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Abstract

We consider a Markovian multiserver queueing model with time dependent parame-

ters where waiting customers may abandon and subsequently retry. We provide simple


uid and di�usion approximations to estimate the mean, variance, and density for both

the queue length and virtual waiting time processes arising in this model.

These approximations, which are generated by numerically integrating only 7 ordi-

nary di�erential equations, are justi�ed by limit theorems where the arrival rate and

number of servers grow large. We compare our approximations to simulations, and

they perform extremely well.

Keywords: Fluid Approximations, Di�usion Approximations, Multiserver Queues,

Queues with Abandonment, Virtual Waiting Time, Queues with Retrials, Nonstation-

ary Queues, Call Centers.
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Figure 1: The multiserver queue with abandonment and retrials.

1 Introduction

In this paper we continue our ongoing examination of a multiserver queue with time varying
parameters where waiting customers may abandon and subsequently retry. The model we
consider is a relatively simple special case of the class of models considered in [4], which were
termed Markovian Service Networks.

Our model, depicted in Figure 1, consists of two nodes: a service node with nt servers,
and a retrial pool with an unlimited number of servers, where customers e�ectively serve
themselves. New customers arrive to the service node as a non-homogeneous Poisson process
of rate �t. Customers arriving to �nd an idle server are taken into service with a duration
that has a memoryless distribution of rate �1t . Customers that �nd all servers busy join a
queue, from which they are served in a FCFS manner. Each customer waiting in the queue
abandons at rate �t. An abandoning customer leaves the system with probability  t or joins
the retrial pool with probability 1 �  t. Each customer in the retrial pool leaves to enter
the service node at rate �2t . Upon entry to the service node, these customers are treated the
same as new customers. Our focus is the two-dimensional, continuous time Markov chain
Q(t) =

�
Q1(t); Q2(t)

�
where Q1(t) equals the number of customers residing in the service

node (waiting or being served) and Q2(t) equals the number of customers in the retrial pool.
We also consider the virtual waiting time W (t), which is the time that an in�nitely patient
customer, arriving to the service node at time t, would have to wait before entering service.

This model, even with all parameters constant, is analytically intractable. We thus
consider 
uid and di�usion approximations for both the queue length and virtual waiting
time processes. These approximations are justi�ed by limit theorems where the arrival rate
and number of servers grow large. Both the model and asymptotic regime are motivated by
large telecommunication systems such as call centers, where abandonment and retrial occur
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naturally, and where time variability of parameters, speci�cally the arrival rate, cannot
realistically be ignored. More discussion of this motivation is contained in [5].

Fluid and di�usion limits for the (two dimensional) queue length process arising in this
model were proved in [4]. In [5] we compared the 
uid limit with simulation results, and
found that it provides an excellent approximation. Fluid and di�usion limits for the virtual
waiting time are proved in [7]. These results are described in [6], where a single numerical
example shows that the 
uid approximation for the virtual waiting time is also excellent. In
this paper we extend the previous results in several directions. First, we provide additional
numerical examples for both the queue lengths and virtual waiting time, comparing the 
uid
approximations to simulations. Next, we provide new numerical results for the di�usion
approximations. We also compare the simulated sample variance of the virtual waiting
time to the variance of its di�usion approximation. Using equations originally obtained
in [4], we calculate the covariance matrix of the queue length di�usion, and compare it to
simulations. Using a result from [7] that provides conditions under which the queue length
di�usion process is Gaussian, we also obtain a Gaussian approximation for the queue length
density at the service node. We are similarly able to obtain an Gaussian approximation for
the virtual waiting time density. These are also compared to simulations. In all of these
comparisons our approximations are exceptionally good.

The rest of this paper is organized as follows. In Section 2 we provide the equations for
the queue length process and in Section 3 we provide the same for the virtual waiting time
process. We also state in both sections the relevant limit theorems that inspire our 
uid and
di�usion approximations. Section 4 contains numerical examples comparing our approxima-
tions with simulation results. Section 5 is an appendix that provides some background on
Markovian service networks.

2 Queueing Sample Paths and Asymptotics

In order to motivate our sample path construction of the multiserver queue with abandon-
ment and retrials, we �rst present a brief description of the simpler Mt=Mt=nt queue. The
Mt=Mt=nt queue length process Q � f Q(t) j t � 0 g is a continuous time Markov chain with
time varying instantaneous transition rates. It consists of an arrival process that is time-
inhomogeneous Poisson with rate function f �t j t � 0 g, a deterministic schedule of servers
f nt j t � 0 g who each work for a service time that has an independent, memoryless distri-
bution determined by the rate function f �t j t � 0 g. We assume that all these functions
are locally integrable. Since the number of servers can vary in time, we use the convention of
preemptive-resume service. When the number of servers suddenly drops below the number of
customers currently in service, then the dropped customers are placed in the in�nite bu�er
to resume service later.

The standard approach to constructing the sample path distribution for this Mt=Mt=nt
queueing process is to state that its transition probabilities, i.e.

pi;j(t) = P f Q(t) = j j Q(0) = i g ; (2.1)
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for all non-negative integers i and j, are the unique solutions to the forward equations

d

dt
pi;0(t) = �tpi;1(t)� �tpi;0(t) (2.2)

and if j � 1,

d

dt
pi;j(t) = �tpi;j�1(t) + �tmin(j + 1; nt)pi;j+1(t)� (�t + �tmin(j; nt)) pi;j(t): (2.3)

where pi;j(0) = 1 if and only if i = j and pi;j(0) = 0 otherwise (for more details, see Wol�
[9]).

The Mt=Mt=nt queueing process is the canonical example for a special family of CTMC's
that we call Markovian service networks (see [4] for details). They can be de�ned precisely
by an alternative method to de�ning forward equations for their transition probabilities.
Instead, we use an implicit de�nition to construct their random sample paths directly. The
sample paths for the Mt=Mt=nt queueing process are the unique solution to the equation

Q(t) = Q(0) +�a

�Z t

0
�sds

�
��b

�Z t

0
�s �min(Q(s); ns)ds

�
; (2.4)

where �a � f �a(t) j t � 0 g and �b �
n
�b(t)

��� t � 0
o
are two independent, standard

(mean rate 1), Poisson processes.
In the same spirit, the random sample paths of the queue length process for the multi-

server queue with abandonment and retrials Q(t) = (Q1(t); Q2(t)) are uniquely determined
by the relations

Q1(t) = Q1(0) +�c
21

�Z t

0
Q2(s)�

2
sds

�
��b

12

�Z t

0

�
Q1(s)� ns

�+
�s(1�  s)ds

�
(2.5)

+�a

�Z t

0
�sds

�
��b

�Z t

0

�
Q1(s)� ns

�+
�s sds

�
��c

�Z t

0

�
Q1(s) ^ ns

�
�1sds

�

and

Q2(t) = Q2(0) +�b
12

�Z t

0

�
Q1(s)� ns

�+
�s(1�  s)ds

�
��c

21

�Z t

0
Q2(s)�

2
sds

�
; (2.6)

where �a, �b, �c, �b
12, and �c

21 are �ve given mutually independent, standard Poisson
processes and �; �; �1; �2;  ; n are locally integrable functions of time [4]. Here x ^ y =
min(x; y) and x+ = max(x; 0) for all real x and y. Using the theory of strong approximations
for Poisson processes, we can use the random sample path construction of our queueing
processes to do an asymptotic sample path analysis and obtain our 
uid and di�usion limit
theorems.

We are interested in the asymptotic regime where we scale up the number of servers
in response to a similar scaling up of the arrival rate by customers. More precisely, the
asymptotic regime is as follows. In a system with index �, the only scaled parameters are:
the initial conditions Q�

i (0) = d�Q(0)
i (0) +

p
�Q

(1)
i (0)e + o(

p
�) for constants Q

(0)
i (0) and

Q
(1)
i (0) (i = 1; 2), the external arrival rate (i.e., the intensity of the Poisson arrival process),

which is now ��t, and the number of servers, which is now �nt. (Actually, the latter should be
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the integer part of �nt, but to avoid trivial complications and simplify notation, we assume
it's just �nt.) The scaled queue length process Q�(t) = (Q�

1(t); Q
�
2(t)) is then uniquely

determined by the relations

Q�
1(t) = Q�

1(0) +�c
21

�Z t

0
Q�

2(s)�
2
sds

�
��b

12

�Z t

0

�
Q�

1(s)� �ns
�+
�s(1�  s)ds

�
(2.7)

+�a

�Z t

0
��sds

�
��b

�Z t

0

�
Q�

1(s)� �ns
�+
�s sds

�
��c

�Z t

0

�
Q�

1(s) ^ (�ns)
�
�1sds

�

and

Q�
2(t) = Q�

2(0) +�b
12

�Z t

0

�
Q�

1(s)� �ns
�+
�s(1�  s)ds

�
��c

21

�Z t

0
Q�

2(s)�
2
sds

�
: (2.8)

Now we state the strong law of large numbers limit theorem for the retrial model. We
make the following asymptotic assumptions for the initial conditions

lim
�!1

1

�
Q�(0) = Q(0)(0) a.s., (2.9)

where Q(0)(0) is a constant.

Theorem 2.1 We have

lim
�!1

1

�
Q� = Q(0) a.s. (2.10)

where the convergence is uniform on compact sets of t. Moreover, Q(0) =
n
Q(0)(t)

��� t � 0
o

is uniquely determined by Q(0)(0) and the autonomous di�erential equations

d

dt
Q

(0)
1 (t) = �t + �2tQ

(0)
2 (t)� �1t

�
Q

(0)
1 (t) ^ nt

�
� �t

�
Q

(0)
1 (t)� nt

�+
(2.11)

and
d

dt
Q

(0)
2 (t) = �t(1�  t)

�
Q

(0)
1 (t)� nt

�+ � �2tQ
(0)
2 (t): (2.12)

This theorem states rigorously that Q� � �Q(0) for large � and we call Q(0) the 
uid
approximation for Q�.

If two random variables X and Y have the same distribution then we denote this by

X
d
= Y . If f Xn j n � 0 g converges in distribution to Y , we denote this by limn!1Xn

d
= Y .

The 
uid approximation can be re�ned using the following functional central limit theorem,
as proved in [4]. We make the following assumptions for the initial conditions

lim
�!1

p
�(
1

�
Q�(0)�Q(0)(0))

d
= Q(1)(0); (2.13)

where Q(1)(0) is a constant.
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Theorem 2.2 We have

lim
�!1

p
�

 
1

�
Q� �Q(0)

!
d
= Q(1): (2.14)

where Q(1) =
n
Q(1)(t)

��� t � 0
o
is a di�usion process. This is a convergence in distribution

of the stochastic processes in an appropriate functional space [4].

Moreover, if the set of time points
n
t � 0 j Q(0)

1 (t) = nt
o
has measure zero for the mul-

tiserver queue with abandonment and retrial model, then
n
Q(1)(t)

��� t � 0
o
is a Gaussian

process. The mean vector for Q(1) then solves the set of autonomous di�erential equations

d

dt
E

h
Q

(1)
1 (t)

i
= �

�
�1t1fQ(0)

1 (t)�ntg
+ �t1fQ(0)

1 (t)>ntg

�
E

h
Q

(1)
1 (t)

i
+ �2tE

h
Q

(1)
2 (t)

i
(2.15)

and
d

dt
E

h
Q

(1)
2 (t)

i
= �t(1�  t)1fQ(0)

1 (t)�ntg
E

h
Q

(1)
1 (t)

i
� �2tE

h
Q

(1)
2 (t)

i
: (2.16)

Finally, the covariance matrix for Q(1) solves the autonomous di�erential equations

d

dt
Var

h
Q

(1)
1 (t)

i
=�2

�
�t1fQ(0)

1 (t)>ntg
+ �1t1fQ(0)

1 (t)�ntg

�
Var

h
Q

(1)
1 (t)

i
+ 2�2tCov

h
Q

(1)
1 (t); Q

(1)
2 (t)

i

+�t + �t
�
Q(0)

1 (t)� nt
�+

+ �1t
�
Q(0)

1 (t) ^ nt
�
+ �2tQ

(0)
2 (t); (2.17)

d

dt
Var

h
Q

(1)
2 (t)

i
= �2�2tVar

h
Q

(1)
2 (t)

i
+ 2�t(1�  t)1fQ(0)

1 (t)�ntg
Cov

h
Q

(1)
1 (t); Q

(1)
2 (t)

i

+�t(1�  t)
�
Q

(0)
1 (t)� nt

�+
+ �2tQ

(0)
2 (t); (2.18)

and

d

dt
Cov

h
Q

(1)
1 (t); Q

(1)
2 (t)

i
= �t(1�  t)1fQ(0)

1 (t)�ntg
Var

h
Q

(1)
1 (t)

i
+ �2tVar

h
Q

(1)
2 (t)

i
(2.19)

�
�
�t1fQ(0)

1 (t)>ntg
+ �1t1fQ(0)

1 (t)�ntg
+ �2t

�
Cov

h
Q

(1)
1 (t); Q

(1)
2 (t)

i

��t(1�  t)
�
Q

(0)
1 (t)� nt

�+ � �2tQ
(0)
2 (t):

This theorem states rigorously that Q� � �Q(0) +
p
�Q(1) for large � and we call Q(1) the

di�usion approximation for Q�. It should be pointed out that equations (2.17)-(2.19) are
corrected versions of the covariance equations for the multiserver queue with abandonment
and retrials given in [4] and [5]. The previous incorrect formulas do not a�ect the numerical
results of papers [5] and [6] since those computational results focused only on the utility of the

uid approximation and not the di�usion approximation. To double check the validity of the
di�usion covariance equations used here, we derive in the appendix the general di�erential
equations of the di�usion covariance for the special case of a two-dimensional Markovian
service network.

Time-varying queues alternate among three phases. For a given time t, we de�ne the
phases to be:
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1. Underloaded or Q
(0)
1 (t) < nt,

2. Critically-loaded or Q
(0)
1 (t) = nt,

3. Overloaded or Q
(0)
1 (t) > nt.

Similar phases and transitions are discussed in great detail for the Mt=Mt=1 queue in [3].
To guarantee the results of Theorem 2.2, the 
uid model for the service node is free

to alternate between phases of underloading and overloading. We only require during
these transitions that it does not \linger" too long in the critically loaded phase so thatn
t j Q(0)

1 (t) = nt
o
is a set of measure zero. As we show in our numerical examples in Sec-

tion 4, even though our examples satisfy the measure zero hypothesis for the times of critical
loading, this lingering behavior does a�ect the quality of our approximations.

3 Virtual Waiting Time for the Service Node

In this section we consider asymptotics for the virtual waiting time process. To do that we
need a few additional assumptions which are not very restrictive.

Assumption 3.1 In the interval [0;1):

1. The function nt is continuously di�erentiable;

2. The function �1t is continuous;

3. The functions �2t and �t are bounded on compact intervals.

Assumption 3.2 is introduced below when the required notation is in place.
Suppose that we are interested in the waiting time of a virtual customer arriving to the

service node at a �xed time � � 0. Since we have a system with abandonment, a convenient
way to approach this problem is to consider the system that is obtained from the original
one by the following modi�cations:

1. There are no new exogenous arrivals into the system after time � .

2. Any customer departing any station i, after time � , leaves the entire system.

In particular, the service node has no new arrivals (exogenous or retrial) after time � . It
only processes the remaining customers that are there at time � . Theorems 2.1 and 2.2 still
apply to the modi�ed system; the only di�erence is that certain terms in the equations,
corresponding to the arrivals after time � , should be \zeroed out". The following results
follow directly from these two theorems (and their proofs in [4]).

Denote the arrival and departure processes for the service node by

A� = f A�(t) j t � 0 g and �� = f ��(t) j t � 0 g
respectively. By convention, let the arrival process include the customers in the service node
at time 0, so A�(0) = Q̂�

1(0), �
�(0) = 0, and A�(t)���(t) = Q̂�

1(t); t � 0. We then obtain
the following 
uid limit result.
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Theorem 3.1 As a joint process we have

lim
�!1

1

�
(Q̂�; A�;��) = (Q̂(0); A(0);�(0)) a.s. (3.1)

and this convergence is uniform on compact sets of t. The 
uid limit Q̂
(0)
1 (t) satis�es equation

(2.11) for t < � . For t � � , we have the following properties:

1. The future evolution of Q̂(0)
1 (t) is governed by the di�erential equation

d

dt
Q̂

(0)
1 (t) = ��1t

�
Q̂

(0)
1 (t) ^ nt

�
� �t

�
Q̂

(0)
1 (t)� nt

�+
: (3.2)

2. There are no future arrivals, so that A(0)(t) = A(0)(�).

3. The deterministic process �(0) is a continuously di�erentiable non-decreasing function
in [0;1).

We also obtain the following di�usion limit.

Theorem 3.2 The following convergence in distribution holds:

lim
�!1

p
�(
1

�
Q̂� � Q̂(0);

1

�
A� � A(0);

1

�
�� ��(0))

d
= (Q̂(1); A(1);�(1)): (3.3)

Moreover, if the set of time points
n
t � 0 j Q̂(0)

1 (t) = nt
o
has measure zero,

n
Q̂(1)

1 (t)
��� t � 0

o
is a Gaussian process and for t � � , Var[Q̂

(1)
1 (t)] solves the di�erential equation

d

dt
Var

h
Q̂

(1)
1 (t)

i
= �2

�
�t1fQ̂(0)

1 (t)>ntg
+ �1t1fQ̂(0)

1 (t)�ntg

�
Var

h
Q̂

(1)
1 (t)

i
(3.4)

+�t
�
Q̂

(0)
1 (t)� nt

�+
+ �1t

�
Q̂

(0)
1 (t) ^ nt

�
:

It follows from the de�nitions and the above theorem that

Q̂
(1)
1 (t) = A(1)(t)��(1)(t) : (3.5)

Now, let us de�ne the potential service initiation process D� for the service node by

D�(t) = ��(t) + �nt; t � 0 :

Note that if Q̂�
1(t) < �nt, then A�(t) < D�(t); so the potential service can be \ahead" of

arrivals. It follows that

lim
�!1

1

�
D�(�) = D(0)(�) a.s.,

where the convergence is uniform on compact sets of t and D(0)(t) = �(0)(t) + nt; t � 0.
Since nt is continuously di�erentiable by assumption and we know that �(0)(t) is continu-
ously di�erentiable, D(0)(t) is also continuously di�erentiable and we denote its derivative by
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d(0)(t). Now we make an important but not very restrictive (in the majority of applications)
additional assumption.

Assumption 3.2. The functionD(0) (of t) is continuously di�erentiable with strictly positive
derivative, and

lim
t!1

D(0)(t) > A(0)(�) : (3.6)

According to our de�nitions, both A�(�) and A(0)(�) are constant in the interval [�;1).
Also, it is convenient to adopt the convention that all the processes we consider are

de�ned in the interval [�T;1), with

T = n0=d
(0)(0) :

We make this extension by assuming that nothing is happening in the interval [�T; 0) (no
arrivals or departures) except the number of servers is increasing linearly from 0 to �n0 (for
the unscaled process with index �).

We then can rewrite (3.1) and (3.3) as follows (with all the functions being now de�ned
for t � �T ):

lim
�!1

1

�
(Q̂�; A�; D�) = (Q̂(0); A(0); D(0)) (3.7)

and

lim
�!1

p
�(
1

�
Q̂� � Q̂(0);

1

�
A� � A(0);

1

�
D� �D(0))

d
= (Q̂(1); A(1); D(1)) ; (3.8)

where
D(1) = �(1) : (3.9)

Note that processes A(0); D(0); A(1); D(1) are continuous and D(0)(�T ) = D(1)(�T ) = 0.
Our conventions together with the Assumption 3.2 make the following processes well

de�ned and �nite with probability 1 for all su�ciently large �. Let us de�ne, for all t � �T ,
the �rst attainment processes

S�(t) = inffs � �T : D�(s) > A�(t)g
and

S(0)(t) = inffs � �T : D(0)(s) > A(0)(t)g: (3.10)

Similarly, de�ne the attainment waiting time processes to be

W �(t) = S�(t)� t

and
W (0)(t) = S(0)(t)� t : (3.11)

Denote by Ŵ �(�) the virtual waiting time at � , i.e. the time a \test" customer (in the
original non-modi�ed system) arriving to the service node at time � would have to wait until
its service starts, assuming this customer does not abandon while waiting. Then the relation
between the virtual waiting time Ŵ �(�) and the attainment waiting time W �(�) is simply

Ŵ �(�) =W �(�)+ : (3.12)
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Indeed, note thatW �(�) (andW (0)(�)) may be negative. All this means is that Q̂�
1(�) < �n� ,

and therefore in this case Ŵ �(�) = 0. If W �(�) is non-negative, then its value is exactly
equal to the virtual waiting time.

It follows directly from the Theorem and Corollary in [8] that (3.7), (3.8), and Assumption
3.2, imply the following convergences.

Theorem 3.3 We have

lim
�!1

(
1

�
Q̂�;

1

�
A�;

1

�
D�;W �) = (Q̂(0); A(0); D(0);W (0)) a.s. (3.13)

lim
�!1

p
�(
1

�
Q̂� � Q̂(0);

1

�
A� �A(0);

1

�
D� �D(0);W � �W (0))

d
= (Q̂(1); A(1); D(1);W (1)) ; (3.14)

where

W (1)(t) =
A(1)(t)�D(1)(S(0)(t))

d(0)(S(0)(t))
and S(0)(t) = inffs � �T : D(0)(s) > A(0)(t)g:

Since the processes A(1); D(1); Q̂(1);W (1) are continuous with probability 1, we automati-
cally obtain the convergence of �nite dimensional distributions.

In particular, consider the non-trivial case S(0)(�) � � (which is equivalent to Q̂(0)
1 (�) �

n� ). Moreover, assume that in [0; � ], the set of points
n
t j Q̂(0)

1 (t) = nt
o
has measure zero.

Then we obtain
lim
�!1

W �(�) = W (0)(�) a.s.

and

lim
�!1

p
�(W �(�)�W (0)(�))

d
=W (1)(�) =

Q̂
(1)
1 (S(0)(�))

d(0)(S(0)(�))
:

where Q̂
(1)
1 (S(0)(�)) is Gaussian with mean and variance computed as follows. Solving equa-

tion (3.2) for Q̂
(0)
1 (�) in the interval [�;1), we obtain

d

dt
Q̂

(0)
1 (t) = ��tQ̂(0)

1 (t) + (�t � �1t )nt ; t � �:

We can �nd S(0)(�) from

S(0)(�) = minft � � j Q̂(0)
1 (t) = ntg :

We then compute E[Q̂
(1)
1 (S(0)(�))] and Var[Q̂

(1)
1 (S(0)(�))], where

d

dt
E[Q̂(1)

1 (t)] = ��tE[Q̂(1)
1 (t)] t � �: (3.15)

and
d

dt
Var[Q̂

(1)
1 (t)] = �2�tVar[Q̂(1)

1 (t)] + �t(Q̂
(0)
1 (t)� nt) + �1tnt t � �: (3.16)
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This yields the closed form formulas

Q̂
(0)
1 (t) = Q̂

(0)
1 (�) exp

�
�
Z t

�
�sds

�
+
Z t

�
(�s � �1s)ns exp

�
�
Z t

s
�rdr

�
ds; (3.17)

E[Q̂
(1)
1 (t)] = E[Q̂

(1)
1 (�)] exp

�
�
Z t

�
�sds

�
; (3.18)

and

Var

h
Q̂

(1)
1 (S(0)(�))

i
= Var

h
Q̂

(1)
1 (�)

i
exp

 
�
Z S(0)(�)

�
2�sds

!
(3.19)

+
Z S(0)(�)

�

�
(Q̂(0)

1 (s)� ns)�s � �1sns
�
exp

 
�
Z S(0)(�)

s
2�rdr

!
ds:

Finally, noting that d(0)
�
S(0)(�)

�
= nS(0)(�)�S(0)(�) when S

(0)(�) � � , we obtain

Var

h
W (1)(�)

i
=

Var

h
Q̂(1)

�
S(0)(�)

�i
�
nS(0)(�)�S(0)(�)

�2
:

(3.20)

Remark. In this section we derived 
uid and di�usion approximations of the marginal
distribution of the attainment waiting time, which uniquely determines those for the virtual
waiting time at the service node for at a given time � � 0. However, it is shown in [7] that
similar asymptotics hold for the attainment waiting time as a random process de�ned for
� 2 [0;1). (See also [6] for the formal statement of the results.)

4 Numerical Examples

Several examples indicating the accuracy of the 
uid approximation for the queue length
process were considered in [5]. The �rst examples had constant arrival rate, and exhibited
the approach to equilibrium. The next examples had a quadratic arrival rate, and the �nal
examples involved a \spike" in the arrival rate. In all cases the 
uid approximation was
excellent. In [6] the accuracy of the 
uid approximation for the virtual waiting time was
checked for one of the examples from [5] with quadratic arrival rate. Although not as accurate
as the 
uid approximation for the queue length in the same example, the approximation for
the virtual waiting time was nonetheless excellent.

Here we examine the performance of the 
uid and di�usion approximations for both
queue length and virtual waiting time in some new examples. Details of how the simulations
are carried out are contained in [5]. Here we merely point out that we use 5,000 independent
replications in each of our experiments. By contrast, all the 
uid and di�usion approxima-
tions used here come from numerically integrating 7 ordinary di�erential equations.

Our numerical examples cover the case of time-varying behavior only for the external
arrival rate �t. The type of time varying behavior used is that of a periodic square wave,
oscillating between two values (starting with the smaller value) and the duration of each
value is 2 time units for a total time interval of 20 time units. The 20/100 case will have

11



�t oscillating between the values of 20 and 100 and the 40/80 case will have �t oscillating
between the values of 40 and 80. For both cases, we set �1t = 1, �2t = 0:2, Q�

1(0) = Q�
2(0) = 0,

nt = 50, �t = 2, and  t = 0:5 for all t � 0 and � > 0.
The graphs are ordered by pairing the 20/100 case �rst (the top graph) followed by the

40/80 case (the bottom graph) for the following numerical plots:

1. Empirical averages of Q1(t) and Q2(t) versus their 
uid approximations (Figure 2).

2. Empirical covariance matrix of Q1(t) and Q2(t) versus the covariance matrix of their
joint di�usion approximation (Figure 3).

3. Empirical density of Q1(t) versus its Gaussian approximation (Figure 4).

4. Empirical average of the virtual waiting time versus its 
uid approximation (Figure 5).

5. Empirical variance of the virtual waiting time versus the variance of its di�usion ap-
proximation (Figure 6).

6. Empirical density of the virtual waiting time versus its Gaussian approximation (Figure
7).

We see that all our approximations for the queue length processes are very good for both
cases 20=100 and 40=80. However, on Figures 5 and 6, describing the waiting time at the
service node, readers can easily notice the following two features:

(a) For the underloaded time intervals the approximation formulas for both the mean and
variance of the waiting time W1(t) are equal to 0. The simulation results for the
20=100 case do agree with this approximation. In the 40=80 case however, the mean
and variance, although small indeed, clearly stay away from 0.

(b) At the time points when the service node enters an overloaded interval, there is a
strange \spike" in the theoretical variance of the waiting time.

Both features are due to the same simple fact that our approximations for each time t have
a di�erent form depending on whether t is underloaded or overloaded. The approximations
for the underloaded t implicitly assume that the probability of non-zero waiting time is
negligible; and the approximations for the overloaded t assume that this probability is close
to 1. These assumptions are indeed asymptotically correct, as the system scale (the number
of servers and the input rate) increases to in�nity. However, for a system of a �xed size, the

closer the system is at time t to the critically loaded phase (when Q
(0)
1 (t) is equal to nt), the

worse those assumptions are.
Therefore, the feature (a) is explained by the fact that in the 40=80 case, Q(0)

1 (t) remains
\too close" to nt = 50, while in the 20=100 case it does not. This rule of thumb is supported
by the fact that equations (2.15)-(2.19) are not the general set of di�erential equations for the
mean and covariance of the di�usion process. We only obtain these autonomous di�erential
equations when the condition Q

(0)
1 (t) = nt holds for a set of time points that have measure

12
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Figure 2: Numerical example: Empirical averages of Q1(t) and Q2(t) versus their 
uid
approximations for the 20/100 and 40/80 square wave cases.
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Figure 3: Numerical example: Empirical covariance matrix of Q1(t) and Q2(t) versus the
same from its di�usion approximation for the 20/100 and 40/80 square wave cases.
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Figure 4: Numerical example: Empirical density of Q1(t) at times t = 5; 6; 7 versus the same
from its di�usion approximation for the 20/100 and 40/80 square wave cases.
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Figure 5: Numerical example: Empirical average of the virtual waiting time versus its 
uid
approximation for the 20/100 and 40/80 square wave cases.

16



0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
n=50,mu1=1,mu2=.2,beta=2,P(retrial)=.5,lambda=20 (t in [0,2),[4,6),[8,10) etc) else 100

time

vi
rt

ua
l w

ai
tin

g 
tim

e 
va

ria
nc

e

waiting time variance ode
waiting time variance sim

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
n=50, mu1=1, mu2=.2, beta=2, P(retrial)=.5, lambda = 40 (t in [0,2), [4,6), [8,10) etc) else 80

time

vi
rt

ua
l w

ai
tin

g 
tim

e 
va

ria
nc

e

waiting time variance ode
waiting time variance sim

Figure 6: Numerical example: Empirical variance of the virtual waiting time versus the same
from its di�usion approximation for the 20/100 and 40/80 square wave cases.
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zero. For example, if this condition does not hold, then equations (2.15) and (2.16) are really
of the form

d

dt
E

h
Q

(1)
1 (t)

i
=

�
�1t1fQ(0)

1 (t)�ntg
+ �t1fQ(0)

1 (t)>ntg

�
E

h
Q

(1)
1 (t)�

i
(4.1)

�
�
�1t1fQ(0)

1 (t)<ntg
+ �t1fQ(0)

1 (t)�ntg

�
E

h
Q

(1)
1 (t)+

i
+ �2tE

h
Q

(1)
2 (t)

i

and

d

dt
E

h
Q

(1)
2 (t)

i
= �t(1�  t)

�
E

h
Q

(1)
1 (t)+

i
1
fQ

(0)
1 (t)�ntg

� E

h
Q

(1)
1 (t)�

i
1
fQ

(0)
1 (t)>ntg

�
��2tE

h
Q

(1)
2 (t)

i
(4.2)

and the equations for the covariance matrix have a similar form. Therefore, when Q
(0)
1

\lingers" to close to n, we see that the autonomous di�erential equations may not be cap-
turing the true mean and covariance behavior of the di�usion approximation. The behavior
described in (b) can also be explained by the \breakdown" of the approximation assumptions
for time points in the vicinity of the critically loaded phase. The spike in the variance would
indeed be observed if the scale of the system were larger.

5 Appendix: Markovian Service Networks

Our model is a special case of a Markovian service network (see [4]). Given a �nite dimen-
sional vector space V that contains our state space, a �nite index set I, transition vectors
vi, rate functions �t(�; i) that are Lipschitz functions of V and locally integrable functions
of time, we can uniquely de�ne the Markov process f Q(t) j t � 0 g by the equation

Q(t) = Q(0) +
X
i2I

�i

�Z t

0
�s

�
Q(s); i

�
ds
�
vi; (5.1)

where the �i are an i.i.d. family of standard Poisson processes. Given � > 0 we can now
de�ne Q� to be a scaled version of this process where

Q�(t) = Q�(0) +
X
i2I

�i

 Z t

0
��s

�1
�
Q�(s); i

�
ds

!
vi: (5.2)

In [4], we proved the following functional strong law of large numbers limit theorem.

Theorem 5.1 If lim�!1
1
�
Q�(0) = Q(0)(0) holds a.s., then

lim
�!1

1

�
Q� = Q(0) a.s. (5.3)

where the convergence is uniform on compact sets of t, Q(0) =
n
Q(0)(t)

��� t � 0
o
is uniquely

determined by Q(0)(0) and the autonomous di�erential equation

d

dt
Q(0)(t) = �t

�
Q(0)(t)

�
(5.4)
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with
�t(x) �

X
i2I

�t(x; i)vi: (5.5)

for all x 2 V.
For the di�usion limit, we �rst need to de�ne the tensor product of vectors x and y in V

to be

x
 y =

2
66664
x1y1 x1y2 � � � x1yn
x2y1 x2y2 � � � x2yn
...

... � � � ...
xny1 xny2 � � � xnyn

3
77775 (5.6)

where x = [x1; x2; : : : ; xn] and y = [y1; y2; : : : ; yn]. Vectors are rank one tensors and the
above array is a rank two tensor. The vector space of rank two tensors is the �nite linear
sum of all products x
 y. We can use the tensor product to de�ne the covariance matrix of
two random vectors X = [X1; X2; : : : ; Xn] and Y = [Y1; Y2; : : : ; Yn] to be

Cov[X;Y] = E[X
Y]� E[X]
 E[Y]; (5.7)

where we de�ne Cov[X] = Cov[X;X].
If A and B are de�ned to be square matrices that map V into itself, then we de�ne A
B

to be the Kronecker product of A and B (see Horn and Johnson [1]). The object A
B is
a linear transformation on the family of rank two tensors into themselves where

x
 y 7! (xA)
 (yB) (5.8)

which we will denote as (x
 y) � (A
B). If we view x 
 y as a matrix C, then in terms
of matrix multiplication we have

(x
 y) � (A
B) = (xA)
 (yB) = ATCB; (5.9)

where AT is the matrix transpose of A.
Now we state the general functional central limit theorem.

Theorem 5.2 If lim�!1
p
�( 1

�
Q�(0)�Q(0)(0)) = Q(1)(0) holds, where Q(1)(0) is a constant,

then

lim
�!1

p
�

 
1

�
Q� �Q(0)

!
d
= Q(1): (5.10)

where Q(1) =
n
Q(1)(t)

��� t � 0
o
is a di�usion process and this is a convergence in distribution

of the stochastic processes in an appropriate functional space [4].
Moreover, if �t(�) is di�erentiable at Q(0)(t) for almost all t, then Q(1) is a Gaussian

process and its mean vector and covariance matrix are the unique solutions to the autonomous
di�erential equations

d

dt
E

h
Q(1)(t)

i
= E

h
Q(1)(t)

i
D�t

�
Q(0)(t)

�
; (5.11)
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and

d

dt
Cov

h
Q(1)(t)

i
= Cov

h
Q(1)(t)

i
�
�
D�t

�
Q(0)(t)

�

 I+ I
D�t

�
Q(0)(t)

��
+�t

��
Q(0)(t)

��
(5.12)

where D�t

�
Q(0)(t)

�
is the Jacobian of �t(�) when di�erentiated at Q(0)(t) and

�t((x)) �
X
i2I

�t(x; i)vi 
 vi: (5.13)

for all x 2 V. Finally, for all s < t

d

dt
Cov

h
Q(1)(s);Q(1)(t)

i
= Cov

h
Q(1)(s);Q(1)(t)

i
�
�
I
D�t

�
Q(0)(t)

��
: (5.14)

Proof of Theorem 2.2: The formulas follow from the general theorems for Markovian
service networks. Here we write out these general equations for the two-dimensional case.
Viewing Q(1) as a two-dimensional row vector, we have

d

dt
E

h
Q(1)(t)

i
= E

h
Q(1)(t)

i
At (5.15)

and
d

dt
Cov

h
Q(1)(t)

i
= Cov

h
Q(1)(t)

i
At +AT

t Cov

h
Q(1)(t)

i
+Bt; (5.16)

where

Cov

h
Q(1)(t)

i
=

2
4 Var

h
Q

(1)
1 (t)

i
Cov

h
Q

(1)
1 (t); Q

(1)
2 (t)

i
Cov

h
Q

(1)
1 (t); Q

(1)
2 (t)

i
Var

h
Q

(1)
2 (t)

i
3
5 ; (5.17)

At =

"
a11t a12t
a21t a22t

#
; Bt =

"
b11t b12t
b12t b22t

#
: (5.18)

Note that At is not necessarily a symmetric matrix but Bt always is. Writing these di�er-
ential equations out explicitly gives us

d

dt
E

h
Q

(1)
1 (t)

i
= a11t E

h
Q

(1)
1 (t)

i
+ a21t E

h
Q

(1)
2 (t)

i
(5.19)

d

dt
E

h
Q

(1)
2 (t)

i
= a12t E

h
Q

(1)
1 (t)

i
+ a22t E

h
Q

(1)
2 (t)

i
(5.20)

and �nally

d

dt
Var

h
Q

(1)
1 (t)

i
= 2a11t Var

h
Q

(1)
1 (t)

i
+ 2a21t Cov

h
Q

(1)
1 (t); Q

(1)
2 (t)

i
+ b11t (5.21)

d

dt
Var

h
Q

(1)
2 (t)

i
= 2a22t Var

h
Q

(1)
2 (t)

i
+ 2a12t Cov

h
Q

(1)
1 (t); Q

(1)
2 (t)

i
+ b22t (5.22)

d

dt
Cov

h
Q

(1)
1 (t); Q

(1)
2 (t)

i
= a12t Var

h
Q

(1)
1 (t)

i
+ a21t Var

h
Q

(1)
2 (t)

i
+(a11t + a22t )Cov

h
Q

(1)
1 (t); Q

(1)
2 (t)

i
+ b12t : (5.23)

Finally, to tailor this central limit theorem to the retrial model, observe that functions like
f(x) = x ^ n and g(x) = (x� n)+ are di�erentiable everywhere, except when x = n.
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