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We analyze two scheduling problems for a queueing system with a single server and two customer classes. Each class has its own
renewal arrival process, general service time distribution, and holding cost rate. In the first problem, a setup cost is incurred when the
server switches from one class to the other, and the objective is to minimize the long-run expected average cost of holding customers
and incurring setups. The setup cost is replaced by a setup time in the second problem, where the objective is to minimize the
average holding cost. By assuming that a recently derived heavy traffic principle holds not only for the exhaustive policy but for
nonexhaustive policies, we approximate (under standard heavy traffic conditions) the dynamic scheduling problems by diffusion
control problems. The diffusion control problem for the setup cost problem is solved exactly, and asymptotics are used to analyze the
corresponding setup time problem. Computational results show that the proposed scheduling policies are within several percent of

optimal over a broad range of problem parameters.

We consider two dynamic scheduling problems for a
single-server queueing system with two classes of
customers. In both problems, each class possesses its own
renewal arrival process, general service time distribution,
and holding cost rate, and the server incurs a setup when
switching from one class to the other. In the setup cost
problem, a setup cost is incurred, and the objective is to
minimize the long-run expected average setup and holding
cost. In the setup time problem, a random setup time is
incurred when the server switches class, and the objective
is to minimize the long-run expected average holding cost.
In both problems, the server has three options at each
point in time: (1) serve a customer from the class that is
currently set up, (2) switch to the other class (and immedi-
ately begin service in the setup cost problem), or (3) sit
idle.

These scheduling problems have numerous applications,
most notably for manufacturing systems and polling systems
in computer communication networks. The setup time
problem is more realistic than the setup cost problem in
most situations, but is also more difficult to analyze. How-
ever, the setup cost problem is relevant for some manufac-
turing systems because, motivated by Just-In-Time (JIT)
manufacturing, many facilities have internalized their setup
times; i.e., they have essentially eliminated their setup
times at the expense of incurring significant material, la-
bor, and/or capital costs.

Although many studies have analyzed the performance
of polling systems under various scheduling policies (see
Takagi 1986, Boxma and Takagi 1992, and references
therein), relatively few papers have considered the optimal
scheduling of polling systems. The seminal paper in this
research area is Hofri and Ross (1987), who analyze a

two-class system with setup costs and times. Let ¢; and p;
denote the holding cost rate and service rate, respectively,
for class i customers. When ¢, u; = c,u,, they show that a
double threshold policy, where the server serves each class
until its queue is exhausted and the length of the other
queue achieves a certain threshold level, minimizes the
cost of setups and holding customers under both the dis-
counted and average cost criteria. When c,u; # copo,
several authors have shown that the class with the larger
cp index should be served to exhaustion, and Koole (1994)
has determined the asymptotic behavior of the switching
curve for the setup cost problem in the discounted case;
his result is described in more detail at the end of Section
1.

Several authors have studied the setup time problem in
which more than two classes are present. Structural results
for symmetric systems are derived by Liu et al. (1992) and
references therein. Browne and Yechiali (1989) derive
quasi-dynamic index policies, which allow the server to
choose the sequence of classes to visit at the beginning of
each cycle, that minimize or maximize the mean cycle
length. Boxma et al. (1991) derive an efficient polling table
(a predetermined fixed visit sequence) for minimizing the
mean waiting cost. Bertsimas and Xu (1993) derive lower
bounds and construct static policies that perform close to
the bound when all classes have identical cu indices. Van
Oyen and Duenyas (1996) develop a dynamic scheduling
heuristic based on myopic reward rates. Duenyas and Van
Oyen (1995) also construct a dynamic policy for the setup
cost problem.

Since the two-class asymmetric problem appears to be
analytically intractable, heavy traffic approximations are
employed in an attempt to make further headway, i.e., we
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make the heavy traffic assumption that the server must be
busy the great majority of the time to satisfy demand. In
the setup cost problem, we also need to assume that the
setup costs are very large, roughly two orders of magnitude
larger than the holding cost rate. Following in the tradition
of Foschini (1977) and Harrison (1988), we study the dif-
fusion control problem that arises as a heavy traffic limit of
a sequence of queueing scheduling problems. These limit-
ing control problems tend to be more tractable than their
queueing counterparts and have led to network scheduling
policies (see, for example, Harrison and Wein 1990 and
Wein 1990b) that have a surprisingly simple form and ap-
pear to perform well.

For two-class queues operating under the exhaustive
polling mechanism, Coffman et al. (1995, 1998) derive a
heavy traffic averaging principle for systems with and with-
out setup times, respectively. These averaging principles
are due to a time scale decomposition that is inherent in
the heavy traffic scaling, and so there is every reason to
believe that these principles hold for more general (i.e.,
nonexhaustive) classes of policies. In this paper the ap-
proximating limiting control problems are obtained by as-
suming that the averaging principles hold for more general
policies. Under this assumption, we show in Section 1 that
the setup cost problem simplifies rather dramatically in the
limiting heavy traffic regime: the dimension of the state
space collapses from three (queue length of each class and
the position of the server) to one (total workload). This
result also allows our analysis to naturally decompose onto
two different time scales. On the very fast time scale over
which individual queue lengths change, we myopically op-
timize a control that specifies the amount of low-priority
work to serve as a function of the total workload. This
state-dependent control is derived in closed form and of-
fers considerable insight. On the slower time scale over
which the total workload varies, a singular control problem
is solved that specifies a busy/idle policy. The solution to
this control problem leads to a rather complex equation
for one variable, which represents a threshold level, that
can easily be solved numerically.

The setup time problem is addressed in Section 2, and
the limiting control problem again is one-dimensional, al-
though here we obtain an explicit diffusion control prob-
lem. The control, which represents the amount of low-
priority work to serve as a function of the total workload,
appears in the drift term of the diffusion process in a
nonlinear fashion; consequently, the optimality equation
leads to a nonlinear ordinary differential equation (ODE)
that cannot be solved explicitly. However, we use asymp-
totics to obtain a scheduling policy; the asymptotics also
reveal a substantial qualitative difference between the op-
timal policies in the setup cost and setup time cases.

For both problems, we use the value iteration algorithm
to obtain “exact” optimal policies for a variety of test
cases, and we show in Section 3 that the proposed policies
perform within several percent of optimal over a broad
range of problem parameters.
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Our presentation of the analysis, and indeed the analysis
itself, is rather informal throughout. For example, we do
not prove that the limiting control problems are the heavy
traffic limit of a sequence of queueing scheduling prob-
lems. Also, several of our claims regarding the nature of
the limiting control problems and their optimal solutions
are not proved. Providing a rigorous presentation of our
results would be extremely demanding and would take us
far afield from our two main objectives: (1) to obtain fun-
damental insights into the nature of the optimal policies
under heavy traffic conditions, and (2) to develop effective
scheduling policies for these systems. Much of our analysis,
however, relies upon observations that have been rigor-
ously proven for simpler systems, and we have no doubt
that our results are essentially correct; consequently, we
view (and refer to) insights gained from our analysis as
insights into the nature of the optimal policy in heavy
traffic. We hope that this approach increases the accessibil-
ity of the paper without sacrificing the persuasiveness of
our arguments.

1. THE SETUP COST PROBLEM
1.1. Problem Description

Customers of class i = 1, 2 arrive according to indepen-
dent renewal processes, where \; and c2; denote, respec-
tively, the arrival rate and squared coefficient of variation
(variance divided by the square of the mean) of the inter-
arrival times. Each class has its own general service time
distribution with service rate u; and squared coefficient of
variation cZ, and we define the system’s traffic intensity by
p = 2%, (A/w). A cost ¢; is incurred per unit time for
holding a class i customer in the system. A setup cost K/2
is imposed whenever the server switches from one class to
the other, so that K is the setup cost per cycle.

The server has three scheduling options at each point in
time: (1) serve the class that is currently set up, (2) switch
to the other class and initiate service, or (3) sit idle. Since a
switchover is instantaneous and costly, the option of
switching to the other class and idling need not be consid-
ered. We assume that the server works in a preemptive-
resume fashion, although the heavy traffic analysis is too
crude to capture the effects of the nonpreemptive disci-
pline as an alternative assumption. Let Q,(¢) be the num-
ber of class i customers in queue or in service at time ¢,
and let J(¢) denote the number of times the server sets up
in the time interval [0, f]. Then our objective is to find a
nonanticipating (with respect to the queue length process)
scheduling policy to minimize

1 2 K
lim sup EH > c;0:(t)dt + —J(T)|. (1.1)
T—» T 0 i=1 2

1.2. The Heavy Traffic Normalizations

A precise formulation of the approximating diffusion con-
trol problem requires much notation that would not be
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subsequently used. In addition, the limiting control prob-
lem will not be explicitly solved; rather, the averaging prin-
ciple in (1.3) allows us to optimize over a specific form of
policy that is introduced in subsection 1.4. Hence, the
heavy traffic control problem will not be precisely formu-
lated, and a description of the heavy traffic conditions and
normalizations will suffice for our purposes.

The approximating control problem is the limit of a
sequence of scheduling problems indexed by the heavy
traffic scaling parameter n, where n — <. Since a heavy
traffic limit theorem will not be proved here, we avoid
unnecessary notation by considering a single large integer
n satisfying Vn(1 — p) = ¢, where ¢ is positive and of
moderate size (that is, O(1)); this standard heavy traffic
condition requires the server to be busy the great majority
of the time over the long run. As we will see later, the
scheduling policy that arises out of our heavy traffic analy-
sis is independent of the system parameter n. Let V; be the
unfinished workload process for class i; V() is the amount
of time a continuously busy server requires to clear all of
the class i customers who are present in the system at time
t. The normalized, or scaled, queue length process is de-
fined by Z,(t) = Q,(nt)/N/n; similarly, W,(t) = Vi(nt)/Nn
denotes the normalized workload process. We approxi-
mate these normalized processes by the appropriate, and
yet to be defined, limiting processes. Although V(¢) is not
directly observable by the scheduler at time ¢, the nor-
malized workload process is more convenient to employ
than the normalized queue length process in the approx-
imating heavy traffic control problem. However, we use
the linear identity Z, = u,J¥; to translate the solution of
the approximating control problem into a scheduling
policy that is expressed in terms of the original queue
length process (Q,, Q,). This linear identity is justified
by extant heavy traffic limit theorems for many queueing
systems.

In addition to speeding up time by a factor of n and
reducing the queue lengths by a factor of Vz, we also
need to rescale the cost parameters ¢; and K. The crux of
problem (1.1) is the tradeoff between setup costs and hold-
ing costs, and to obtain a nontrivial solution to the approx-
imating control problem, these two costs need to be of the
same order of magnitude. Since only the ratio of these two
costs matters, without loss of generality we leave the hold-
ing cost rates c¢; and ¢, unscaled at O(1), and we only scale
the setup cost K. The appropriate normalization is to di-
vide the setup cost K by the heavy traffic scaling parameter
n; readers are referred to subsection 1.2 of an earlier ver-
sion of this paper (Reiman and Wein 1994) for details.
Consequently, let k = K/n denote the normalized setup
cost. Thus, heavy traffic conditions for the setup cost prob-
lem imply that the traffic intensity should be near one, and
the setup cost should be large. A canonical example is to
set n = 100 and set ¢, ¢y, ¢,, and k all equal to one, so that
p = 0.9 and the setup cost K = 100.

1.3. A Preliminary Heavy Traffic Result

The starting point for the setup cost problem is a recent
heavy traffic result due to Coffman et al. (1995), which will
be referred to hereafter as the CPR result. We present an
informal statement of a special case of this heavy traffic
limit theorem that will suffice for our purposes. As in prob-
lem (1.1), consider a queueing system with a single server
and two customer classes. The CPR result is derived under
a specific queue discipline: the server serves each class to
exhaustion, and then switches class; although the averaging
principle has been proven only under the exhaustive pol-
icy, we make the crucial but well-founded assumption that
it also holds for nonexhaustive policies. The work conserv-
ing nature of the exhaustive discipline implies that the
total workload process W = W, + W, is identical to the
corresponding process under the FCES policy. It follows
from the heavy traffic limit theorem of Iglehart and Whitt
(1970) that this process is well approximated under heavy
traffic conditions by RBM(—c, ¢?), which is a reflected
Brownian motion (see Harrison 1985 for a definition) on
[0, ) with drift —c¢ and variance

2\,
o= 3 2+ cd. (12
=1 i

It turns out to be impossible to obtain a limit process for
(W,, W,) in the usual sense, because in the heavy traffic
limit the two-dimensional process moves back and forth
along the constant workload line at an infinite rate, the
direction being determined by which of the two queues is
being served. However, this time scale decomposition is
used to derive the following averaging principle: for any
continuous function f and any 7' > 0,

r d
J F(W(1)) dt —>j

0 0

T

( J fwWw(@)) du) dt (1.3)
0

fori=1,2 asp—1.

Hence, given the normalized total workload W, the two-
dimensional workload (W;, W,) can be treated as if it is
uniformly distributed along the constant workload line
from (0, W) to (W, 0). That is, the two-dimensional distri-
bution is (UW, (1 — U)W), where U is a uniform [0, 1]
random variable that is independent of W. This averaging
principle allows us to collapse the state space of the control
problem from three dimensions (the number of customers
of each class in the system and the location of the server)
to one dimension (the total workload).

1.4. The Form of the Optimal Policy

The traditional heavy traffic approach to scheduling prob-
lems is to precisely formulate the queueing system sched-
uling problem, find the limiting control problem that
approximates the scheduling problem under heavy traffic
conditions, and solve the latter problem. The averaging
principle (1.3) allows us to take a slightly different ap-
proach: we first argue that the optimal policy should be of



a specific form in the heavy traffic limit, and then we opti-
mize the approximating system over this class of policies.

Without loss of generality, we assume that ciu; = cou,
and sometimes refer to classes 1 and 2 as the high- and
low-priority classes, respectively. Existing results (Hofri
and Ross for Poisson arrivals and exponential service
times, and Duenyas and Van Oyen for Poisson arrivals and
general service times) as well as intuition suggest that class
1 should be served to exhaustion. (It is possible to con-
struct examples where this policy is not optimal. Our con-
tention is that it is asymprotically optimal in the heavy
traffic limit, where fine details, such as the exact nature of
the service time distributions and the assumptions regard-
ing preemption, are washed away. A policy is asymptoti-
cally optimal if the heavy traffic limit of its associated
normalized cost coincides with the limit of optimal nor-
malized costs.) When the server is set up for class 1, the
only other decision is to specify whether the server should
idle or switch to class 2 when no class 1 customers are
present. Since we work with the normalized workload pro-
cess (W,, W,), the only reasonable form of the optimal
policy is to switch when W,(tf) = w, for some scaled
threshold level w,.

Since switching is instantaneous, W,(f) = 0 and W,(¢) =
x at the moment of switching, where x must be greater
than or equal to the threshold w,. Because preemption is
allowed, the server should never idle at class 2 when class 2
customers are present. The CPR result implies that the
total workload W = W, + W, remains constant in the
heavy traffic time scale while the server is serving class 2
customers. Hence, our decision can be expressed as the
amount u(x) by which the server depletes class 2’s original
work. That is, class 2 is served until W, (f) = u(x) and
W,(t) = x — u(x). The control u(x) must be between zero
and x, where u = x is the exhaustive policy. Since a differ-
ent amount u can be chosen for each value of the total
workload x, the control u(x) can generate any possible
switching curve in the nonnegative orthant, and so is with-
out loss of generality.

Finally, since the server should never idle at class 2
when W,(¢) > 0, if u(x) < x, then the server immediately
switches back to class 1 when W,(f) = u(x) and W,(t) =
x — u(x). However, if u(x) = x, and hence class 2 is served
exhaustively, then the server must decide whether to idle
or to switch back to class 1. Once again, the obvious form
of the optimal policy in this case is to idle until W,(¥) is
greater than or equal to w,. Notice that if the threshold
levels w; and w, were both zero, then infinite setup costs
would be incurred.

In summary, the controls are the function u(x), which
specifies the amount of class 2’s work to serve, and the
threshold levels w, and w,, which dictate the server’s busy/
idle policy. The form of the optimal policy in heavy traffic
is: serve class 1 until W,(t) = 0 and W,(t) = w,; switch to
class 2. If Wy(t) = x at the moment of switching, then serve
class 2 until Wi (t) = u(x) and Wy(t) = x — u(x). If u(x) <
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x, then switch to class 1; if u(x) = x, then do not switch until
Wi(t) = w,.

1.5. An Overview of the Analysis

The analysis hinges on the following crucial observation:
since setups are instantaneous, the total workload process is
only affected by the server’s busylidle policy, not by how often
the server switches class. Hence, the control u(x) only influ-
ences the total workload indirectly via the idling. However,
u(x) does affect the rate at which holding costs and setup
costs are incurred when the total workload is x. Therefore,
a two-step procedure is employed to find the optimal pol-
icy (u(x), wy, w,) within the specified form. In the first
step, the control u(x) is chosen to minimize the cost rate
for each state x; this minimization is performed indepen-
dently for each state x. In the second step, we attempt to
find the optimal threshold levels w, and w,, and hence the
optimal total workload process. Our heavy traffic analysis
will show that the optimal total workload process is a
RBM(—c, ¢?) on [w, =), where w is a parameter that is
chosen to minimize the total expected cost. Hence, the
Brownian model is too crude to distinguish between the
two thresholds w; and w,, and so we set both w; and w,
equal to the derived value of w.

1.6. The Optimal u(x)

The control u(x) is chosen to minimize the cost rate that is
incurred when the normalized total workload process is x.
Under the policy characterized by u(x), class 2’s work is
depleted by the amount u(x) if the total workload when
the server arrives to class 2 is x. The CPR result implies
that, for our purposes, it is as if I¥; is uniformly distributed
between 0 and u(x), and W, is uniformly distributed be-
tween x — u(x) and x. Since Z; = w;W,, the holding cost
rate when in state x can be expressed as

Au(x)
cimE[W; ] =coprx + )
1

e

, (1.4)

1

where A = ¢y — Copho.

To find the setup cost rate when in state x, we need to
find the cycle length. For a fixed total unfinished workload
x, the two-dimensional workload process (W, W,) moves
back and forth at an asymptotically infinite rate along the
line segment from (0, x) to (u(x), x — u(x)). We deter-
mine the cycle length, and hence the setup cost rate, as a
function of the normalized workload by slowing down time
so that the two-dimensional workload moves at a finite and
positive rate, the total workload stays fixed, and the move-
ment of the two-dimensional workload is deterministic. If
the server finds x units of work in class 2 upon arrival, then
this work will be depleted at rate 1 — p,. The server works
until W, (¢t) = u(x) and W,(t) = x — u(x), which occurs
after u(x)/(1 — p,) time units. As we will see later, the
normalized total workload process W never spends any
time below max(w,, w,), and so we need not include any
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unnecessary inserted idle time into the cycle length calcu-
lation. Therefore, it takes u(x)/(1 — p;) time units to de-
plete class 1 and complete the cycle, resulting in a cycle of
length u(x)/(1 — p,) + u(x)/(1 — p;). Since the holding
costs are estimated using a heavy traffic approximation,
and the scheduling problem essentially trades off the setup
and holding costs, a more accurate analysis results if we
assume that p = 1 in our cycle length expression, which
simplifies the cycle length to u(x)/p;p,. Because two setups
are incurred in each cycle, the setup cost rate when in state
X iS pypak/u(x).
Now we find the optimal u(x) by solving:

+ p; fxz)" . (1.5)

. N Au(x)
min ¢ X
u(x)€[0,x] 2K2 2

If we define

A 2p1p2k
W= wlT, (1.6)

then straightforward calculus leads to
u*(x) = min(x, w). (1.7)

Hence, w is the largest value of the total workload for
which class 2 is served exhaustively. Notice that w = o
when A = 0, and so the optimal control in the balanced
case is u*(x) = x for all x, which corresponds to exhaustive
service for class 2.

1.7. The Optimal Threshold Level

In this subsection we analyze the normalized total work-
load process under the form of the proposed policy, using
the control u*(x) in (1.7). This analysis shows that the
total workload process W is a RBM(—c, o) on [w, %),
where w is a parameter that will be optimized over.

In the balanced case, the control u*(x) implies that the
form of the optimal policy is to switch from class 1 to class
2 when W,(t) = 0 and W,(t) = w,, and switch from class 2
to class 1 when W,(¢) = 0 and W,(¢) = w,. Let us begin by
assuming that w; < w,. When the two-dimensional work-
load process hits the point (x, 0), where x € [wy, w,), then
the server will switch to class 1 and the process instanta-
neously moves to the point (0, x). Since x < w,, the server
will not immediately switch back to class 2. Rather, the
server serves newly arriving class 1 customers or sits idle
until class 2’s workload reaches w,. In the heavy traffic
limit, time is sped up by a factor of n, and the two-
dimensional workload process instantaneously moves from
the point (0, x) to the point (0, w,); consequently, the total
workload process never spends any time below the value of
Ww,. A similar argument when w; > w, implies that the
total workload process is a RBM(—c, ¢°) on [max(w,, w5),
). Thus, the heavy traffic analysis is too crude to distin-
guish between the thresholds w, and w,, and we follow the
convention of setting them both equal to w. Later in this
subsection the cost minimizing value of w will be derived.
Hence, the setup cost problem decomposes in the balanced

case, and we can optimize over a single threshold parame-
ter w independently of u*(x).

For the imbalanced case, the total workload process
needs to be investigated under four different cases, de-
pending upon the relative values of the normalized thresh-
old levels w,, w, and Ww.

Case 1. 0 < wy, w, < W. The curves for switching from
class 2 to class 1 for all four cases are shown in Figure 1,
where the vertical portion of the switching curve follows
from (1.7). The argument put forth in the balanced case
implies that the total workload process in this case is an
RBM(—c, 0%) on [max(w;, w,), ©). We again set w, and
w, equal to the parameter w, and we model the optimal
total workload process as an RBM(—c, 0”) on [w, ). In
this case, the parameter w is optimized over the region 0 <
w=<Ww.

Case 2. W < wy, w,. The state (w,, 0) is never reached,
and hence the parameter w, does not play a role here. By
a similar argument as above, W is an RBM(—c, 02) on [w,,
). Thus, once again, we set w; and w, equal to a param-
eter w, let W be an RBM(—c, 0'2) on [w, *), and optimize
w over the region w = W.

Case 3. 0 < w; < Ww < w,. The total workload W is an
RBM(—c, 0?) on [w,, ), and so we set w; and w, equal to
w and optimize over w = w. Thus, Case 3 reduces to Case
2.

Case 4. 0 < w, < Ww < w,. The parameter w, is not a
factor, and W is an RBM(—c, ¢*) on [w,, ). Hence, Case
4 reduces to Case 1.

In summary, it suffices to restrict our attention to Cases
1 and 2. Thus, as in the balanced case, the single threshold
parameter w = 0 can be optimized independently of
u*(x).

We now derive the optimal value of the parameter w.
Substituting the optimal control u*(x) from (1.7) into the
cost rate function in (1.5) yields the optimal cost rate when
the normalized workload is x, which is

K
Copmax + % + % when x < w, and (1.8)
CopoXx + \2p1p2Ak  whenx = Ww. (1.9)

To find the total expected average cost, the optimal cost
rate is integrated over the steady-state distribution of the
total workload process. The normalized workload process
is approximated by an RBM(—c, ¢*) on [w, %), which has
stationary density function ae”““") for x = w, where «
= 2c/0”.

If w = i, then the total expected cost is C(w) =
cou(w + a ') + V2pp,Ak, which is increasing in w.
Therefore, the optimal value of w is less than or equal to
W, and Case 1 of the previous subsection holds. Define the
aggregate cost parameter C = (¢, + Cap,)/2. Then the
total expected cost equals
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Case 1. wi, W2 < W

Wa

Case 2. @ < wy,ws

Wy

wy ? 2—-1

-~

w w1 W1

w2t 2 —1

w W W]_

Case 4. wy < W< wy

W,
2—-1

w w1 W1

Figure 1. The total workload process for various values of w,, w,, and .

w —ax
xe “dx + plszJ erx

w

Cw) = oze‘w(a J
+copn j xe “dx + \2piprAx J e ™ dx). (1.10)
Setting the derivative of the total expected cost with re-
spect to w equal to zero yields

_ ) — Alaw + 1
—C = e"‘(wfw)<a\/2p1p2AK — %)

+ a2p1p2K<eaW(E1(aw) — E\ (b)) — ﬁ) (1.11)

where E(x) = [7 t'e" dt, x > 0 is the exponential
integral. It turns out that C(w) is not convex; however, the
solution to (1.11) is well-behaved numerically, and yields
the global minimum of C(w) for the cases we consider. We
denote this solution by w* and refer to it as the optimal
threshold level. Since C'(w) = aC(w) — a(Cw +
p1pokw 1), it follows that the optimal total expected cost is
C(w*) = Cw* + pypkw™ L.

In the balanced case where A = 0, the first order condi-
tion (1.11) reduces to

1 CiM1

L _ g - S 112
o ¢ 1(aw) N (1.12)
Moreover, C"(w) = o’pip.k(e™E (aw) + (aw)™? —

(aw)™1), and the convexity of C(w) follows from the
bound ¢'E(x) > 1/(x + 1).

1.8. The Proposed Scheduling Policy

The heavy traffic solution is given by the control u*(x)
defined in (1.7), which specifies a switching curve, and the
threshold level w* satisfying (1.11) or (1.12). We use this
solution to propose a scheduling policy in terms of the
three-dimensional state of the original problem, which is
the two-dimensional queue length process (Q;, 0,), and
the server location. Since both u*(x) and w* are expressed
in terms of the normalized workload W, several steps are
required to translate this heavy traffic solution into a pro-
posed policy. First, we reverse the heavy traffic scaling to
express the quantities u#*(x) and w* in terms of the un-
scaled workload V. Since W(t) = V(nt)/\/n, when the nor-
malized workload W equals x, then the original workload
IV equals y, where y = Vnx. The control u*(x) requires the
server to serve class 2 until W, = u*(x), or equivalently,
until V,/Vn = u*(y/Vn). If we substitute K/n for the
normalized setup cost « in (1.6), then when the total work-
load V equals y, class 2 is served until

2p1p:K
v, =min<y, Ve ) (1.13)

By (1.13), class 2 is served exhaustively as long as the total
workload V' is less than or equal to

2p10.K
o= P, (1.14)

which, not surprisingly, equals \Vaw. Similarly, if we define
the parameter 6 = 2(1 — p)/o” and the unscaled threshold
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v* = Vnw*, then substitution of v/Vn for w, K/n for k,
and Vn# for « in (1.11) and (1.12) yields, respectively,

_ . — A0+ 1

_C = 66(1’71’)< 0 \,2p1p2AK - ( v2 )>
2 6v 2 1

+ 0% 1paK( e "B (00) —~ Ev(03) ~ L), (L15)
and

1 0 C1M1
——e¢"E{(0v) = 5. 1.16
5.~ ¢"E1(6) 01 p, K (1.16)

Finally, the predicted optimal average cost for the original
scheduling problem is:

p1p2K

\/gC(W*) =Cv* + Tox -

(1.17)
Notice that the quantities in (1.13)-(1.17) are independent
of the heavy traffic scaling parameter n, and are expressed
solely in terms of the primitive problem parameters.

Now that the optimal control has been translated into
unscaled workloads, we use the simple heavy traffic rela-
tionship W, = Z; between workloads and queue lengths
to express the switching curve and threshold level in terms
of queue lengths. The only remaining hurdle is that the
resulting quantities are continuous, whereas the two-
dimensional queue length process resides on a lattice. We
naively ignore this difference between our continuous solu-
tion and the discrete state space, which essentially
amounts to rounding the threshold level up to the next
highest integer and rounding the switching curve out to the
next largest lattice points. In addition to being the most
natural translation of the continuous solution, it also pre-
vents us from rounding a threshold level down to zero,
where infinite setup costs would be incurred.

In the balanced case, the critical value © in (1.14) equals
infinity, which corresponds to exhaustive service. The pro-
posed policy is: when Q(t) = 0 and Q,(t) = p,v*, then
switch from class 1 to class 2; when Q,(t) = 0 and Q,(t) =
wiv*, then switch from class 2 to class 1. The parameter v*
is the solution to (1.16). This policy is a special case of the
double threshold policy introduced by Hofri and Ross,
who prove that the optimal policy is of this form in the
balanced case when arrivals are Poisson.

By (1.13), the proposed policy for the imbalanced case
has a particularly simple form, and is pictured in Figure 2:
when Q,(t) = 0 and Q,(t) = p,v*, then switch from class 1
to class 2. When Q,(t) = w0 or (Q,(t) = 0 and Q4(t) =
w1 v*), then switch from class 2 to class 1. The parameters 9
and »* are defined in (1.14) and (1.15), respectively.
Hence, the server switches to the high-priority class as
soon as the queue length of that class grows to the level
w1?. By (1.14), this critical level increases with the setup
cost K and decreases as A, the cu differential between the
two classes, gets larger. It is worth noting that the heuristic
policy of Duenyas and Van Oyen has the same general
form as our proposed policy.

Q-

1—2

pov™ T 2—1

Figure 2. The proposed scheduling policy when ¢ u, >
CoMo.

The most intriguing aspect of Figure 2 is the switching
curve from class 2 to class 1. In the Markovian discounted
case, Koole derives the interesting asymptotic result that
the upper part of this switching curve is, in fact, vertical;
that is, the curve satisfies O, equals a constant for all
values of O, larger than some finite quantity. Moreover,
the numerically computed optimal switching curves in our
computational study (see also Table 1 of Koole and the
end of Section 3 of Duenyas and Van Oyen) behave as in
Figure 2, except that the vertical part of the curve veers
slightly to the right during its approach to the horizontal
axis. The point of departure from a straight vertical line
occurs relatively close to the horizontal axis (e.g., at Q, =
3 in Duenyas and Van Oyen’s example, at O, = 2 or 3 in
most of our examples, and O, = 6 in Koole’s discounted
example). It is important to note that existing numerical
results are consistent with the conjecture that our pro-
posed policy is asymptotically optimal (of course, not the
unique optimum) in heavy traffic: the discrepancy between
the form of the optimal switching curve and the form pic-
tured in Figure 2, which typically affects only several states
in the positive quadrant, vanishes in the heavy traffic limit
because the point of departure from the vertical line
(which is quantified in the parenthetic remark in the last
sentence) becomes zero under the heavy traffic normaliza-
tion. Hence, as in previous heavy traffic scheduling work,
the heavy traffic analysis leads to a simple policy that cap-
tures the key features of the optimal policy and ignores fine
details (such as the departure from the vertical switching
curve near the horizontal axis) that do not have a signifi-
cant effect on system performance when the system is con-
gested.

2. THE SETUP TIME PROBLEM
2.1. Problem Description

The only difference between the setup time problem con-
sidered in this section and the setup cost problem is that a



random setup time, rather than a setup cost, is incurred
when the server switches from one class to the other. All
relevant notation from the setup cost problem will be re-
tained. By Coffman et al. (1998), the performance of this
system in heavy traffic depends upon the setup time distri-
butions only through the mean setup time per cycle, which
we denote by s. The server has three scheduling options at
each point in time: (1) serve a customer from the class that
is currently set up, (2) initiate a setup, or (3) sit idle. The
objective is to find a preemptive-resume, nonanticipating
scheduling policy to minimize

1 r2
1imsupTEH > ¢;0;(1) dt]. (2.1)

T—x» 0 i=1

2.2. The Approximating Diffusion Control Problem

The setup times are not rescaled as the heavy traffic limit is
approached; that is, we assume that the setup times are
O(1). The lack of setup costs has eliminated the incentive
to insert unnecessary idleness in heavy traffic. Inserted
idleness increases the workload, which in turn increases
the holding costs. Hence, the proposed form of the opti-
mal policy is simpler than in the setup cost problem: serve
class 1 to exhaustion and then set up for class 2. If class 2’s
normalized unfinished workload W,(t) = x at the setup com-
pletion epoch, then serve class 2 until W(t) = u(x) and
W,(t) = x — u(x), and immediately switch back to class 1.
As in the setup cost problem, the control {u(x), x = 0}
can generate any arbitrary switching curve in the nonnega-
tive orthant.

Since the setup times are O(1), switchovers occur in-
stantaneously in the heavy traffic limit. Hence, the rela-
tionship between the two-dimensional normalized
unfinished workload process (W,, W,) and the total nor-
malized workload W still satisfies (1.3), just as in the setup
cost problem.

Under the exhaustive service policy, Coffman et al.
(1998) show that as p — 1 the normalized total unfinished
workload process W converges weakly to a diffusion pro-
cess with drift p;p,sx ' — ¢ and variance o~ given by (1.2).
They calculate the state-dependent drift by taking the limit
as n — = of Vn(p — f(x)), where f(x) is the fraction of
time that the server spends doing useful work when the
normalized unfinished workload W equals x. Mimicking
their calculations, we find that the corresponding drift for
the controlled policy u(x) is

pPi1p2S
u(x)

plx) = ¢, (2.2)
which agrees with their drift in the special case of exhaus-
tive service (that is, u(x) = x for all x). In summary, we
approximate the normalized total unfinished workload
process W by a (u(x), o) diffusion.

As we mentioned earlier, given W(t) = x, the two-
dimensional process (W;, W,) behaves the same with or
without setup times; hence, the holding cost rate when in
state x is given by (1.4). Therefore, the approximating
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diffusion control problem is to choose {u(x), x = 0} to
minimize

. 1
lip sup 7 £ [ L

T

SC ) R

(Czi‘«zx(t) + 3

where X is a (u(x), o) diffusion process and u(x) € [0, x]
for all x = 0.

The previous literature on heavy traffic approximations
of queueing scheduling problems assumes zero setup
times, and the time scale decomposition described in Sec-
tion 1 leads to a deterministic pathwise optimization for
the optimal queue length process, and a singular control
problem for the optimal cumulative idleness process. The
presence of setup times destroys this simplifying structure,
and (2.3) provides the first example of a scheduling prob-
lem for a queueing system that is approximated in heavy
traffic by a drift control problem.

2.3. Analysis of the Diffusion Control Problem

We begin by briefly discussing the balanced case where
each class has the same cu index. (Details of the analysis
can be found in subsection 2.3 of Reiman and Wein.)
Setting A equal to zero in (2.3) shows that the problem
reduces to choosing u(x) to minimize the mean of the
stationary distribution of the diffusion process X. This goal
is achieved by minimizing the drift w(x) in (2.2), and hence
the optimal control is u(x) = x for all x; therefore, the
proposed scheduling policy for the balanced case is to serve
each class to exhaustion, and immediately switch class. The
resulting diffusion process is a Bessel process with an addi-
tive drift, and the expected average cost is C(2p;p.s +
)/(2(1 — p)), where the cost parameter C was defined
earlier as (c;uq + cau,)/2.

For the balanced case, we can also introduce setup costs
into the setup time problem without sacrificing tractability.
For the balanced case with setup times and setup costs, the
proposed scheduling policy is: when Q4(t) = 0 and Q,(t) =
mov*, switch from class 1 to class 2; when Q,(t) = 0 and
0.(t) = pv*, then switch from class 2 to class 1. The
threshold v* is found by solving

(0v)Pe 0 ( B) n BC

I +1, 6v) ' 6v 0(p1p,0K — BCv)’ @4

where B = 2p,p,s/a”. Although we have not been able to
prove the existence of a unique positive root v* to (2.4),
the numerical solution to this equation was well behaved
for our test examples. The averages suboptimality of this
policy on 45 test cases was 3.4%. (See subsection 3.2 of
Reiman and Wein.)

For the remainder of this paper, we assume c;; > ¢,
in the setup time problem. Notice that (2.3) is nonstand-
ard, in the sense that the drift is unbounded at zero and
will be unbounded whenever the control u(x) = 0. None-
theless, we proceed as if standard arguments apply (see,
for example, Mandl 1968), and write the Hamilton-Jacobi-
Bellman optimality equation for problem (2.3) as
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Au(x)
2 -9

min {c x +
u(x)€[0,x] 22

<Pl pas
u(x)

Hence, if we can find a constant g, which is referred to as
the gain, and a potential (relative value) function V(x) that
solves (2.5), then the control u*(x) that minimizes the
expression in brackets in (2.5) is optimal, and ¢ is the
minimal average cost per unit time (independent of initial
state). The resulting potential function V/(x) represents the
cost incurred under the optimal policy when the initial
state is x minus the cost incurred under the optimal policy
when the initial state is zero. We assume that IV € C? and,
to avoid notational confusion between the potential func-
tion and the unscaled workload process, we employ the
first derivative of the potential function, which is denoted
by p(x) = V'(x).
Rewriting (2.5) as

(2.5)

c) V'(x) + %2 V"(x) = 0.

. {Au(x) Plpzsp(x)}
min
u(x)€[0,x] 2 u(x)
g’
+ copox — g — cp(x) +7p (x) =0, (2.6)

we obtain u(x) = V2p;p,sp(x)/A from the first order op-
timality condition. Since greater initial workload implies
greater cost, we have p(x) > 0 and the function in brackets
in (2.6) is convex with respect to u(x). Hence, the optimal
control is given by

u*(x) = min{x, wzmpzw}. 2.7)

It is interesting to compare (2.7) with the corresponding
solution (1.6)—(1.7) in the setup cost problem. The solu-
tions are identical, except that the normalized setup cost
per cycle k in (1.6) is replaced by the expected setup time
per cycle s multiplied by p(x). Hence, the two optimal
controls will be qualitatively similar if the potential func-
tion V(x) is linear, which will turn out not to be the case.
Thus, solutions for the two problems lead to fundamen-
tally different qualitative behavior.

We assume that 2p,p,sp(x)/A is monotone enough (e.g.,
p is nondecreasing) and is greater than x* as x — 0, so
that

ifx <w,
] (2.8)

X
u*(x) = { 2pip2sp(X) ¢ =
A b

where the normalized threshold level w is unknown at this
point and satisfies the fixed point equation

W= \lzm"aﬂ. (2.9)

If we substitute (2.8) into (2.5), then the optimality
equation reduces to two ordinary differential equations
(ODEs) for p(x)

2 —
%p’(x) + (plfzs - c)p(x) =g—Cx forx€e[0,w]
(2.10)
and
o? e
5 p'(x) = ep(x) + N2pyprAsp(x)
=g —courx forx=w. (2.11)

The ODE in (2.10) is linear and possesses an explicit
solution (that satisfies the properties assumed above). Un-
fortunately, the ODE in (2.11) is nonlinear and does not
appear to admit an analytical solution. At this point, we
can resort to approximate analytical methods or numerical
methods. In the remainder of this section we derive an
approximate analytical solution. However, we also em-
ployed the Markov chain approximation technique (see
Kushner and Dupuis 1992) to numerically compute an op-
timal solution to the diffusion control problem. The result-
ing scheduling policy performed well in a computational
study (it averaged 1.9% suboptimality over the 27 test
cases in Table VI). However, the numerical procedure has
three shortcomings when compared to the approximate
analytical approach: (1) it did not perform quite as well in
our computational study, (2) it is more difficult to imple-
ment, and (3) it is not independent of the heavy traffic
parameter n. Consequently, for brevity’s sake, we omit the
numerical approach and refer readers to Section 2.6 of
Reiman and Wein.

We conclude this subsection with an asymptotic result
that forms the basis of our approximate analytical solution.
Although (2.11) cannot be solved analytically, first hitting
time arguments can be employed to obtain the asymptotic
value of p(x) as x — . A derivation in the appendix
shows that the derivative of the potential function satisfies

ConX
ZCL-F o(x) asx — oo,

p(x) = (2.12)
This asymptotic result allows us to see how the control
u*(x) behaves as x — o. More specifically, (2.7) and (2.12)

imply that

u*(x) N [2¢op2p1p2s as x —> o0
I~ cA )

VX

(2.13)

This result is in direct contrast to the solution (1.6)—(1.7)
of the setup cost problem, which implies that

2p1p2k
A

Equations (2.13)—(2.14) summarize the contrasting qualita-
tive behavior between the solutions to the two problems:
u*(x) grows as Vx in the setup time problem and is a
constant for large x in the setup cost problem.

u*(x) — asx — o,

(2.14)

2.4. An Approximate Analytical Solution

One of our goals is to find a scheduling policy that per-
forms well and is relatively easy to derive. Consequently,



we investigate a simple class of policies, which we refer to
as asymptotic policies; these policies can be constructed by
patching together the asymptotic result (2.12) with the first
part of solution (2.8). In particular, we assume that u(x) =
x for x less than or equal to some unknown threshold W,
and u(x)/Vx equals a constant thereafter; hence, we are
assuming that the asymptotic result holds not only for very
large x, but for all x = . Continuity at W gives

_{.x ifx<w, ) 1is
LS BNl S (2.15)

This control, and hence the resulting scheduling policy, is
characterized by a single parameter, the threshold level w.
Although the stability of the actual queue length process
under the asymptotic policy may be difficult to ascertain,
by (2.2) and (2.15) the corresponding diffusion process is
positive recurrent for all w > 0, because the drift is nega-
tive and monotone decreasing for all sufficiently large val-
ues of the normalized total workload.

We estimate W by assuming that this parameter satisfies
the fixed point equation (2.9), and by approximating the
unknown function p(x) in this equation. In an attempt to
refine (2.12), we assume that p(x) = ax + bVx + o(Vx)
as x — o for unknown constants a and b. Substituting this
expression into the nonlinear ODE (2.11) and ignoring all
o(Vx) terms leads to

Co Mh2X

2c Asx
c + 4/ zV«zP;Pz +o(\x) asx — o,
c

(2.16)

p(x) =

Substituting this expression into the fixed point Equation
(2.9) yields

2c,a2p1pas  [8copapipis®
Acx + IV I 1. (2.17)

If we set z = Vcx, then (2.17) becomes the cubic equation

AZ3 - 2C2[.L2P1P2SZ - (2p1p2S)3/2VC2M2A = 0. (218)

Since Vew = V(1 — p)%, it follows that the optimal un-
scaled threshold level ¥ is z%/(1 — p), where z solves (2.18).

As in Section 1, when the unscaled total workload
equals y, the control u*(x) requires the server to serve

class 2 until the unscaled class 1 workload V| equals
Vnu*(y/\V/n). Substituting 9/Vn for w in (2.15) gives

ify <9
T*ﬁl>:{y ! ’ 2.19
Vnu N \@ ity = 4. ( )

Translating workloads into queue lengths gives our pro-
posed scheduling policy: serve class 1 to exhaustion and then
switch to class 2; serve class 2 until

pwi'Qi(t) + pa'0, (1)
if Qi) + py'Qa(r) < 9,

Va0 () + 3!, (1))
if pi'Q () + p3'0a(1) = 9,

w0 (1) = (2.20)
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Table I
The 36 Test Cases for the Setup Cost Problem
Holding Setup Traffic
Cost Cost Intensity
cy K p
Balanced 1.0 — —
Low 1.5 2 0.5
Medium 5.0 20 0.7
High 10.0 200 0.9

and then switch back to class 1. This policy implies that
class 2 is served to exhaustion as long as w; 'Q,(f) +

P«z_le(t) <2

3. COMPUTATIONAL STUDY

A numerical experiment is undertaken in this section to
investigate the effectiveness of our proposed policies. For
both the setup cost and setup time problems, we compare
the performance of the optimal policy, the proposed pol-
icy, and a straw policy. The straw policy for the setup cost
problem is the patient exhaustive policy: switch out of a class
whenever it is exhausted and at least one customer of the
other class is present. The straw policy for the setup time
problem is the exhaustive policy: serve each class to exhaus-
tion and then switch class. These straw policies are studied
because they are simple to implement in practice and are
commonly found in the literature. The value iteration al-
gorithm is used to derive optimal policies and to evaluate
the cost of the proposed and straw policies. To simplify the
computational effort, we assume that all interarrival times,
service times, and setup times are exponential. The state
space was truncated in the value iteration algorithm, and
larger and larger state spaces were tested until the results
were insensitive to increasing the state space. State spaces
up to 90 by 90 and up to 4,000 value iterations were re-
quired to achieve three-digit accuracy. We report the sub-
optimality of the proposed and straw policies, where a

policy’s suboptimality 3.1
_ policy’s cost — optimal cost % 100%.
optimal cost

3.1. The Setup Cost Results

Forty test cases for the setup cost problem are considered,
and we begin with the 36 test cases that are generated by
all combinations of the parameter values in Table I; results
for 12 additional test cases with K = 10 can be found in
Reiman and Wein. For each test case in Table I, we set the
service rates u; = m, = 1 and the arrival rates A; = A, =
p/2, and let the holding cost ¢, = 1. Hence, each test case
is characterized by the holding cost ¢, of the high-priority
class, the setup cost per cycle K, and the traffic intensity p.
This experimental design allows us to isolate the impact of
three key parameters: (1) the difference in cu values be-
tween classes, (2) the setup cost, and (3) the traffic inten-
sity. Notice that nine cases in Table I are balanced, that is,
€1ty = CoMn, and 27 cases are imbalanced. Although our
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Table 11
Results for the Setup Cost Problem

Suboptimality Suboptimality

Holding Setup Traffic Cost of of of
Cost  Cost Intensity Optimal Proposed Straw
¢y K p Policy Policy Policy
1.0 2 0.5 1.171 0.0% 0.0%
1.0 2 0.7 2.510 0.0% 0.0%
1.0 2 0.9 9.073 0.4% 0.4%
1.0 20 0.5 2.558 12.4% 5.9%
1.0 20 0.7 4.040 0.0% 1.6%
1.0 20 0.9 10.088 0.3% 0.3%
1.0 200 0.5 7.929 5.0% 128.2%
1.0 200 0.7 10.524 1.1% 90.3%
1.0 200 0.9 16.614 0.0% 21.9%
1.5 2 0.5 1.382 0.6% 2.8%
1.5 2 0.7 2.880 0.2% 7.4%
1.5 2 0.9 9.691 0.7% 17.2%
1.5 20 0.5 2.886 3.1% 3.4%
1.5 20 0.7 4.611 0.6% 1.6%
1.5 20 0.9 11.319 0.4% 9.3%
1.5 200 0.5 8.719 13.1% 110.4%
1.5 200 0.7 11.752 3.0% 75.4%
1.5 200 0.9 19.042 0.7% 18.2%
5.0 2 0.5 2.557 0.0% 24.0%
5.0 2 0.7 4.771 0.0% 50.4%
5.0 2 0.9 12.557 0.3% 115.4%
5.0 20 0.5 4.368 4.6% 7.8%
5.0 20 0.7 7.200 0.4% 21.8%
5.0 20 0.9 15.408 1.0% 82.1%
5.0 200 0.5 11.789 27.8% 70.4%
5.0 200 0.7 17.331 14.3% 42.5%
5.0 200 09  28.555 1.5% 34.0%
10.0 2 0.5 4.224 0.0% 34.2%
10.0 2 0.7 7.463 0.0% 74.3%
10.0 2 0.9 16.647 0.2% 197.1%
10.0 20 0.5 6.144 1.5% 17.3%
10.0 20 0.7 10.008 0.1% 45.9%
10.0 20 0.9 19.548 0.2% 158.2%
10.0 200 0.5 14.945 30.7% 51.2%
10.0 200 0.7 22815 11.9% 33.8%
10.0 200 09  37.144 1.6% 63.6%

proposed policy, which is described in subsection 1.8, was
derived under heavy traffic conditions, the policy is tested
with traffic intensities as low as 0.5, and with setup costs as
small as one-tenth of the holding cost c,. Table II provides
the long-run average cost under the optimal policy, and
the suboptimalities of the proposed policy and the patient
exhaustive policy for the 36 test cases. These results are
summarized in Tables III and IV to isolate the effects of
the three key parameters. Each entry in Tables III and IV
represents the average suboptimality of the 12 test cases
(nine cases for the holding cost) that have a particular
parameter equal to a particular value.

The proposed policy performs remarkably well: its over-
all average suboptimality is 3.2%, and its suboptimality is
less than 1% for 23 of the 36 test cases, and is less than
3.1% for 28 of the 36 test cases. Under these 28 cases,
comparison of the optimal switching curves (not displayed
here) with the proposed switching curves shows that the
two curves differ on at most several states in the state

Table III
Average Suboptimality of the Proposed Policy: Setup
Cost Problem

Holding Setup Traffic
Cost Cost Intensity
cy K p
Balanced 2.1% — —
Low 2.5% 0.2% 8.2%
Medium 5.5% 2.0% 2.6%
High 5.1% 9.2% 0.6%

Overall Average Suboptimality = 3.8%

space. In particular, the vertical boundary in Figure 2 is
very close to optimal in the imbalanced case. For the test
cases in Table I, the quantity (3*in (1.15)—(1.16) ranges
from one to three, and [@0in (1.14) has a mean of 3 and
varies from 1 to 13.

Recall that many of the 36 test cases grossly violate the
heavy traffic conditions stated in subsection 1.2, which re-
quires heavy loading and much larger setup costs than
holding costs. Perhaps the case that comes closest to satis-
fying these conditions is ¢; = 1, K = 200 and p = 0.9,
where the proposed policy is optimal. As in previous heavy
traffic work (see, for example, Chevalier and Wein 1993),
the performance of the proposed policy is relatively insen-
sitive to the heavy traffic assumptions underlying the anal-
ysis: the average suboptimality of the proposed policy is
2.3% over the 16 cases in Table I that have the setup cost
and the traffic intensity set at their medium or high levels.
However, the suboptimality deteriorates to as high as 30%
when the setup cost is large, the traffic intensity is low, and
the holding cost is high. In fact, most of the suboptimality
in the 48 cases occurs when K = 200: the average subop-
timality for the 24 cases in which K < 200 is 1.1%. In
summary, the proposed policy performs very well over a
broad range of parameter values, and then deteriorates
outside of this range.

The patient exhaustive policy, with an average subopti-
mality of 45.0%, is clearly outperformed by the proposed
policy. Not surprisingly, its performance degrades signifi-
cantly as the holding cost c¢; and the traffic intensity p
increase. Its suboptimality appears to be convex in the
setup cost K. As K initially increases, holding costs play
less of a role, and its suboptimality decreases; however, for
very large K, the optimal policy idles much more than the

Table IV
Average Suboptimality of the Straw Policy: Setup Cost
Problem
Holding Setup Traffic
Cost Cost Intensity
cy K p
Balanced 27.6% — —
Low 27.3% 43.6% 38.0%
Medium 49.8% 29.6% 37.1%
High 75.1% 61.7% 59.8%

Overall Average Suboptimality = 45.0%




Table V
Results for the Setup Cost Problem: Miscellaneous
Cases
Suboptimality Suboptimality
Holding Arrival Arrival Cost of of of
Cost Rate Rate Optimal Proposed Straw
Csy A A,  Policy Policy Policy
5 45 045 31410 9.2% 49.7%
5 9/11  9/11  44.986 4.4% 37.2%
10 45 045 51.020 0.9% 18.9%
10 9/11  9/11  82.590 0.9% 8.6%

patient exhaustive policy, particularly when the traffic in-
tensity is low.

Finally, to assess the proposed policy’s performance on
severely imbalanced problems, we consider four test cases
that have u; = 10, u, = 1,¢; = 1, p = 0.9, and K = 200.
The results for these four test cases are displayed in Table
V. In all four cases, the proposed policy performs much
better than the straw policy.

3.2. The Setup Time Results

Table VI enumerates the 27 test cases for the imbal-
anced (that is, ¢,y > c,u,) problem with setup times;
recall that Reiman and Wein contains results for 45 test
cases for the balanced problem with setup costs and
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Table VI
The 27 Test Cases for the Setup Times Problem

Holding Cost ~ Setup Time  Traffic Intensity

¢ s p
Low 1.5 2 0.5
Medium 5 10 0.7
High 10 20 0.9

setup times. The results for the proposed policy and the
exhaustive policy, which is the straw policy for these test
cases, are given in Table VII and summarized in Tables
VIII and IX.

The proposed policy performs very impressively on
these test cases. The suboptimality is never above 5% and
the average suboptimality over the 27 test cases is 1.5%. In
contrast, the suboptimality for the exhaustive policy aver-
ages 8.7%. Not surprisingly, the policy’s performance de-
grades when the holding cost ¢, is large and the setup
times are small.

Table X gives results for four test cases that are identical
to those in Table V, except that setup times (with s = 10)
are incurred instead of setup costs. In contrast to Table V,
where the optimal policy requires significant idling, both
the proposed and straw policies are very close to optimal
in all four cases.

Table VII
Results for the Setup Time Problem

Holding Setup Traffic Cost of Suboptimality of Suboptimality of
Cost Time Intensity Optimal Proposed Straw
cy s p Policy Policy Policy
1.5 2 0.5 1.845 1.9% 0.1%
1.5 2 0.7 4.348 0.3% 0.2%
1.5 2 0.9 16.814 0.0% 0.3%
1.5 10 0.5 4.336 21% 0.9%
1.5 10 0.7 10.195 0.2% 0.1%
1.5 10 0.9 39.342 0.0% 0.1%
1.5 20 0.5 7.470 1.2% 0.4%
1.5 20 0.7 17.494 0.1% 0.0%
1.5 20 0.9 67.062 0.0% 0.6%
5.0 2 0.5 3.918 1.4% 8.9%
5.0 2 0.7 9.047 0.2% 14.4%
5.0 2 0.9 33.873 1.6% 19.4%
5.0 10 0.5 9.946 4.9% 5.6%
5.0 10 0.7 23.671 0.5% 3.5%
5.0 10 0.9 90.943 0.2% 3.9%
5.0 20 0.5 17.292 5.0% 41%
5.0 20 0.7 41.195 0.5% 2.0%
5.0 20 0.9 154.934 0.1% 4.4%
10.0 2 0.5 6.422 1.4% 21.5%
10.0 2 0.7 14.532 1.8% 29.9%
10.0 2 0.9 52.846 4.5% 40.3%
10.0 10 0.5 17.144 4.7% 12.3%
10.0 10 0.7 40.895 0.8% 9.8%
10.0 10 0.9 154.388 0.7% 12.2%
10.0 20 0.5 30.095 4.8% 9.7%
10.0 20 0.7 72.431 0.4% 6.3%
10.0 20 0.9 240.781 0.6% 22.9%
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Table VIII
Average Suboptimality of the Proposed Policy: Setup
Time Problem

Table IX
Average Suboptimality of the Straw Policy: Setup
Time Problem

Holding Cost ~ Setup Time  Traffic Intensity Holding Cost ~ Setup Time  Traffic Intensity
I s p I s p
Low 0.6% 1.5% 3.1% Low 0.3% 15.0% 7.0%
Medium 1.6% 1.6% 0.5% Medium 7.4% 5.4% 7.4%
High 2.2% 1.4% 0.9% High 18.3% 5.6% 11.6%

Overall Average Suboptimality = 1.5%

Overall Average Suboptimality = 8.7%

4. CONCLUDING REMARKS

Using heavy traffic approximations, we analyze a dynamic
scheduling problem for a two-class queue with either setup
costs or setup times. As in previous heavy traffic scheduling
studies, these approximations yield control problems that
are more amenable to analysis than the original queueing
control problems. Our analysis yields a simple two-
parameter policy for the setup cost problem, where one
parameter is found in closed form and the other is a solu-
tion to a specified equation; we conjecture that this policy
is asymptotically optimal in heavy traffic. Although the dif-
fusion control problem that approximates the setup time
problem in heavy traffic is not explicitly solvable, a sched-
uling policy is constructed from an asymptotic result. Com-
putational results indicate that our proposed policies are
close to optimal over a broad range of parameter values,
including some cases where the heavy traffic conditions are
severely violated. An interesting implication of our analysis
is that setup cost and setup time problems lead to funda-
mentally different qualitative solutions; see (2.13)—(2.14).
Setup times eat into capacity in a nonlinear fashion, and
hence setup costs cannot be used as a surrogate for setup
times, as is sometimes done in deterministic scheduling
problems with setups. (See, for example, the survey paper
by Elmaghraby 1978.)

Markowitz (1996) has generalized our heavy traffic anal-
ysis from the two-class case to the multiclass setting. For
both the setup cost and setup time problems, he restricts
himself to cyclic policies (i.e., the server can idle, continue
serving class k customers, or switch to class k + 1 custom-
ers) and shows that at most one class (the smallest ¢ class)
is served nonexhaustively in heavy traffic. Notice that in the
two-class setting, the focus of the setup cost problem is on

haustion. Markowitz’s results suggest that for setup time
problems with many classes and in sufficiently heavy traffic,
good noncyclic exhaustive policies, such as the polling ta-
bles developed by Boxma et al., should perform reasonably
close to optimal.

APPENDIX
The goal in this appendix is to show that:

) _ c
limx ~'p(x) = 27‘”,
x—>®© C

which is equivalent to (2.12). Since

p(o) = lim 3 '[V(x + 8) = V(x)], (A1)
we want to show that:

Vix+8) -V
lim lim LT V) _ capz (A2)
x—x §—0 x8 C

Thus we consider the quantity V(x + 8) — V(x). We can
write

Vix +8) — V(x)

T *
:Ex+8|:J <C2M2X(I)+M(2X(t))_
0

g) dt] . (A3)

where T, is the first hitting time of x for the (p;p,s/u*(x)
— ¢, ¢°) diffusion process X, and the expectation is with
respect to the initial state x + 8. Combining (A.1) and
(A.3) yields

1
p(x) - }311;% 8Ex+3[JO

T:

<02M2X(1)

determining when to serve nonexhaustively and when to "
) : : Au*(X(1))
idle, and the focus of the setup time problem is on nonex- + — 5 9 dt|. (A4)
Table X
Results for the Setup Time Problem: Miscellaneous Cases
Suboptimality Suboptimality
Holding Arrival Arrival Cost of of of
Cost Rate Rate Optimal Proposed Straw
csy A Ay Policy Policy Policy
5 4.5 0.45 191.924 0.1% 0.1%
5 9/11 9/11 118.720 0.6% 0.6%
10 4.5 0.45 256.383 0.3% 0.3%
10 9/11 9/11 170.706 0.7% 0.7%




To obtain the desired result, we need to first show that

u”(x) —0 asx — oo, (A5)
and
u*(x) - o asx — o, (A.6)

These two asymptotic results will be derived in turn.
Throughout this appendix we make the intuitively reason-
able assumption that u(x) is nondecreasing in x.

We prove (A.S5) by contradiction, and hence initially as-
sume that lim,_,.. x 'u*(x) > 0. Since u*(x) € [0, x] for
all x = 0, it follows that

A
[ (e2ma + ) "
p(x) $ggg) 8EMU X(1) dt]

0

_%Ex+8[Tx]]' (A7)

The assumed monotonicity of u*(x) yields u* — oo, so that
the drift of X(¢) satisfies:

pP1p2s
u*(x)
Take x, large enough so that u(x)) < — ¢/2. Note that
w(x) < — ¢/2 for x = x,. Let X denote a (—c/2, o?)
Brownian motion, and TX its first passage time. For x = x,
it follows that the integral in (A.7) has the bound

—c— —c

p(x) = asx — oo, (A.8)

Ex+5[ jn X(1) dt] (A9)

0

sXE'erB[iw)c:' + E8|: J’ " X(t) dt:| s

0
where T, is the first passage time to zero for a (—c/2, o?)
Brownian motion.

To evaluate the last term in (A.9), let

h(8) = ES[ JT X() dt],
0

where T, denotes the first hitting time for X to either 0
or b. This function satisfies the ordinary differential equa-
tion (c.f. Karlin and Taylor)

(A.10)

h'(8) + % h”(8) (A.11)

subject to the boundary conditions /#(0) = h(b) = 0, which
yields

%5, 82, 20 +b)(1 — e
h(o) = 208, 82 2o A=) a1
C c Z(ecb/a _ 1)
Therefore,
To _ 2 2
ESH X(0) dt] = lim A (5) = 208, ‘% (A.13)
0 —>00

Since
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= 28
Ex+S[Tx] = 77

it follows from (A.7), (A.9), and (A.13) that as x — o,

. 22T <@ 2028 872>
plx) < }slﬁmo 1) c * c? + c

A\(2x , 207
= (eama+ 5)(T425),

Since p(x)/x* — 0 as x — =, by (2.7), we have u*(x)/x —
0 as x — oo, which is a contradiction; hence, (A.5) has
been shown. An immediate consequence of (A.5) is

Au*(x)

(A.14)

(A.15)

CopoX +
as x — .

(A.16)

—c
X 22

We next show (A.6), again by contradiction. Since we
have assumed u*(x) nondecreasing, assuming that (A.6)
does not hold is equivalent to assuming that u*(x) ap-
proaches some finite constant as x — %, which we denote
by u*(). For large x, X(¢) behaves as a (u, 0) Brownian
motion, where u = p;p,s/u*(*) — ¢ could be of either
sign. From (A.4) and the fact that p;p,s/u*(®) < p;p,s/
u*(x) we obtain

T
plx) = hmg‘”EM[ f X(t) dt] —1im L B, [T,]
’ (A17)

. C X —
= |jm 22X 79

lim 25— E5[ Ty, (A.18)

where T is the first hitting time for a Brownian motion
with drift w and variance o”. If u = 0, then E4[T,] = <,
and if u < 0, then E4[T,] = —&/n. Hence,

lim p(x) = lim % = o, (A.19)

Equations (A.19) and (2.7) imply that u*(x) — o, which
yields the desired contradiction.

Armed with (A.5) and (A.6), we can now show (A.2).
Equation (A.3) can be rewritten as

Vix + 8) — V(x) (A.20)

T
:Ex+a[ J CopaX(t) dl]

0
T
*Au*(X(1))
+Ex+8|:J fdt - gEx+8[Tx]'
0
Since (A.6) implies (A.8), equations (A.9) and (A.14) im-
plies that for x = x,
gEx+8|:T ]
ox cx

which converges to zero as x — . Let

u*(z)
P

€, = sup

z=X

By (A.5), e, — 0 as x — . For x = x, we can write



546 /| REIMAN AND WEIN

Tx Tx
Ex+6|:j u*(X(t)) dt:| = ExEx+6[J X(t) dt:|

0 0

< =

2 2
x[m+2"25+ o } (A21)
Cc c c
where the last inequality follows from (A.9), (A.13), and
(A.14). Since €, — 0 as x — oo, it is clear that

T,
CAuFX
lim 1im1Ex+3H u((l))dt]=0.

x—% 50 X0 0 2

We are, finally, faced with the first term on the right-
hand side of (A.20), which is the only one that does not
vanish. Fix x and let X®)(r) denote a Brownian motion
with (constant) drift w(x) = p;ps/u™(x) — ¢, and (con-
stant) variance o”. Let 7 denote the first passage times
for this process. As in (A.9), the monotonicity of u*(x)
implies that
7
X (1) dt]

XE, o[ T] + ESH
0

T
< EHB[ J X(1) dt]

0

_ e
< XE, [T + Es[ f X dt] :

0

where X is a Brownian motion with drift —c and vari-
ance o”. Following the analysis that led to (A.13) and
(A.14), we obtain

x8 0?5 | 8

c 2¢2  2c¢

Te
< Ex+8|: J X(1) dt]
0

2 2
< x6 T ) " ) '
w(x)  2u?(x)  2p(x)

(A.22)

Since w(x) — —c as x — «© by (A.6), we have

Tx
Ex+8|: J X(1) dt]
0

}E}c}c %123 X8 T
which yields

L Vx4 8)—V(x) caps
lim lim = s
x—x §—0 x8 C

by (A.20). This is what we set out to show.
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