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Abstract

We consider the problem of call admission control
for an ATM multiplexer by formulating it as a semi-
Markov decision process. Our model consists of a
single link with two types of calls. While in the sys-
tem, a call sends out cells as an on/off fluid source.
The objective is to maximize the long run average re-
ward from call acceptance subject to constraints that
the fraction of cells of each type that are lost must be
below given levels. Our numerical results allow us to
contrast two related formulations of the optimization
problem: ‘aggressive’ and ‘conservative’. In addition,
we quantify the effect of using cell level control to
replace the two cell loss constraints by one.

1. Introduction

ATM (Asynchronous Transfer Mode) appears to be
the leading contender for the transport mechanism
in emerging broadband multimedia networks. One of
the primary attractions of ATM is that it provides for
more efficient utilization of bandwidth, being based
on cell (packet) switching rather than circuit switch-
ing. The statistical multiplexing that is at the core
of ATM carries a risk, however. It is not possible to
guarantee at the moment of call setup that there will
be no loss of cells for a call and still achieve a mul-
tiplexing gain. A central question becomes: Given
some maximum tolerable cell loss, devise a call ad-
mission control procedure that will provide accept-
able service (in terms of cell loss) and maximize, in
some sense, the amount of traffic carried. This paper
describes the results that we have obtained by formu-
lating the above problem as a semi-Markov decision
process (SMDP).

Our model, described in Section 2, consists of a sin-
gle link with two types of calls, both of which oper-
ate as on/off fluid sources while in the system. In
Section 3 we outline a time scale decomposition that
is used to reduce the size of the state space. The
reduced state optimization problem is formulated as
an SMDP in Section 4. Two related versions of the
problem are considered: conservative and aggressive.
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In the conservative approach we require that the cell
loss constraints be satisfied for every state (number
of calls of each type in progress). In the aggressive
approach we only require that the cell loss constraints
be satisfied on a long run average basis. In Section 5
we describe how cell level control can be used to re-
duce the two cell loss constraints to one constraint.
Numerical results are presented in Section 6. These
numerical results allow us to quantify the advantages
of using the aggressive rather than conservative ap-
proach, and of replacing two cell loss constraints by
one.

There have been several previous studies on admis-
sion control for ATM, such as [3], [5], [6], [7], [8], [9],
and [10]. Except for [8], the work in these references
is in the context of static policies, which are deter-
mined by reachable sets of states. In [g§], as well as
in this paper, a dynamic admission control scheme
is considered, so the admission decision depends on
both the state to be entered and the call type await-
ing admission. Our work differs from [8] in at least
two substantive ways: we use an on/off source model
that enables us to avoid the use of simulation, and
we consider an ‘aggressive’ admission control scheme

_ in addition to the ‘conservative’ scheme based on an

acceptance region.

2. Model

We consider an ATM link with transmission capacity
R and no buffer, and assume that the network has
information on the statistical characteristics of the
traffic at call level and burst level (in contrast to [5],
where a decision-theoretic framework is used to deal
with unknown parameters). There are two types of
calls arriving at the link according to Poisson pro-
cesses; type ¢ calls arrive with rate A;, i = 1,2. After
a call is admitted, it alternates between on (bursting)
and off as a two state Markov process. A type ¢ call
has an average on period of length 8 ! and an aver-
age off period of length o . Tn the long run it spends
a fraction p; = a;/(a; + £;) in the on state. When
turning off, a call departs with probability ¢;. When
a type ¢ call is on, it generates cells as a fluid at rate



v;. When cells are generated at a rate exceeding the
link transmission capacity, those cells that cannot be
transmitted are lost.

Two types of Quality of Service (QOS) are of interest:
the cell level QOS and the call level QOS. At the cell
level, we want the cell loss ratios for the two types to
be smaller than f; and f», respectively. A commonly
used bound is f; = fo = 107°. The call level QOS is
reflected in call blocking probabilities.

Each admitted type ¢ call pays the network a reward
w;. The optimization problem we consider is to max-
imize the (long run average) reward rate subject to
satisfying the cell level QOS constraints.

3. Problem Reduction Using Time Scale
Decomposition

The optimization problem described above can be for-
mulated as a Semi-Markov Decision Process (SMDP)
with constraints. Let k; denote the number of type 4
calls in progress, and let n; denote the number of type
1 calls in the ‘on’ state. Under a stationary admission
control strategy (ki,ka,n1,n2) is a state descriptor
for a Markov process. Thus the state space of the
SMDP is 4-dimensional, which will lead to compu-
tational problems. The notion of Nearly Completely
Decomposable (NCD) Markov chains can be used to
reduce this to a 2-dimensional problem. (Although
the discussion presented here is heuristic, the prob-
lem reduction is rigorously justified by Theorem 11 of
[1].) During a call’s ‘lifetime’ it goes through many
on/off cycles. Thus, the on/off cycles have a short
duration relative to that of a call. Intuitively, when
making a call admission decision, the number of calls
of each type in progress is important, but the number
of calls of each type in the on state is not, because
these quantities oscillate too rapidly.

We handle the above idea mathematically as follows.
Consider a family of systems indexed by € > 0. Let

di(e) = €X; and gi(e) =e€q; .

These scalings correspond (for € small) to calls that
consist of many short on/off periods. The average
duration of a type ¢ call is

ai_l + ﬂ{l
q:(€)

Thus both arrival and service rates are proportional
to €. As ¢ — 0, the (n1,n2) component of the state
becomes noise on the time scale where call arrival and
departure rates are O(1), and can be ignored for ad-
mission control purposes. This part of the state does
affect the loss rate, so it must be ‘averaged’ properly.

_ait B
€qic P

= (eps)™" .
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For ¢ small, the (n;,ns) process reaches equilibrium
between changes in the (k1, k2) process. The equilib-
rium corresponds to fixed (k1, k2) and is given by the
binomial distribution:

¥(k,n) = ﬁ <:i)1’?i(1 —p)Tm

=1

When the total arrival rate is niv; + navs, the loss
rate is [nivy + nava — R|Y. The average type i loss
rate with (ki, k2) is thus

k1 ko

bik) = > > w(k,n)x
n1=0n9=0

iV

nivy + navy

[’I’Lll/l + Nolg — R]+ (1)
This reflects the fact that there is no priority — the
loss rate of a type is proportional to its input rate.
It seems intuitively clear that the exponential distri-
bution for on and off times plays no essential role in
(1): any distribution would lead to the same result,
as long as the calls are independent and have station-
ary probabilities p; (for type i) of being on. Indeed,
the results of [1] apply for on and off times having
any phase type distributions.

4. Formulation as a Semi Markov Decision
Process

States, Actions, and Transition Probabilities

We now formulate the limit control problem as an
SMDP. Admission decisions are made upon call ar-
rival. We augment the state to include the call type
at an arrival epoch. (There are other ways to go about
this.) The state space, which we denote by I, is the
union of two sets, corresponding to states associated
with call arrivals and states associated with call de-
partures. To make this a finite state problem we may
need to place an a priori bound on the number of calls
that can be accepted in the system. This is taken care
of below. Arrival states take the form (ki, k2, 7), with
ki,k2 > 0, and j = 1,2. The state (ki1, ke, j) corre-
sponds to an arrival of type j call when there are k;
type 1 calls and k, type 2 calls in progress. These are
the only states in which decisions need to be made.
The set of actions available is A(k1, k2,7) = {0,1},
where 0 denotes rejection and 1 denotes acceptance.
The state (k1,ks) is a departure state where the de-
parting call leaves k; type 1 calls and ko type 2 calls
behind. For states of the form (ky, k2) where no de-
cision needs to be made we set A(ky, k2) = {0}.

To complete the specification of the SMDP we need to
provide transition probabilities, mean sojourn times,



rewards, and costs for each state-action pair. Let
7(i,a) denote the average time spent in state i (until
the next decision epoch) if action a € A(3) is chosen.
Then

7((k1, k2),0) = (M + Az + kapg + kaprp) ™!
and

T((k17k27j)aa‘) =
{ (M + A2+ kypg + kapo) ™t

(At + Ao+ kypy +kopp +p15)7 Y, a=1.

a=0

Let p(i,3',a) denote the transition probability from
state ¢ to ¢’ if action a is chosen. Let

P((k1, k2),4) =
ki /(0 + Ao + ks + kopo) if @ = (ky — 1, k2)

kapa/ (A + Ao + krpa + kapo) if i = (k1 k2 — 1)
i 4 = (k1 ko, 1)
itd = (1, ks, 2),

MM 4 Ag + ki + kaps)
Aa/(M + Az + ks + kopia)

and 0 otherwise. Then
p((k1, k2),4,0) = p((k1, k2), ) ,

and

ﬁ((k17k2)7i)7
p((k1+1ik2)7i)7 a=17 ]:17
ﬁ((kl,kg-i-l),i), a=1, j=2.

a=190,

p((k17k27j)7i7a) =

A Conservative Approach to the Cell Loss Con-
straint

We formulate a conservative approach to the cell loss
constraint as follows. Let

C = {(ky, k) : bi(k1, ko) < fikipivi, i =1,2}. (2)

Then C is the set of (k1, k2) such that when there are
ki type 1 and k, type 2 calls in the system forever, the
long run average cell loss rate constraints are always
satisfied. The set C uniquely determines a state space
I for j = 1,2,(k1,ke,7) € I if and only if (k1,ks) €
C; and (k1, ko) € I if and only if either (k;+1,k5) € C
or (k1,ks + 1) € C. The action sets for the states on
the boundary of I require minor modification: given
(k], k‘z) e C,if (k}1 +1, kz) ¢ C, then A((kl, ko, 1)) =
{0}, if (k’l,kz + 1) ¢ C, then A((kl,k2,2)) = {0}
In this manner C uniquely determines a SMDP. Note
that given f1, fo and R, the set C is always finite.
The optimal policy obtained by solving this SMDP is
conservative in terms of cell loss constraints because
it will never go into any state for any period of time
where the cell loss constraints will be violated if we
stay there forever. This SMDP can be solved using
value iteration.
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An Aggressive Approach to the Cell Loss Con-
straint

We now describe an ‘aggressive’ approach to the cell
loss constraint. In order to be able to apply standard
numerical solution procedures to find the optimal pol-
icy, we need to make the state space of the SMDP
finite. We achieve this by placing an a priori bound
on the number of calls that can be accepted into the
system. Let M be a fixed large positive number. We
consider a state space I(M) of the form

I(M) = {(k1,k2,7) s kn, ke € 25 5 = 1,25
and kie; + kges < M} U {(kl,kz) :
ki ke € Z* and kier + koeg < M}

where e; and e; are the effective bandwidths of the
two types of calls, which are calculated from a static
model (see Section 6). For states (kj, k2, j) such that
kie; + keey > M — €;, we let A((kl,kg,])) = {0}
Since M was chosen arbitrarily to make the problem
finite, we need to solve a series of problems with in-
creasing M’s, until the associated optimal policy and
reward stop changing. Then the optimal policy for
M = oo will have been obtained.

Let r(ky, k2,7,a) denote the reward earned in state
(K1, k2, 7) when action a is chosen. (The reward earned
in states of the form (k;, k2) is 0.) Then

0, a=0

wj,

T(klvk%j» G,) = {

a=1.

We also define ‘costs’ which will play a role in the
constraint on loss probability. Let

El(klakQ) = be(khk?)T((klvk?)?O): l= 172 .
We define
ce((k1, k2),0) =¢e(ka, ka)

and
a=20

Ce(kr, k2),

CE((kI)k27j)7a)= Ee(kl+17k2)) a':17 .]:1

Ee(kl,kz +l), a=1, 7=2.
As defined above, ¢;(7, a) is the expected amount of
type £ traffic lost until the next decision epoch. Let

Cate(k1, ko) = prkecet((k1, k2),0) ,
care((k1,k2),0) =Caqe(kr, k2)

and
Coye(ky, k2), a=0
624—[(]91 + 1vk2)> a = 1’ ] =1

Ez+e(k1,k2 + 1), a = 1, j =2,

core((k1, k2, 7),0) =



Then cy1¢(%, a) is the expected amount of type £ traf-
fic to arrive until the next decision epoch.

Let ¢(k1,k2,j) denote the probability that action 1
(accept) is chosen in state (k1,ks,7). From results
of Feinberg [4], we know that it suffices to consider
randomized stationary policies for this problem, and
the optimal solution can be obtained from the linear
program:

maximize Z Z 7(%,a)Zin 3)
i€l a€A(s)
subject to
Do Za—d Y p(i,5,0)za =0, jEI, (4)
a€A(j) i€l a€A(3)
Z Z lce(t,a) — fecota(i a)]zie <0, £=1,2,(5)
i€l a€ A7)
Z Z 7(i,0) 2 = 1, (6)
i€l ac A7)
Zia > 0, t €1, a € A(l). (7

The above LP is clearly feasible, because 2,00 =
[7((0,0),0)]7 = A1 + A2, and z, = O otherwise is
a feasible solution (corresponding to never allowing
any calls to enter). Given an optimal solution, z, of
the LP, we obtain an optimal randomized stationary
policy as

Z(k1,k2,5),1
Z(k1,k2,5),0 T Z(ky,k2,7),1

¢(k11k27j) =

I 2k k2,3).0 + Z(ki ki)t > 0, and @kr, ka,5) = 0
otherwise. (The quantity z;,7(7, a) corresponds to the
fraction of time spent in state ¢ with action a chosen.)

Comparison of the Two Approaches

There are a couple of advantages in terms of solu-
tion procedure for formulating cell loss constraints
with the conservative approach. First, because the
state space of the SMDP is finite we do not have to
place any a priori bound to make it finite as we do
for the aggressive approach, hence we do not have to
choose M. Secondly, because the cell loss constraints
are already reflected in the state space, we have a
SMDP without constraints, which allows us to use
the more efficient value iteration method to find the
optimal policy. The most noticeable disadvantage of
this conservative approach is the sacrifice at the call
level QOS: the call blocking probabilities are higher.
However, the conservative approach is more consis-
tent with our assumption that calls and bursts are on
two very different time scales. When we choose one
of the two approaches, we are trading cell level QOS
against call level QOS.
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5. Cell Level Control

Both the aggressive and conservative approaches in-
volve two cell level constraints, one for each type. It
is possible in both cases to transform the problem to
one involving one constraint using cell level control,
which consists of deciding how many cells of each type
are lost. This transformation will result in improved
performance of the associated optimal control. Equa-
tion (1) presents the cell loss rate under a ‘no priority’
assumption. Not surprisingly, typically only one of
the two cell level constraints is tight in the solution.
Thus, by giving priority to the type whose constraint
is tight it seems clear that we can improve the solu-
tion. Related results and discussion are contained in
Bean [2].

Consider the conservative approach, for which the ‘ac-

ceptance region’, C, is given by (2). Let

ki k2

Z Z Y(k,n)[niv1 + nava — R .

n1=0n2=0

b(k) = (8)

There is a cell level control (it will depend on ki, k3)
that can achieve

bi(k1, k) < fikipivi, 1=1,2 (9)
if
bk, k2) < fikipivr + fokopova , (10a)
b(k1,0) < fikipivr (10b)
and  5(0,k2) < fakopavs - (10c)
If fi = f2, then (10a) implies (10b) and (10c), and

the two constraints of (9) are replaced by the one
constraint (10a). In this case, the acceptance region
becomes

C = {(k1,k2) : b(k1, k2) < flkiprvn +kopore]}, (11)

where f = f; = fa.

The aggressive case is a bit more complicated be-
cause the constraints involve the stationary distribu-
tion over all states. Consider the constraint

>3 [ali,e) +ca)

i€l acA(i)
— fics(3,a) — foca(3,a)] zia <O .

For the case f; = fa, if we solve the LP (3), (4),
(6), (7), (12), we can find a cell level control such
that the constraints (5) are satisfied. A related result
holds with f; # fa.

(12)



6. Numerical Results

We now describe our numerical results. All the nu-
merical results described here are based on a system
with R = 45. The data for the two call types is given
in Table 1. In addition to the data in Table 1 we need
to specify rewards w; and wy. We choose w; = e;/ u;,
where e; is an empirically obtained ‘effective band-
width’. We obtain e; and es as follows. Consider
the acceptance region defined in equation (11) with
parameters as in Table 1 (41 and u2 have no effect),
which is the line labelled “conservative QOS” in Fig-
ure 1. We want a linearly constrained region which
is contained in the acceptance region. There is more
than one choice, but once we insist that the line in-
tersect the point (14,0), there is a unique ‘maximal’
linear constraint, which is labelled “effective band-
width” in Figure 1. This line, which passes through
(3,77) in addition to (14,0) yields e; = 3.2143 and
e; = .459. Based on this we have w; = 32.143 and
Wy = .459.

Typed | p; | v Di fi
1 0.1]6.0]0.025] 107"
2 1.0]15]0.100 | 107°
Table 1: Traffic Data
100.0 T T
800 - e e ot .
600 —
400 R
200 + i
0.0 L L
0.0 5.0 10.0 15.0

k

Figure 1: Effective Bandwidth

It becomes clear in the course of doing numerical
calculations that we cannot use the same ‘load’ for
both the conservative and aggressive approaches and
obtain interesting results. Figures 2 and 3 present
call blocking probabilities as a function of A; under
constant ‘load’ for the conservative and aggressive
schemes respectively. Constant load means that for
each value of A\; we choose Ay such that

AL

—ey

A
+ '—2'62 = PR7
H1 M2
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where p = .7 for the conservative scheme and p = .9
for the aggressive scheme. Using p = .7 for the aggres-
sive scheme would produce call blocking probabilities
indistinguishable from zero on the scale of Figure 2,
while using p = .9 for the conservative scheme would
produce call blocking probabilities as high as .1 to .4
(too large to be of practical interest). These figures
clearly show the advantage of using cell level control.

0.10 T T T T
0.09 b
& ®—aetype | blocking with optimal cell control
0.08 + et =-—-atype 2 blocking with optimal cell control -
~ 1 & stype | blocking with no priority cell control
007 b rd % ¥—F¥type 2 blocking with no priority cell control |
2 006 -
=
2 00s
=l
E 004 |
0.03 |
002 +
0.01
0.00
0.0

Figure 2: Call Blocking for Conservative Scheme

0.20 T T T T T T T T T T T
0.18 | @—etype 1 blocking with optimal cell controf 4
®—type 2 blocking with optimal cell controt
0.16 |+ & -#.type 1 blocking with no priority cell control i
B ¥—¥ type 2 blocking with no priority cell control

0.14 + B
® 012 —— ‘/\ -
g ot0f .
B
B 0.08 F 4

0.06 b

.//’
0.04 w B
T
002 - IS See ot ]
0.00 |l’”7’.ﬁx ol " 1 TP ¥ Lt e
00 0.1 02 03 0405 06 0.7 08 09 1.0 1.1
A1

Figure 3: Call Blocking for Aggressive Scheme

Figures 2 and 3 do not provide a direct comparison
of the conservative and aggressive schemes. It is clear
that the aggressive scheme has lower call blocking
probabilities. We investigate how much more traf-
fic can be handled with the aggressive scheme for a
given constraint on the call blocking probability. In
Figure 4 we plot the boundaries of the ‘feasible re-
gions’ in (A1, A2) space for both the conservative and
aggressive schemes. If a point (A1, Ay) is inside the
set bounded by the two coordinate axes and the ag-
gressive boundary, then there is some call admission
policy that yields feasible cell level behavior (with
fi = f2 =107°) and call blocking probability of at
most 0.01 for both types. If a point (A1, A2) is out-
side of the above set then no such policy exists. The
same holds true for the conservative approach, with
its associated boundary.



100.0 T T T T T

800 b &—@ aggressive approach
-0 7\ w——% conservative approach T

60.0 -

200 +

0.0
0.0

Figure 4: Feasible Regions (1%)

The boundaries of the feasible regions look roughly
linear. To explore this further, in Figure 5 we plot the
boundaries of the feasible regions for the aggressive
approach corresponding to 0%, 1%, and 5% blocking.
We also plot the straight line corresponding to 90%
load (p = .9). If we accept linearity of the bound-
ary of the feasible region as a reasonable approxima-
tion, we can calculate the boundary via its end points.
These ends points are the solutions of one dimensional
problems (only one call type) that are substantially
simpler than the two dimensional problems we have
been dealing with.

o-—= (0% call blocking
=—= 1% call blocking
A——a 5% call blocking
¥—¥ 90% load

Figure 5: Feasible Regions for Aggressive

We briefly digress to describe the one dimensional
problems. Let s(k) denote the mean cell generation
rate with k calls in progress (s(k) = kvp), and let b(k)
denote the mean cell loss rate with k calls in progress.
It is intuitively clear that the control in the one di-
mensional problem has a simple threshold (possibly
with randomization). Let « denote a nonrandomized
threshold. The cell loss ratio, L(k), is given by

L) = 3 [(M/m)* /K] b(k) /3 [/ ) .

k=0 k=0
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The call blocking probability is
Bx) = /et | SO
k=0

We determine an endpoint associated with cell level
constraint f and call level constraint ¢ by finding the
maximum A for which we can find a & yielding B(x) <
g and L(k) < f.

The charging rates w; and ws played no role in Fig-
ures 4 and 5, since feasibility and not optimality was
being explored in those figures. In Figures 2 and 3,
where the charging rates do play a role, we used rates
based on effective bandwidths as determined from
Figure 1. Our model allows us to investigate the
effect of using other charging rates. Note that, be-
cause we are not modeling the effect of price (charging
rate) on demand (through a demand curve), charging
rates really need to be viewed as internal signals to
the system. Viewed in this way, charging rates can
be used to get the system to operate in some ‘de-
sired’ state. Two possible desired states are equal call
blocking probabilities and maximum utilization. It is
not clear how to set w; and wy to equalize blocking
probabilities. In Figure 6 we plot call blocking prob-
abilities as a function of the ratio w;/ws for the ag-
gressive scheme, using the data in Table 1. In Table 2

0.015 T T T

®—e type 1 blocking
»-——ut type 2 blocking

0.010

call blocking

0.005

35.0

Figure 6: Effect of Charging Rate on Call Blocking

we present the value of the ratio w;/wa that results
in equal call blocking probabilities for several cases.
Case 1 corresponds to the data in Table 1. In Case 2
v = 2.0, and the other data is as in Case 1. In Case 3
v = 4.0 and p; = 0.05, with the other data as in Case
1. The common call blocking probability is denoted
by B. Maximizing utilization corresponds to charg-
ing per cell, so that w; = p,v;/p;. This would give
lower call blocking probability to the bursty traffic
than under the charging rate w; = e;/u;. This effect
is seen in Table 3. The call blocking probability of
type 1 is denoted by B;.

Figures 2 and 3 provided an indication of the advan-



Case (A1, A2) (uy| B |om

wa €2/ 12

1 Agg.:(0.38,57.4) | 25.5 | 0.003 | 70.02
Con.:(0.29,44.6) | 66.0 | 0.006

2 Agg.:(0.38,37.7) | 20.5 | 0.017 | 42.74
Con.:(0.29,29.3) | 49.0 | 0.014

3 | Agg:(0.69,61.1) | 18.0 | 0.005 | 38.00
Con.:(0.54,47.5) | 35.5 | 0.003

Table 2: Equalizing Call Blocking Probabilities

Case %21— ()\1, )\2) Bl Bz
1 [10.0 | Agg:(0.38,57.4) | 0.025 | 0.000
Con.:(0.29,44.6) | 0.022 | 0.001
2 7.5 | Agg.:(0.38,37.7) | 0.119 | 0.001
Con.:(0.29,29.3) | 0.044 | 0.005
3 1133 Agg.:(0.69,61.1) | 0.023 | 0.003
Con.:(0.54,47.5) | 0.008 | 0.002

Table 3: Charging According to the Mean Rates

tage of cell level control. Another indication of this
advantage can be seen by comparing the acceptance
regions for the conservative scheme. Figure 7 displays
the acceptance regions associated with one and two
constraints, as given by equations (2) and (11). In

100.0 T T
\\
\
b e——e optimal cell control
80.0 - \ % no priority cell control b
.\(\
60.0 N .
. \\\
£
400 \'\_\ .
\l\\'\
200 | S J
s Wy
-
0_0 y 1 1 i
0.0 5.0 10.0 15.0

Figure 7: Acceptance Regions (f; = fo = 1079)
Figure 8, where we use fi = 107° and f3 = 107, the

advantage of cell level control is more dramatic.
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120.0 T ¥

*—= optimal cell controt
100.0 =——= 1o priority cell control 7
80.0 |+ b
« 600 - ]
40.0 - b
20.0 |- 4
0.0 L L "
0.0 5.0 10.0 15.0

k
1

Figure 8: Acceptance Region (f; = 1079, f, = 1077)
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