programmer
assigns a unique identifier (represented as an integer) to each item on the menu. Later, when the
user selects a menu item, the system generates a WWL.COMMVAND message, passing along the identifier
as an argument.

Win32 provides built-in support for a wide variety of controls, such as buttons, check boxes,
text editors, list boxes and scroll bars. A properly designed Win32 user interface should always
put controls in dialog boxes, a special kind of temporary pop-up window that receives user inputs.
The call-back function of the dialog box receives WM COMVAND messages when the user operates
on a control. As with menu items, every control sends its parent (usually a dialog box) a unique
identifier along with the WWLCOMVAND message.

It is tedious and error-prone to directly use the Win32 API to create menus, controls and dialog
boxes. Indeed, most Windows software development environments provide tools that automati-
cally generate the low-level data structures needed to build the desired user interface. The Microsoft
Resource Compiler, for example, takes a high-level resource definition file describing user interface
objects, and outputs a binary file which can later be linked into the application’s executable and
loaded at run-time.

We have written a high-level interface to create menus and dialog boxes containing controls.
The interface consists two structures (Menu and Di al og), and is documented in Appendices A and
B. To demonstrate its use, we add a menu (shown in Figure 2) to the drawing program. With our
interface, the menu is specified as follows:

val | D_HELP_CONTENTS 40010 (* unique within the
val | D_HELP_SEARCH = 40011 application *)

4Win32 also supports floating pop-up menus.

val | D_HELP_ABOUTDRAW = 40012

val menu = [POPUP {text = "&File",

flag = 0,
menu = [... 1},

POPUP {text = "&Edit",
flag = W n32. M-_CGRAYED,
menu = [... 1},

POPUP {text = "&Hel p",
flag = 0,
menu = [MENUI TEM {text = "&Contents",

id = | D HELP_CONTENTS
flag = Wn32. MF_GRAYED},
MENUI TEM {text = "&Search for",
id = | D_HELP_SEARCH
flag = Wn32. MF_GRAYED},
SEPARATOR,
MVENUI TEM {t ext = "&About Draw',
id = | D HELP_ABOUTDRAW
flag = 0}
1}
]

A menu consists of a list of menu items. A menu item is either a MENU TEMwith text, id and
flag fields, a SEPARATOR, or a POPUP submenu which in turn contains a list of menu items.
Menu items that are gray (initially set through the f | ag field and later toggled by the Win32 API
function enabl eMenul t en) do not generate WWML.COVMAND messages, and are used for disabled or
unimplemented features. With our high-level interface, we only need to make one change in the
dr awfunction to add a menu to the main drawing window:

val wnd = Wn32. creat eW ndow (
cl assNane,
wi ndowNane,
W n32. W5_OVERLAPPEDW NDOW
100,
100,
300,
200,
Cl . NULL,
Menu. create menu, (* add nmenu *)
W n32. get |l nstance (),
Cl . NULL)

Menu. cr eat e builds a menu from its SML description, and is a function implemented using low-
level calls to the Win32 API. Selecting a menu item often causes a dialog box to pop up. As an
example, we will attach to the menu item “About Draw” a dialog box containing some information
about the application, as shown in Figure 3.

We must specify the geometry and style of the dialog box and all the controls it contains:
infix |]
val op || = Bits.orb

About Draw

A sample Win32 program
written in SML

Figure 3: The “About Draw” Dialog Box

val about Dl gBox =
{ style = Wn32. W5_BORDER || W n32.W5_SYSMENU | |
W n32. DS MODALFRAME || W n32. Ws_CAPTI ON,
pos = {x=40, y=40},
size = {w=120, h=75},
title = "About Draw',
font = NONE,
controls = [{ style = Wn32. W5_VISIBLE || Wn32.SS_LEFT,
pos = {x=15, y=15},
size = {w=95, h=30},
id =0,
class = "STATIC',
text = "A sample Wn32 programwitten in SM." },
{ style = Wn32. W5_VI SIBLE ||
W n32. BS_DEFPUSHBUTTON,
pos = {x=45, y=45},
size = {w=30, h=12},
id = Wn32. | DK,
class = "BUTTON',
text = "OK" }
]
}
“STATIC” and “BUTTON” are two built-in controls in Win32. A static control consists of a piece
of text or graphics, never generates a WW.COMMAND message, and therefore does not need a unique
identifier. The push button is labeled “OK”, and when pressed, generates a WL COVMAND message
with the control identifier | DOK.
The call-back function wndPr oc must now include an extra case to handle the VWW.COMVAND
messages generated by the menu:

el se if nessage = W n32. WW_COVMAND t hen
if lowrd wParam = | D_HELP_ABOUTDRAW t hen
Di al og. di al ogBox(about DI gBox, about DI gProc, hwWhd)
el se
W n32. def W ndowPr oc (hWhd, nessage, wParam | Param
el se

When a WWMLCOVMAND message arrives, we check to see if it contains the identifier of the menu
item “About Draw”. If so, we create a dialog box, and register about DI gPr oc as the dialog box
call-back function; if not, we invoke the default message handler.

Di al og. di al ogBox creates a dialog box which captures the input focus until the user clicks
the “OK” button. Thus all about DI gPr oc has to do is to wait for the | DOK message, and calls
W n32. endDi al og to close the dialog box:

fun about Dl gProc {wi ndow = hDl g, nmessage = nessage,
| _param = | Param w_param = wParan} =
i f nessage = Wn32. WM COWRAND andal so wParam = W n32.| DK t hen
(W n32. endDi al og(hDl g, 0); true)
el se
fal se

Unlike window call-back functions, a dialog call-back function returns f al se to invoke default
message handling.

3 The SML WIin32 Interface

In this section we give an overview of the SML Win32 interface, an ML module W n32, that consists
of constants (e.g., WWLCOVMAND), functions for the Win32 API (e.g., cr eat eW ndow), types (e.g.,
t _char), and functions for manipulating C structures (e.g., wnd_cl ass).

We built the SML Win32 interface using the recently developed SML/C interface [?], which
supports calling C functions from ML and vice versa, and automatically converts arguments into
the correct format. Part of the SML/C interface is as follows:

structure Cl
sig
type caddr (* a C address *)
val malloc : int -> caddr
val free : caddr -> unit

dat atype ctype = CGintT
| CstructT of ctype list

val sizeof : ctype -> int
end

Cl . ct ype describes the type of C data. For example, the structure type:

struct {
int x;
int y;
1

is represented as “CstructT [CintT, C ntT].” Ctype provides information for the SML/C
interface to convert between ML and C data, as well as to determine the size of C data.

The complete signature for W n32 is large and is not listed or explained in detail here; instead,
we will describe the conventions we followed to map C entities to ML counterparts. This, along
with the interface signatures, allows one to deduce how to use a particular feature in the SML Win32
interface.

3.1 Constants

All Win32 constants are ML values, and have exactly the same name and capitalization as those in
C Win32 API. Most have type W n32. f | ags, which is a type abbreviation for 32-bit integers. A
few constants have pointer (Cl . caddr) or string types. For example:

val W COMVAND : Wn32.flags (* Wndows nessage *)
val RT_CURSOR : Cl.caddr (* a predefined Wn32 resource type *)
val LBSELCHSTRI NG : string (* a string used to obtain unique w ndow
nmessage for conmuni cati on between
bet ween di alog and caller. *)

3.2 Functions

Function names follow a simple mapping scheme shown in the following two examples:

SML name | C name
creat eW ndow | Cr eat eW ndow
nmouseEvent nouse_event

Arguments to functions are passed in tuples, in the same order as in C. For example:
unregisterCass : t_char ptr * h_instance -> bool

corresponds to:

BOOL Unregi sterd ass(LPCTSTR, H NSTANCE) ;

In C, the system passes four arguments to the main entry point of a Win32 program. In SML,
we provide access to these arguments using four functions:

getlnstance : unit -> h_instance (* handl e of current instance *)
getPrevinstance : unit -> h_instance (* handl e of previous instance *)
getcndLine : unit -> string (* conmand line *)

get CmdShow : unit -> int (* show state of wi ndow *)

3.3 Types

We use the SML/C interface address type Cl . caddr to denote all pointer types. For example,
LPCTSTRis a pointer to character strings, and is mapped to ML as “t _.char ptr:5”

type "a ptr = Cl.caddr

The SML/C function call interface currently cannot pass structures and floating point numbers as
values; they must be passed by reference. Fortunately, very few functions in Win32 take arguments
of such types. For those which do, the ML side instead accepts a C pointer; and a C stub function
dereferences the pointer before entering the Win32 API function. When a Win32 function returns a
structure by value (on the C stack), a C wrapper function allocates memory from the C heap, copies
the structure, and returns the C heap pointer.

For clarity, we use a set of ML type synonyms for all basic C types used in Win32:

5The Win32 interface does not automatically convert between ML and C string types because C strings admit operations
(e.g., casting to integers and overwriting an existing string) that are not available to ML strings. See the next section for
details.

C type ML type synonym | ML definition | notes

BYTE byte int

DWORD dword Word32.word

float float ptr Cl.caddr must be passed by reference
long long Word32.word

int s_int Word32.word

UINT u_int Word32.word | unsigned

short short int

USHORT | u_short int unsigned

UCHAR u_char int unsigned

WCHAR w_char int Unicode char

TCHAR t_char char or int when using Unicode
WORD word int 16 bit Win32 word

void void unit

<..>PROC | c_proc ptr Cl.caddr call-back functions

H<..> h.<..> Cl.caddr handles (e.g., HWND — h.wnd)
<type>* <type> ptr Cl.caddr

For example, the Win32 API function for drawing an arc has the following C type:

BOOL Angl eArc (

HDC hdc, /*
int Xx,
int vy,
DWORD r adi us, /*

float start

fl oat sweep,

)

handl e of device context */

/* x-coord of circle s center */
/* y-coord of circle's center */

circle' s radius */

, [|* start angle */

/* sweep angle */

The SML type signature for the same function is:

val angl eArc :

3.4 Structures

Every C structure used in Win32 has a corresponding ML type. We provide a set of functions to

h _dc *
s_int *
s_int *
dword *
float ptr *
float ptr
-> bool

construct and inspect C structures.

Conversion

We provide the necessary types and functions to convert between ML records and C structures. For

example, the Win32

PO NT structure:

typedef struct tagPO NT {

LONG x;
LONG v;
} PO NT;

10

has the following ML counterparts:

val pointT : Cl.ctype

type point = Cl.caddr * Cl.caddr |ist
type point_t = {x: long,

y: long

}

val makePoint : point_t -> point
val extractPoint : point ptr -> point _t

W n32. poi nt T describes the layout of the C structure PO NT. W n32. poi nt is a pair consisting
of the actual pointer to the C structure and other book-keeping information needed by the SML/C
interface. We can retrieve the C pointer using:

fun addr (cptr,) = cptr

In ML, we can construct Win32 C structures in two ways, depending on whether or not they need
initialization. For example, we can use:

makePoint {x = 0, y = 0}
to create a point at coordinate (0, 0), or build an uninitialized structure:

Cl.malloc (Cl.sizeof Wn32.pointT)

Structures of Undetermined Size

Win32 occasionally uses C structures of undetermined size. For example, the structure that denotes
a menu item varies in size depending on how much text the menu item contains:

t ypedef struct {

WORD nt Opti on;

WORD nt | D;

WCHAR nt String[1]; /* unknown size */
} MENU TEMTEMPLATE;

The mt Stri ng slot contains a Unicode string of arbitrary length. ML interface functions for
MENUI TEMTEMPLATE take additional arguments that specify the size:

val nmenultenTenplateT : int -> Cl.ctype
type menu_itemtenplate = Cl. cobj
type menu_itemtenplate t = {ntOption: word,

nt 1D word,
ntString: w.char Array.array
}
val makeMenulteniTenplate : int -> nenu_itemtenplate_t
-> menu_itemtenpl ate
val extractMenulteniTenplate : int -> nenu_itemtenplate ptr

-> menu_itemtenpl ate_t

Unions

We use SML data types to represent Win32 unions. For example, for the Win32 type:

11

t ypedef union {
WCHAR Uni codeChar ;
CHAR Asci i Char;

} UNI CODE_OR ASCI | _CHAR;

the SML interface provides:

dat at ype uni code_or _ascii _char_t = Uni codeChar of w char
| AsciiChar of char

Data constructors correspond to field names in the union. The conversion functions are similar to
those for structures, except that C unions lack a tag indicating the actual type, making it impossible
to convert them back to SML data types. Therefore calling an “ext ract ...” function for unions
raises an exception.

4 Design Rationale and Implementation Strategy

In this section we explain the design and implementation decisions in the SML Win32 interface,
which in turn determine the power and limitations of the current approach.

4.1 Scope and Level

Win32 is large. If we choose to only support a subset with limited functionality, we could build a
much cleaner and elegant interface. However, after investigating the organization of Win32 API as
well as existing Win32 applications written in C, we opt for a complete, albeit low-level interface
that is easy to implement, debug, and document. It must be complete because we cannot foresee
what a Windows application might need. A low-level interface is relatively easy to construct and
test, and is already well documented by the existing Win32 documentation.

The abstraction mechanisms in ML enable us to build various higher-level packages on top of
the lower-level Win32 interface. For example, the Menu and Di al og libraries used in Section 2 are
implemented using the lower-level interface in less than 200 lines of ML code.

Win32 is an integral part of Microsoft operating systems, and does not have a rigorous low-
level specification like the X protocol. Therefore we cannot follow the approach used in eXene [2],
where the C API layer is bypassed altogether, and a cleaner interface is built from scratch. Such an
endeavor would not only require us to reimplement a large part of Microsoft operating systems,
but also result in poor interoperability with existing Win32 applications.

4.2 Organization

The Win32 API consists of 5 parts: window management, graphics device interface (GDI), system
services, multimedia and extension libraries (e.g., the Common Dialog Library).

structure Wn32User : W N32USER (* wi ndow managenent *)
structure Wn32GDl : W N32CGDI (* GO *)

structure Wn32Sys : W N32SYS (* systemservices *)
structure Wn32WM : W N32MV (* multimedia *)

structure Wn32ComDl g : WN32COMDLG (* common dialog lib *)

(* other extensions *)

Each module can be further divided into smaller parts. Although such finer organization makes the
interface specification itself cleaner, it is hardly useful for programmers, because the Win32 docu-

mentation provides little indication of where each function or type belongs. Instead, to correspond
to the C world, we provide a flat W n32 structure containing all features:

12

structure Wn32 =
struct
open W n32User
open W n32GDI
open W n32Sys
open W n32wWM
open W n32ConmDl g

end

4.3 Functions
C functions in the Win32 API pose two difficulties:
1. They are not type-safe. The programmer must frequently perform coercions.
2. Some functions take a large number of arguments, which are difficult to manage.

At the first glance, it seems we could use ML’s strong type system and record types to overcome
these problems. In the end, we do not take advantage of either, for the reasons stated below.

Type Safety

In C, the first argument to the Cr eat eW ndow function is the name of the window class, usually
a text string. Indeed, the argument is marked as having type LPCTSTR, meaning a pointer to a
constantstring. But the programmer can also choose to pass a 16-bit integer denoting a Win32 global
atom. Therefore the ML version of the function must instead take arguments of the following type:

dat atype string_or_int = STRING of string
| INT of int

Alternatively, we can have multiple instantiations of the same function with different types. The
problem is that the number of instantiations grows exponentially when we have more arguments
of such types.

Things get even more complicated in the W nHel p function:

BOCL W nHel p(
HWND hwhd,
LPCSTR | pszHel p,
U NT uConmand,
DWORD dwDat a

)

Depending on the value of the third argument, the fourth argument can be ignored, an integer, a

string or a pointer to structures. We cannot define the SML version of this function withouta careful

reading of its documentation, and combine the third and fourth arguments into a single data type.
This issue becomes unsolvable when we consider the default Windows call-back function:

LRESULT def W ndowPr oc(
HWND hWhd,
U NT nsg,
WPARAM wPar am
LPARAM | Par am

);

13

Here the value of nsg determines what wPar amand | Par amstand for. Unlike the W nHel p
structure, however, the system sends many different kinds of messages, thus resulting in huge data
types for WPARAMand LPARAM Furthermore, the number of possible messages increases as Win32
evolves, and programmers are allowed to send arbitrary user-defined messages to any application
in the system. Therefore a completely type safe approach will not work without an extensive
reorganization of the existing Windows programming framework.

Our solution is to let the ML interface mimic the C world, and represents, for example, WPARAM
as a 32-bit word. As in C, we provide coercion functions between integer and pointer types. This
approach is hardly satisfying, but we choose it because of the lack of a better alternative, and the
low-level nature of our interface.

Tuples or Records?

For functions taking a large number of arguments, the logical choice is to pass them in a labeled
record, so thatthe programmer need not worry about argument order. Uncertainties arise, however,
for functions with two or three arguments, where tuples and records are equally applicable. In
general, there is no right solution to this issue, which is largely a matter of taste. Instead of making
the choices for the programmer, we decided to be predictable and always use tuples to pass the
same number of arguments in the same order as in C. Furthermore, a uniform tuple-based interface
eliminates the need to invent and document field names.

4.4 Character Strings

The string type in C is an ordinary pointer to characters. Win32 functions usually expect NULL
terminated character strings, but there are a number of situations where they expect other formats
or overwrites an existing string. For this reason — and the difficulties of strong typing mentioned
above — we use C style strings for all Win32 API functions, and provide an ML module to convert
between C and ML strings:

structure RawString :

sig
type raw string = Cl.caddr
val alloc : int -> raw string (* uninitialized *)
val make : string -> raw string (* initialized *)
val get : raw.string -> string
val set : raw.string * string -> unit

end

Note that just like an ordinary C address, ar aw.st r i ng can be coerced to and from an integer, and
must be explicitly reclaimed using Cl . f r ee when no longer in use.

A higher-level library built on top of the SML Win32 interface can hide the details of dealing
with raw.st ri ngs. For example, the higher-level Menu and Di al og modules used in Section 2.2
only require the programmer to supply ordinary ML strings.

45 Documentation

ML signature files provide a summary of the SML Win32 interface, while the standard Win32
documentation gives precise and detailed information on every aspect of the system. It is easy for
the programmer to locate the needed information because of two reasons: 1) constants, functions
and types follow a simple name mapping scheme, and 2) the SML and C versions of Win32 functions
take the same number of arguments in the same order.

14

4.6 Implementation

Even with the above mentioned design simplifications, we are still faced with the daunting and
error-prone task of writing the SML/C interface stub functions. A better alternative is to generate
such functions from type descriptions. It is even better if we need not write the type descrip-
tions ourselves. Indeed, the Win32 header files (e.g., wi ndows. h) always contain the necessary
information about Win32 constants, types, structures, and function prototypes.

Although automatic stub generation from header files is possible in theory, the C preprocessor
complicates the task of building such a tool. We cannot generate stubs after running preprocessor
because, in Win32, all constants and many functions are defined as macros. On the other hand,
directly processing the header files is also difficult. This, for example, would require a global
analysis to determine that one of the following macros defines a constant, the other a function:

#defi ne WH_MAXHOOK VWH_MAX /* constant */

#defi ne CreateWndow CreateWndowA /* function */

Rather then writing a sophisticated analyzer, we modified the header files by hand to make sure
that they are reasonably well formed. Our stub code generator is therefore relatively simple (about
2,700 lines of SML code).

Assuming that the Win32 header files have been tested, bugs can only be introduced by mod-
ifying the header files or through an incorrect stub code generator. Fortunately, we found that
the Win32 header files need only go through minor hand modifications. The stub code generator
detects most errors in the header files. Although only a fraction of the generated ML and C stub
code has actually been tested, we are quite confident of the correctness of the entire interface, which
is generated mechanically by the same process. We have written two sample Win32 applications in
SML, and did not encounter a single bug in the interface itself.

4.7 Future Improvements

C pointer finalization The major inconvenience of this SML Win32 interface is that we must to
some extent explicitly manage C heap objects. Representing C heap objects as weak pointers will
allow the system to free them automatically.

Higher-level interfaces Taking advantage of the powerful abstraction mechanisms in SML, it is
possible to build a much cleaner interface which frees programmers from low-level details. The
Menu and Di al og modules are a start, and many more useful higher-level libraries remain to be
constructed.

More library support At present, the interface supports windows management, GDI, system
services, multimedia and the Common Dialog Library. New extensions to Win32, such as the
Common Control Library, can be incorporated into our system.

Better Unicode support To support Unicode in the current version, we need to set a special flag
and recompile the run-time system. It is possible in the future to let Unicode and ASCII versions of
the interface be two instances of the same signature.

5 Conclusion

The SML Win32 interface provides support for developing ML programs under the Microsoft
Windows environment. ML programmers can incorporate a sophisticated user interface into their

15

applications. Meanwhile, C programmers can migrate to ML and continue to follow the familiar
way of user interface construction, while taking advantage of ML’s power to implement the core
functionalities.

We have made compromises to accommodate the irregularities in C, so that we can incorporate
all the Win32 features without a dramatic reorganization of the overall programming framework.
Overall, we believe that we have obtained an immediately useful system with room for future
improvements.

References

[1] Microsoft Corporation. Win32 programmer’s Reference, volume 1-5. Microsoft Press, 1993.
[2] Emden R. Gansner and John H. Reppy. eXene. In CMU Workshop on SML, 1991.
[3] Charles Petzold. Programming Windows 3.1. Microsoft Press, 1992.

[4] Jeffrey Ullman. Elements of ML Programming. Prentice-Hall, Englewood Cliffs, N.J., 1993.

A Menus

A menu consists of a list of menu items. A menu item is either a MENUl TEM a SEPARATOR, or a
POPUP submenu. The Menu. cr eat e function takes the ML description, and returns a Win32 menu
handle h_rmenu.

signature MENU = (* signature for Menu *)
sig

dat atype menu_item = MENU TEM of {id : int,
text : string,
flag : int}
| SEPARATCR
| POPUP of {menu : nmenu_itemlist,
text : string,
flag : int}

val create : nenu_itemlist -> h_menu

end

Each menu item must have an application-wide unique i d, which is used by the call-back procedure
to distinguish what menu item is selected. The f | ag field controls the appearance of the menu
item, and can be the bit-wise or of MF_.CHECKED, MF_GRAY, etc. The Win32 documentation for
MENUI TEMTEMPLATE contains a full description of the f | ag field.

B Dialogs
A dialog is a temporary window consisting of a list of controls. The di al ogBox function creates
a modal dialog box which captures the input focus, and does not return until endDi al og function

is called. The creat eDi al og function, on the other hand, creates a modeless dialog box which
functions like an ordinary pop-up window.

16

signature DI ALOG = (* signature for Dialog *)
sig

type dialog proc_t = {window : h_wnd,
nmessage : u_int,
w_param : w_param
| _param: | _paran} -> bool

type control = {style : flags,
pos : {x : word, y : word},
size : {w: word, h: word},
id: word,
class : string,
text : string}

type dialog = {style : flags,
pos : {x : word, y : word},
size : {w: word, h : word},
title : string,
font : (word * string) option,
controls : control list}

val dialogBox : dialog * dialog proc_t * h_wnd -> s_int
val createDialog : dialog * dialog proc_t * h_wnd -> h_wnd

end

The Win32 documentation gives the complete list of dialog box and control styles. The programmer
can specify a custom font for a dialog; otherwise the default system font is used. The predefined
control classes include “BUTTON”, “LISTBOX”, “EDIT”, “COMBOBOX”, “SCROLLBAR”, and

“STATIC”.

17

