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A critically loaded multirate link with trunk reservation
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We consider a loss system model of interest in telecommunications. There is a single
service facility with N servers and no waiting room. There are K types of customers,
with type ¢ customers requiring A; servers simultaneously. Arrival processes are Poisson
and service times are exponential. An arriving type ¢ customer is accepted only if there
are R; (> A;) idle servers. We examine the asymptotic behavior of the above system in
the regime known as critical loading where both NV and the offered load are large and al-
most equal. We also assume that Ry, ..., Rix—1 remain bounded, while RY — oo and
R¥/V/N — 0as N — oco. Our main result is that the K dimensional “queue length”
process converges, under the appropriate normalization, to a particular K dimensiona dif-
fusion. We show that a related system with preemption has the same limit process. For
the associated optimization problem where accepted customers pay, we show that our trunk
reservation policy is asymptoticaly optimal when the parameters satisfy a certain relation.

Keywords: stochastic service system, multirate link, trunk reservation

1. Introduction and summary

In this paper we consider a stochastic service system modd of interest for
telecommunication systems. The system we model consists of severa traffic streams
with possibly different bandwidths sharing a link, with a trunk reservation mechanism
used for call admission control. The mode is of interest for both multirate circuit
switching and broadband packet switching systems analyzed using the notion of ef-
fective bandwidth (cf. [20]). The link is assumed to consist of NV circuits, which we
model as a single service facility with N servers and no additional waiting room.
There are K types of calls (corresponding to the customers in our model), with type 4
calls arriving in a Poisson process of rate \;. Type i cals require A; servers (4; is an
integer) for the entire duration of the call, which has an exponential distribution with
mean M;l. An arriving type i call is accepted if there are at least R; > A; idle circuits
at the moment of its arrival. The integer quantities R; are referred to as trunk reserva-
tion parameters. Any arriving cal that is not accepted is blocked from the system and
never returns (this is a loss model).

The above model gives rise to a finite state, K-dimensional Markov process.
Solving for either transient or steady state performance characteristics of this system
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becomes prohibitive as N becomes large. Systems with N large are of practical
interest, motivating the examination of asymptotics as N — oo. Suppose we let
N — oo, With)\zN — oo a N — o0, 1< i< K. Wehold u; and A; fixed,
1<i< K. Let

K
p(N) = N2 " AN /s
i=1

denote the normalized offered load on the link. Suppose that p(IN) — p as N — oo.
There are three regimes to consider: p < 1, known as underloaded; p > 1, known
as overloaded (also caled heavy traffic); and p = 1, known as criticaly loaded.
Roughly spesaking, the blocking probabilities in underloaded, criticaly loaded, and
overloaded systems respectively are exponentially small in N, O(N~1/2) and O(2).
From a practical point of view, the blocking probabilities in underloaded systems are
typically too small (there is too much idleness, corresponding to wasted resources),
while the blocking probabilities in overloaded systems are too large (unacceptable
service quality). Our focus in this paper is on the criticaly loaded regime. Results for
amultirate link with trunk reservation in the overloaded regime are available in [2,3,8].

In the “homogeneous’ case, where A; = A; and p; = pj, for 1 < 4,j < K,
the analysis of this model can be carried out using a one-dimensiona birth-death
process (and we can, without loss of generality, assume that A; = 1, 1 < 7 < K,
achieving this effect by taking the number of servers to be | N/A;]). Thisis because
once a customer has been admitted into the system, its type becomes irrelevant to the
further evolution of the system. It is known that a policy of the above form with
A; = R1 < Ry € -+ < Ri (known as a trunk reservation policy) is optimal for
the control of this system if the objective is to maximize the long run average reward
earned, where accepted type ¢ customers pay r;, with r1 > ro > -+ > rg [16].
With A; # A;, there are counterexamples showing that there sometimes is no trunk
reservation policy that is optimal [21].

The behavior of the optimal trunk reservation level for the homogeneous case
with K =2, A; =1 and r1 > ro under critical loading was examined in [19]. There
it was assumed that ;+ = 1 (which, in this case, is without loss of generaity) and

MV =N+ 8,VN, i=12

where critical loading is equivalent to a1 +ap = 1. If 0 < ag,ap < 1, it was
shown in [19] that R;(/N) = 1 and R5(N)/log N — —1/(2log ), where R} (N) are
optimal trunk reservation parameters in the Nth system. Let b;(N) denote the blocking
probability of type i customers in the Nth system. With no trunk reservation (R; =
Ry = 1) by(N) = ba(N) = b(N), and it is known [10] that v/ Nb(N) — h(3), where h
is the hazard rate of a standard norma distribution and 3 = 81 + 3». Straightforward
asymptotics on the birth—-death process stationary distribution can be used to show that,
if RY =1, RY — oo, and RY/v/N — 0as N — oo, then

VNBi(N) — 0 and VNby(N) — a;h(B).
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This corresponds to a transfer of all type 1 blocking to type 2 with no increase in
average blocking (to order N~1/2). On this scale, with error o(N~1/2), this is the
same as would be achieved by the following infeasible scheme that gives preemptive
priority to type 1 cals. Admit al cals if there is an idle server. When a type 1
call arrives to find no idle server, it preempts a type 2 cal. We interpret b, here as
the fraction of type 2 calls that are either blocked on arrival or preempted while in
service.

The purpose of this paper is to generalize, to a certain extent, the above results
for the homogeneous case to the heterogeneous case, where A; # A; and/or ji; # 1.
Although trunk reservation may not be optimal, we restrict our attention to trunk
reservation controls because trunk reservation is simple to implement and analyze. Our
main result is that an appropriately normalized K-dimensional queue length process
for the system with trunk reservation converges in distribution to a reflected diffusion
process on a K -dimensional half-space when RY — oc and RY /v/N — 0as N — oo,
We show that the same process arises as the limit in a system that gives preemptive
priority to al but type K calls. Thus, just as in the homogeneous case, the limit
behavior of the systems with trunk reservation and preemption are identical. When the
parameters satisfy a certain relation (equation (2.11)) we prove that trunk reservation
is asymptotically optimal.

The results of this paper indicate a substantial robustness in the system behavior
to variation in trunk reservation parameters. All that is needed to obtain the limit
diffusion process is RY — oo and RY /v/N — 0. Thus the choice of RY does not
need to depend on thevalues of 51,...,08k OF aa,...,ax aslongasai+---+ax = 1.

In addition to the references indicated above, there are a few papers related to
loss systems and/or trunk reservation that deserve mention. A survey of some work
on loss networks is contained in [13]. Asymptotics for product form loss networks are
provided in [7,11], with the former focusing on the critically loaded case. The mode
of the present paper without trunk reservation (R; = A;, 1 < i < K) isaproduct form
loss system; asymptotics under critical load are provided in [18]. The need for trunk
reservation in telephone networks is described in [1]. Some mathematical models and
results related to trunk reservation are given in [12,14)].

The rest of the paper is organized as follows. In section 2 we provide a con-
struction of the stochastic processes of interest to us in a manner that facilitates our
proofs. We aso state our main theorems. In section 3 we prove some properties of
the reflection mapping that we use. Some preliminary results are proved in section 4.
Sections 5-8 contain, respectively, the proofs of theorems 1-4.

2. Statement of main results

Consider an N-server queue with K types of customers and no additional waiting
room. The customers of type ¢, i = 1,..., K, arrive in a Poisson process of rate
AV, have exponentialy distributed service times with mean p;l, require A; servers
simultaneoudly for their entire service, and are accepted if the number of idle servers
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a their arrival time is not less than R > A,. (Preemption of customers in service is
not allowed.) For type i customers, we denote by B (t) the number of arrivals by ¢;
DN(t), the number of service completions by t; and QXN (¢), the number in the system
at t. We assume that all the processes under consideration are right-continuous with
left limits.

The queue-length processes satisfy the equations

" K
QN0 = QMO +/0 1<ZAjQ§-V(s) <N Rﬁ) dB(s) - DN(0),
j=1

1<i <K, 2.1)
where Q¥ (s—) denotes the left-hand limit. By hypothesis, BY = (B (1), t > 0), i =
1,2,..., K, are Poisson processes with rate \Y. For the D}¥ we use the representation

[N/A;]

DN(t) = Z /Otl(ng(s—)%)dsi,j(s), i=12,... K, (2.2)
j=1

where S;; = (5;(t), t > 0), j =12,...,|N/A;],i=12,...,K, are independent
Poisson processes with respective rates p;, i = 1,2,..., K.
We assume that Q™ (0) = (QY(0),...,Q¥(0), BN, Sij, i =1,2,...,K, j =
1,...,|N/A;|, are mutually independent. Also we assume that
ANV
Hi
with some «; and 3; such that

=N+ GVN, i=12,... K, (2.3)

K
Y ai=1 >0 i=1..,K, (2.49)
=1
and —co < f3; < 00, 1 <7 < K, and denote
K
B=> B (25)
=1

With an infinite number of servers, the expected number of type i cals in the system
in equilibrium is A /u;. With these quantities used for centering, we next introduce

Ai [ nn A\
\/_N<Ql.(t)——>, i=12...,K,

XNy = (XP@),.... Xg@®), XN =(xN@), t>0).

X =

(2.6)

In the theorems below convergence in distribution for processes is understood
as weak convergence of their laws in an appropriate Skorohod space. A sequence of
processes is called C-tight if the sequence of their laws is tight and any limit point is
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a law of a continuous process [9]. The Skorohod space of right-continuous functions
with left limits taking values in R¥ is denoted by D([0, 00), R¥). Let (W;(t), t > 0),
i=1,..., K, be independent standard Brownian motions.

Using (2.3)<2.6) a hit of agebra yields that

K K
> AQN) <N isequivdentto Y XN(@)+ <0
=1 i=1

Let

K
0= {x:(ml,...,xK)eRK: Z.%‘Z—i-ﬁg()},
i=1

and let 0O denote the boundary of ©.

Theorem 1. Suppose that RY/VN — 0as N — oo, 1 < i < K. Assume that
the random vectors X*V(0) converge in distribution to random vector Xy = (X1,
..., XKk ) € O. Then the sequence { XV, N > 1} is C-tight in D([0, c0), R¥), and
if X =((X1(t),...,Xk()), t > 0)isalimit point in distribution of { XV, N > 1},
then P-as.

t
X;(t) = Xio— Mi/ Xi(s)ds + /2A; ;0 Wi(t) — ¢;(t), i=1,..., K,
0

X(t) = (Xl(t), .. ,XK(t)) € 0,
oi(t), i=1,...,K, are nondecreasing and continuous, ¢;(0) = 0,

t
¢i(t)=/o 1(X(s) € 90) dgi(s), i=1,...,K.

The above equations do not completely specify the process X. In particular, the
boundary “reflection” terms ¢;(-) are not uniquely determined. Loosely speaking, any
inward pointing “direction of reflection” is allowed above (even one that is time and
state dependent). The next theorem introduces additional conditions that define X
uniquely.

Theorem 2. Suppose that
supRY <00, i=1,...,K—1, lim R¥ = and Jim RY/VN =0,
N —00

N—oo
Assume that the random vectors XV (0) converge in distribution to the random vector
Xo = (X10,-..,XK,0) € O. Then the sequence { XV, N > 1} converges in distrib-
ution in D([0, 00), RX) as N — oo, to the process X = ((X1(t), ..., Xk(t), t > 0)
defined by

t
Xi(t) = Xio — Mz‘/o Xi(s)ds + /2405, Wi(t), 1<i< K -1, (27)
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t
Xiclt) = Xico— p /0 Xic(9)ds + V2Axarnr Welt) — éx(),  (28)

X(@t) = (Xa(),..., Xk(t)) €6,
oK (t) is nondecreasing and continuous, ¢x(0) = 0,

t
oK (t) = /0 1(X(s) € 90) dgx(s).

The limit process X can also be described as a (multidimensional) diffusion
process with instantaneous reflection on the half-space © characterized by a state-
dependent drift vector whose ith component, d;(x), 1 < ¢ < K, is given by d;(X) =
—u;xq, a diagona infinitesimal covariance matrix whose ith component is 2A4;ao; 1,
and a constant reflection direction —ex (Where exr € RE is a unit vector in direction
K). As shown in the proof of theorem 2, the reflection direction that arises here is
actualy due to a “boundary-layer” effect as opposed to simply the behavior of the
process on the boundary. The latter is more typical in queueing applications. The
boundary layer consists of a harrow strip (whose width converges to zero) with a large
drift (that grows unboundedly).

Let

K
YNy ==Y xNw -8, (2.9)
i=1
and YN = (YN(@®), t > 0). With i; = p1, 1 < i < K, the above result simplifies, with
the limit process being one-dimensional.

Corollary 1. Under the assumptions of theorem 2, and with the additional condition
that p; = p, 1 < i < K, the sequence {YY, N > 1} converges in distribution
in D([0,00),R) as N — oo to the process Y = (Y (¢), t > 0) defined by Yy =
~ > Xio— B and

t K
V() = Yo [ Y(s)ds— bt = Y /2 W) + 6. V>0
i=1
oK (t) is nondecreasing and continuous, ¢x(0) = O,

t
orc(t) = /0 1(Y (s) = 0) dore ().

The limit process Y arising here is a (one-dimensional) diffusion process with
instantaneous reflection on the haf-line [0, co) characterized by a state-dependent drift
d(z) = —px and an infinitesimal variance S_1 | 2A;a,;. Thisis in fact a reflected
Ornstein—Uhlenbeck process. The stationary distribution of this process is straightfor-
ward to obtain [17].

We next consider the preemptive-priority-to-type-i-calls scheme. All cals are
admitted if there are enough idle servers. When atype i, i = 1,..., K — 1, cal
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arrives to find an insufficient number of idle servers, it preempts as many type K calls
as is required to have at least A; idle servers. We assume that type K calls are not
preempted for an arriving type 7 cal if the number of idle servers plus the number
serving type K callsis less than A;.

For this system, we use the same assumptions as above for arrival and service
processes. Let @fv(t), 1 < i < K, denote the number of type i cals in the system
a t, and let

Y?](t):%<§£\/(t)ﬁ>, i=1,... K,

XV = (X170, Xp@), X =XV, t=0).

Theorem 3. Assume that the random vectors YN(O) converge in distribution to the

random vector Xo = (X10,..., Xk ,0) € ©. Then the sequence {YN, N > 1} con-
verges in distribution in D([0, 00), RX) as N — oo to the process X of theorem 2.

For a certain subset of parameter values we prove that the trunk reservation pol-
icy considered in theorem 2 is asymptoticaly optimal. In order to discuss the issue
of optimality we need to first introduce costs into our model. Although our result
is only for a subset of cases, we develop the cost formulation for the genera case.
Suppose that each time a type i cal is blocked we incur a cost of ¢;. Fix a sequence
of trunk reservation policies that satisfy the hypotheses of theorem 2, and let CV(¢)
denote the total cost incurred up to time ¢ by the Nth policy. We compare this to
C™:N(t), the total cost incurred up to time ¢ by the policy 7mn € M(N). (The set of
policies we consider, M(XV), is defined in section 8) Let CN(t) = N-Y2CN (1)
and C™vN(f) = N-Y207~N(¢). We assume that the costs ci,...,cx are such
that

CKHUK < Cilbi
Ak A

Intuitively, this condition makes type K the least expensive to block. We prove
asymptotic optimality under a more restrictive condition, namely,

1<i<K. (2.10)

CK C; .

RELI g <i< .

A S A 1<:<K, (2.119)
and

pr < pi, 1<i< K. (2.11b)

Note that if u; = pu, 1 < i < K, then (2.11) holds when (2.10) holds. The following
result is proved in section 8.
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Theorem 4. If (2.11) holds, and X (0) converges in distribution to X, then for every
nondecreasing, bounded and continuous function f: R, — R, limy_. Ef(CN(t))
exists, and

lim Ef(C™N(B) > lim Ef(CN().

N—oo

Although we prove theorem 4 under the conditions (2.11), we conjecture that our
sequence of trunk reservation policies is asymptotically optimal (possibly in a weaker
sense than that of theorem 4) whenever (2.10) holds.

3. Properties of the reflection mapping

The following lemma is proved in the same manner asin [6, lemma 1].

Lemma 3.1. For given functions z(¢) and a(t), where 0 < a(t) < oo, suppose that a
continuous function ¢(t) with ¢(0) < z(0) v 0, satisfies for al 0 < s < ¢, the inequality

t
an—w$</awnkaww»w.

S

Then for 0 < t < oo,

P(t) < supz(s) V0.
s<t

Lemma 3.2. For given functions z™(¢), f™(t), and " (¢) let the functions " (¢) satisfy
the equation

§H) = 20 + (1), 3.1)
with
t
¢@=n/f%MW@<ﬂ@m&
0

If for every T' > 0,

Lim inf f7(t) >0, Jggozg!e t)| =0, 32
lim sup|2"(t) — a(t)| = O, (3.3)
n—00 4

where z(t) is a continuous function with z(0) > O, then, for every T > 0,
lim sup[y"(t) — y(t)] =0,
n—oo t<T

lim sup[¢"(t) — ¢(t)] =0,
n—oo t<T
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where (y(t), ¢(t), t > 0) is the solution of the Skorohod problem for (z(¢), ¢t > 0)
with reflection at O, i.e,,

y(@) = () + (), y(t) =0,
¢(t) is nondecreasing, continuous, ¢(0) = 0,

t
¢m:41w@=®w@

Proof. We proceed aong the lines of the proof of theorem 2 in [6].
We first prove that for 0 < T' < 1

lim inf y™(t) > 0. (3.4)
n—oo t<
Denote
_ t
wmzn/fﬁmw@>w@m&
0
Then, since
t —
wmzﬁm+¢/ﬁ@mwm, (35)
0
we have that

t S
@mzyéﬂ@%@@<w@+¢AWMM—w@ym

hence, by lemma 3.1, for »n large enough,

" () < sup (m"(s) + n/os F™(u) du — 5”(5)) vo, t<T,

s<t

S0, again with the use of (3.5),

t s
y" () = 2" (t) + n/o f™(u) du — sup (x”(s) + n/o () du) VO

s<t
—sup|e"(s)l, t<T. (3.6)
s<t
Since 2" (t) is bounded in n on [0, 7] and inf;<7 f™(¢) > O for n large, we have that,
for any 6 > 0 and n large,

x™(t) + n/t fMu)du > sup (x"(s) + n/s () du) vo, t<T.
0 s<(t—86)VO0 0

Hence, by (3.6), for n large enough,

t
y"(t) > inf <xn(t) —x"(s) + n/ F(w) du> ANO— Sli[;) |6”(t) , t<T.

(t—06)vOLs<t




166 AA. Puhalskii, M.l. Reiman / A critically loaded link

Therefore,
0> - s o) - 23] - el )]
0<s,t<T
Theright-hand side goesto 0 asn — oo and § — 0 by (3.3) and (3.2). Inequality (3.4)
is proved.

We now check that the sequence { ¢™(:), n > 1} is compact for the local uniform
topology, i.e., check the conditions of Arzela—Ascoll s theorem:

lim Tim sup [¢"(t) — ¢"(s)| = 0. (3.7
§=0n—=00 |41
s, t<T

Since for t > s > to,
(¢"(t) — ¢"(t0)) — (4" (s) — ¢"(to))
=n /t fr1@)1(¢" (w) — ¢"(to) < €"(u) — 2" (u) — ¢"(to)) du
lemma 3.1 yields S
¢"(t) — ¢"(to) < sup (£"(s) —a"(s) — ¢"(to)) VO

to<s<t
< (= 2"(to) — ¢"(to)) V O+ SJD |"(s)| + sup [a"(s) — 2" (to)|-

0 s<t

Since —x"(tg) — ¢"(tg) = —y"(to), we obtain that

sup @™ () — ¢"(s)| < Inf (y"(t) A O) + sup [€"(®)| + sup |a™(t) — z"(s)].

The right-hand side goesto 0 asn — oo and 6 — 0 by (3.4) and the hypotheses.
Convergence (3.7) is proved.

Let (n') be a subsequence such that ¢” () — () uniformly on bounded intervals
for some continuous increasing function ¢ = (¢(t), t > 0), ¢(0) = 0. Equation (3.1)
and limit (3.3) imply that

lim sup [y () - §()| =0, T >0,
n *)OOth

where g(t), t > 0, is a continuous function, equa to z(0) at 0, and

() = x(t) + B(t).

It is left to show that 7(-) is the reflection of z(-) a 0. The fact that ¢(-) is nonnegative
follows by (3.4). So the proof is completed by checking that ¢ increases only when
g(t) =0, i.e,

~ t ~
a(t) = /0 1(j(s) = 0) da(s). (38)
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Thisis done asin [6]. Indeed, by the hypotheses,
t
00 = [ 167 < () 8"
hence since £"(-) — 0 uniformly on bounded intervals,
t
IO< [ 1<), 1T,
0

for any ¢ > 0 and al n large enough. Furthermore, since ™ (-) — () uniformly on
bounded intervals,

lim ¢™() < Tim / 1) < 2) (), 1< T,
n —oo 0

n/—oo

and the latter is not greater than [ 1(j(s) < 2¢) d(s) since ¢™'(\) — ¢(-) and the set
{s <T: gy(s) < 2} isclosed. Hence

~ t ~
30 < [ 1(36e) < 22) dis),
0
which implies by the arbitrariness of ¢ that
~ t ~
30 < [ 1(i) = 0) dits).
proving (3.8). The lemma is proved. O

Lemma 3.3. 1. Suppose that (z(t), t > 0) is rea-valued, nonnegative, nondecreasing,
and right continuous. If afunction (y(t), t > 0) satisfies the equation

t
y(t) = 2(t) — a /0 y(s) ds,

where a > 0, then y(¢) > 0, ¢ > 0.

2. Suppose that the real-vaued functions (x(t), ¢t > 0) and (2'(t), t > 0) areright
continuous with left hand limits, and (¢(t), t > 0), (¢'(t), t > 0) are nondecreasing
and right continuous with ¢(0) = ¢'(0) = 0. Suppose in addition that (y(t), ¢t > 0)
and (y/(t), t > 0) are nonnegative and satisfy the equations

t t
y(t) = 2(t) — a /O y()ds + o), ¥ =2() —a /0 J(5)ds + &(0),

where ¢ > 0. If the function (z(t) — 2/(¢), t > 0) is nonnegative and nondecreasing,
and

t
o(t) = /O 1(y(s) = 0) d(s), ¢ >0,

then /() > o(t), t = O,
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Proof. Part 1 follows by the fact that

y(t) = e Yx(t) + ae™ ™ /t (x(t) — x(s)) e ds.
0

For part 2, introduce g(t), t > 0, by

t
7(t) = z(t) — a/o 9(s)ds + ¢'(t). (3.9)

We prove that
y(t) = y(t), t=0, (3.10)

which implies the claimed relationship because we can write

t
¢'(t) — o(t) = y(t) — y(t) +a /0 [9(s) — y(s)]ds.
Suppose the contrary, i.e., that 4(to) < y(to) for some tg > 0 and let
t1 =inf {¢ < to: §(s) < y(s) for al s € [t,t0] }.

Since

o(t) = —[isgft (x(s) - a/os y(u)du) /\0}, t>0,

the function ¢(t) does not jump when «(¢) jumps upwards which easily implies that
positive jumps of () are not greater than the respective jumps of (t), hence t; < to.
Next, since 3/(t) < 4(t) by (3.9) and part 1 of the lemma, the latter function is
nonnegative, so since y(t) > 4(t) on (¢1,to], we conclude that y(t) is positive for these
t, therefore, by the definition of ¢(t), it follows that ¢(¢1) = ¢(tg). Also, it can be seen
as follows that §(t1) = y(t1). When t; = 0, g(t1) = y(t1) by the hypotheses. If t1 > 0
and 5(t1) < y(t1), then y(t1) > 0, so Ay(t1) = Ax(t) < Ag(t), which contradicts the
definition of ¢1. Putting all these facts together, we can write

to
§(to) =9(t1) + (z(to) — z(t1)) — a / §(s)ds + (¢'(to) — ¢'(t1))

21

to
S y(t2) + (a(to) — 2(tr) —a / y(s)ds + (é(to) — 6(t)) = (o).

t1

The contradiction proves (3.10) and, hence, the lemma. O

4.  Preliminary results

Let FN(t) be the o-field generated by QN (0), BN(s), Sij(s), i = L,..., K,
j=1,...,|N/A;], s < t, and the family of P-null sets, and let FV = (FN(t), t > 0)
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be the corresponding filtration (note that it is right continuous since BY¥ and S;,; are
piecewise constant [5]). Fori=1,..., K, let

MP(t) = As (BZ-N(t)f)\ZNt), (4.1)
M) = (DN(t) w [ Qe ). 42)
M; 4 (t) = Xj (s—) < B N dM; B(s). (4.3

With this notation and (2.3)—(2.6), the equations (2.1) take the form

XN ()= XM0) - / XN (s)ds
0

MN () = MN () — VN N/tl i){f-V(s)>—ﬁ—R—’N ds, (4.4)
7, A 1,D Vi 0 ~ j \/N , X

where vV = 4;AN /N. Note that by our assumptions

N = o >0, i=1,...,K. (4.5)

For the results from martingale theory used in the rest of the paper, we refer the reader
to [9,15].

Lemma 4.1. The processes M, = (M},(1), t > 0) and M}, = (M, (¢), t > 0),

i=1,...,K,aeFN-localy square integrable martingales that are pairwise orthogonal
and have respective predictable quadratic variation processes

N
(M) =4 N/( X;V<s)<—ﬁ—§fﬁ>ds,

Qi ()
<Mi{§)>(t):A§m/o ~ Os

Proof. The Poisson processes BY¥ and S;;,i=1,...,K, j =1,...,|N/A4;], have
the respective FV-compensators (\Nt, + > 0) and (p,, t > 0). Since by (2.2
and (4.2

[N/ Ai]

M) = = 2 / (Q¥(5-) = ) d(Su55) — pus),

and the processes BY, S;j, i = 1,...,K, j = 1,...,|N/A;|, are mutualy inde-
pendent, we derive by the property of quadratic variation processes [9,15] and using
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aso (4.1) that M}, and M} = (M 5(t), t > 0), i = 1,...,K, are locally square
integrable martlngales with

N(s
<Mi,ND>(t):A@2Mi/ Qi—()ds, (MB)() = )‘—
< (2 ]]YB>(t) :0’ <Ml D> _j],VD>(t) = 01 < i,B1 J]’VB>(t) = 0, 7 7& ]

The formula for the quadratic variation of 1/}, and the pairwise orthogonality of M/},
MY, i=1,...,K, follows by (4.3). O

In the sequel, we repeatedly use the following version of the Lenglart—Rebolledo
inequality [9, lemma 1.3.30; 15, theorem 1.9.3].

Lemma 4.2. Let M = (M(t), t > 0) be alocally sguare integrable martingale defined
on a stochastic basis (Q, F,F, P) with M(0) = 0 and let (M) = ((M)(t), t > 0) be
its predictable quadratic variation process. Then, for any finite F-stopping time 7 and
any a>0,b>0,

b
P(tsgg\M(t)\ > a) < =+ P((M)(7) > b).

Lemma 4.3. The sequences {MZ{\Q‘, N > 1}, {MZ{VD, N>1,i=1,... K, ae
C-tight.

Proof. Tightness in D follows in a standard manner by Aldous's condition [9,15]
if we apply the Lenglart—Rebolledo inequality (lemma 4.2), lemma 4.1, (2.3) and the
fact that Q¥ (t) < N, i=1,..., K. The C-tightness follows since the jumps of M},

MY, are of size A;/vVN,i=1,...,K [9]. 0
By (2.9) and (4.4),

K
YNNG =YNO) + ) i / t XN(s)ds + MY (1) — MY (@) + oV (@), (4.6)
— 0
where
K
My (&)=Y M), (4.7)
i=1
K
MY (&)=Y MN®), (4.8)
i=1

and

(4.9)

N t RN
Ny N N b
é (t)_\/N;% /01<Y (s)<m>ds.
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The lto-type formula given by the next lemma plays a mgjor part in the proof of
theorem 2. It can be derived by using general results for semimartingales [9,15], but
we find a direct approach to be more appropriate.

Lemma 4.4. The process YV is nonnegative and if f(z), z > 0, is areal-valued Borel
function, then

FYN @) )
= F(YN0) + \/NZ % /t [f(YN(s) + jlﬁ) - f(YN(s))]XiN(s) ds
+iAzN /Ot [f (YN(S) + ﬁ F(YN(s)) } (YN(S) < %)ds

)
5 [ o) (o)
—2f(YN(s))] <YN(3) %)ds

K
VN Ai — N(s— }d N (s
D (. NI BRI TGRS

K
s M(s=) - Ai) N(s— }d N (s
+@Z:; Ai Jo [f<y 2= FY 7 (s=)) | dM;a(s)-

Proof. The fact that YV (¢) is nonnegative follows by (2.3)«2.6), (2.9) and the in-
equality

N
Z A4QN () <N

i=1

Next, since YV () is piecewise constant and right continuous,

FOYNW) = rrN@) + D (FYN) - FYN(sH)).

O<s<t
By (4.6)«(4.9) and (4.1)—«(4.3), the jumps of YV are
AY N (1) :YN(t) YN@E-) = AM]DV(t) AME ()

_Z\/_ Z\/_ <YN(t ) > \/_>ABN(t).

Since the jumps of DY and BY are of size 1 and are digoint, we get
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FOE) = ) + 3 J t [f (YN( Ot ﬂ) PN ))} 4D™(s)
- i=1"0 ’ VN ’ o

£ [l

N
X 1<YN (s—) > %)dBZN (s). (4.10)
If we take into account that by (4.1) and (4.2),
BN(@#) =Nt + TM%@)’ i=1,... K,
. (2
N
DN (t)=pi /O QN(s)ds + fM,{VD(t), i=1... K
and by (2.6),
AN N
Q¥ =20+ YN x),
Hi A;
and use aso (4.3) and (2.9), equation (4.10) assumes the form required by the lemma.
The lemma is proved. O

5. Proof of theorem 1

We denote below by q convergence in distribution, and by P convergence in
probability. We prove first that

a—00 N —00

lim mP(ijg‘XfV(t)|>a):0, T>0 i=1...,K. (51

By (2.9) and (4.6)—<4.9), we have that, for 0 < s < ¢t,

N
0~ <N YA [ t 1<YN(u) < maXKi—@RzN)du
=1 s

VN
N t K u
—VE Y 1<¢N(u)<—YN<0)—Zm | e
i=1 s i=1 0
) N
— MY ) + MY (u) + —maxlf/z?_VK i )du.
By lemma 3.1,
N (t)
maxXi<i<x RY N X N N N
<sup | —2 —YY(0) — i | X' (u)du — Mp(s)+ M s}\/O
p | T ©) Zlu/o (w) Ns) + MY (s)
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maX]_<'<KRN N K ¢ N
< —=52 7 4 1y N ; X; d
~— ()|+;u/o\ ()| du

+sup | Mp (s)| +sup [ MY (s)|, t=>0. (5.2)
s<t s<t

Since by (4.4), (2.9) and (4.9),

t
XN 0] < [X7Y(0)] + m/o | X ()] ds + | MA@ + [MIH0)] + 6™ (),
i1=1,...,K,
we then obtain by (5.2), using aso (2.9), (4.7) and (4.8), that

u X maX1<;<x RY K
SIENO[<2Y XN O+ S 418+ 2 sup [ MY (s)]

i=1 i=1 v N g
K K
N ‘ N
+2;25|Mi,a(s)|+21£nja<xl(u]/o ;pg (s)| ds.

Gronwall’s inequality then yields

i\XN(t)|< 2§:|XN(0)\+mKi—w+|ﬁ|+2§:wp|MN(s)|
i=1 Z b i=1 Z VN i=1 5S¢t v

K
+2) sup | MY (s)| | @MPasisk pit,
; 8<F2‘ D )‘)
implying (5.1) in view of lemma 4.3, the hypothesis that RY/v/N — 0, and the

convergence XV (0) & X,.
By (5.1), (2.9), (4.6) and lemma 4.3, we have that

lim Tim P(éx(t) > a) =0, (5.3)

so that by (4.9) and (4.5)
t1 yN Ri ds >0, i=1,... K 5.4
/0 < (S)<\/—N> s — U, 1=4,..., . ()

The latter yields by lemma 4.1, (2.9) and (2.3)
(M%) P Aipit, i=1,... K. (5.5)

Also (5.1) implies, by (2.3) and (2.6), that A;QN(t)/N P oy, hence by lemma 4.1
and Lebesgue’'s dominated convergence theorem

(M) L Aipit, i=1,... K. (5.6)
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Since by lemma 4.1 the locally square integrable martingales M}Y,, M}, i =
1,..., K, are pairwise orthogonal and have jumps not greater than maxy<;<x 4;/vV'N,
we obtain from (5.5) and (5.6) (see, e.g., [15]) that

(Mi],\zcl’Mi],VD)lgigK < (VAicip Wi a,/ Aicpu; Wz‘,D)KKK,

where W; 4, W; p, 1 < i < K, are independent standard Brownian motions. There-
fore,

d
(Mi,]\ll - Mz‘],VD)lgigK = (V24Aiqip; Wi)lgigK' (5.7)
and, in view of the notation (4.7) and (4.8),

My - My 2 V2 Ao W, (5.8)

where W is a standard Brownian motion. Let
K t
ZN@®) = YN () + Z i / XN(s)ds + M5 (t) — MY (t).
=1 70

By (2.9), (5.1) and (5.8), the sequence { ZV, N > 1}, with ZV¥ = (ZN(t), t > 0), is
C-tight. By (4.6) we also have that

YN@) = ZN() + o™ (2).
Note that by (4.9)
K
Ny = VN / t [Z %TN1<YN(5) < ﬂ)wg
0 [ =1

PN
1<YN(S) < Maxacick >ds,

VN VN

40
where RY = maxi;<x R} The term in brackets is not less than min;;<x 7}, and
by (4.5)

lim min vV > 0.
N I<i<K

So we can apply lemma 3.2 to YV, ZN, ¢V to get by Prohorov's theorem and
Skorohod's embedding, in view of the C-tightness of { ZV, N > 1}, that the sequence
{(YN, ZN, M), n > 1} is weakly relatively sequentially compact with continuous
limits. Furthermore, if (Z,Y,¢) with Z = (Z(@t), t 2 0), Y = (Y (), t > 0) and
¢ = (¢(t), t > 0) is alimit point in distribution of {(ZV,YN,¢N), N > 13}, then
P-as.

Y(t)=2Z(t)+ o), Y(@) =0,
o(t) is nondecreasing and continuous, ¢(0) = 0, (5.9

t
o) = /0 1(Y (s) = 0) d(s).
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The weak relative sequential compactness with continuous limits of {¢", N > 1}
implies, by Prohorov’s theorem and (4.9), that the sequence { (¢, ...,¢%), N > 1}
is C-tight, where

t RN
fvt:\/ﬁg’v/l<YNs<—l>ds. 5.10
(®) i) (s) i (5.10)
Then by (4.4), (5.1), (5.7) and the convergence X" (0) 9, Xo, the sequence { (XYY,

L XE N, eY), N > 1} is C-tight and any limit point in distribution (X3, .. .,
XK, P1,...,0K) sdisfies P-as.

Xi(t) = Xi0— i /Ot Xi(8)ds + \/2A ;0 Wi(t) — ¢i(t), i=1,..., K,

where ¢;(t) are nondecreasing and continuous, ¢;(0) = 0. Since by (2.9), — X3 — X>—
.- — Xg — B isalimit point in distribution of {Y~, N > 1} and as we have seen,
Y'(t) > 0 for any such point, we conclude that (X3,...,Xk) € ©.

Finaly, since ¢; + --- + ¢x is a limit point in distribution of ¢~ by (4.9)
and (5.10), we derive from (5.9) that

t
/O 1((X1(S), ce ,XK(S)) €0 \ 6@) d(ﬁl(s)
t
< / L(Y () > 0) d(é1 + -+~ + 6x)(s) = O.
0

The theorem is proved. O
6. Proof of theorem 2
We first prove that, in the notation of theorem 1,

NoyP 0o asN oo, t>0i=1,..., K1, (6.1)
b;

after which the proof is straightforward. The proof of (6.1) is carried out with the use
of the Ito formula of lemma 4.4. Let RY = RY — 1 — maxi<;<x A;, and p > 0 to be
chosen later. We assume that N is large enough so that
RN >2max A; and RY > max RV,
1<i<K 1I<i<KK-1
Also, let kyx(x), x > 0, be a continuous function with values in [0, 1], such that
kn(0) = 1, and kx(z) = 0, for = > 1/+/N. Define the function hy by

RN
h x:efpmx, 0<z < —,
RN
hy(z) = e PRV _ \/Ne_pRN <m— —)
N(x) p \/N

N [T Y RN RN
+ p?N e PR / k‘N<z—>dzdy, > —=.
RN VN JRN )N VN VN
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It is easy to see that hy is twice differentiable and

[Piv(@)] < (0" + p)\/ﬁe*p(RN*ZmWKKK Ai)
RN — 2maxicicr A;

x> /N , (6.2
" 27 a—pRY RN
|hN($)| <p"Ne?h, $>\/—N1 (6.3
” RN +1
N@) =0, z> \/% . (6.9)

We now estimate the terms in the Ito formula of lemma 4.4 with f = hy. Since YV
is tight by theorem 1 and (2.9), and A grows at most linearly,

—_— =0, _
\/N \/N
Next, denote the terms on the rlght of the Ito formula starti ng from the second by 11,

I, I3, I4 and Is, respectively.
Since RY — oo and the XV are tight by theorem 1, estimate (6.2) implies that

0. (6.5)

/0 t [hN (YN(s) T %) _ hN(YN(s))]XiN(é»ﬂ(YN(S) N %) w0
i=1,..., K. (6.6)

Next, since hy is bounded in N on [0, RY /v/N], the X} are tight and by (5.4),

Uy R_%>Sg
/01<Y(s)<md 0,

we have that

A i (Y ) (o) | X e (v < RN%)d L
i=1,...,K,

which, by (6.6), yields

I p
— — 0. 6.7
VN ©7
We now prove that
Iy Is p
— — 0, — — 0. 6.8
~ ~ (6.8)
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By the Lenglart—ReboIIedo inequality (lemma 4.2) and since the predictable quadratic
variation process of MY i p is continuous by lenma 4.1, for n > 0, ¢ > 0,

(1 bt 1)

t ) 2
%Hﬂ(/o [hN< %) - hN(YN(s))} d(M, ) (s) > 5),
i=1..., K (6.9

\’%) — hy (YN (s—))} dM(s)

The form of (M}Y,) in lemma 4.1 and the fact that A;Q)(s)/N < 1, yield, by the

argument used when proving (6.7),
! A N ? N P
h = ) — hy(Y d{ M, 0 i=1,...,K,
/0 { N< \/N> ~( (S))} (M;p)(s) = i
which by (6.9) implies the first convergence in (6.8). The second one is proved
similarly, with the use of the form of <MN> in lemma 4.1.
Convergences (6.5), (6.7) and (6.8) |mpIy that

L+ I
2tl3 Py (6.10)
VN
We represent the latter sum as
L+ Iz=1+ 1+ I3+ I, (6.12)

where

Iizz(z;lxgv /Ot [hN< %) — hN(YN(s))} 1<YN(5) < %)ds

¢ A
+ A%/O [hN <YN(5) + \/—%> —hn (YN(S))}

« 1<YN(3) < mi”K"j%‘lRlN >ds,
K-1
Ig_ (2} AN hN \%) + hn (YN(S) %) - ZhN(YN(S))]

) AN [hN (YN(S) + %) — hN(YN(S))]

N _ A
YN(s) > mmK’;% i )>1<YN(5)< R ijNK‘K ’>ds,
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I’—/t KzlAN h (YN()+ﬁ)+h (YN() Ai>2h (Y™ ))]
T &V TN T W) e
+ AY [hN <YN(8) + j—%) — hy (YN(s))D
RN — MaX1<igK Az N R_%)
><1< N <Y (S)<\/N ds,

I’—iAN/t[h <YN()+ A’>+h <YN()i>2h (YN( ))}
M N R VG A Y/, A

X 1<YN(3) > %)ds.

By (6.4) and since RY — A; > RN +1,
I,=0. (6.12)

Consider I3. By (6.2), we have that

[l 25) s

N _ . . N
x 1<R Maacisk Ai yN (g < R—K>ds
VN VN

< (PP +p) (1) A e P e AdgN g),
where ¢ (t) is defined in (4.9).
By (4.5), (5.3) and the convergence RN — oo as N — oo, we conclude that

VN /0 t [hN (YN(S) + j—%) - hN(YN(s))]
x 1<RN - mjxﬁl@“ Ai cyN) < R—%)ds Po.

VN
A similar argument shows that

VN /o t [hN (YN(S)+ 4 > +hy (YN(S) - > _ZhN(YN(S))]

VN VN
N . ; X
" 1<R max]_gng Al < YN(S) < R—K)ds —P> 0;
VN VN
so that recalling (2.3)
I/
L ey (6.13)

VN
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Turning to 15, we have, by the definition of hy, that

t K-1
=N / e PVNYN) [
0

A RY
> rlertret —21(ve > )

=1

(9> Pimsca )
VN

+ &(e_pAK _ 1)
N

RN — MaX1<i< K Ai)
x 1[ YN(s) < SIS ds. 6.14
( (¢) N (6.1
By (2.3), as N — oo,
A A, A; AR A
;#(e Pl ed = 2) + SR (e - 1)
K- (8]
Z Gl (ert p @i —2) 4 S (eopdx _ 7). (6.15)
i—1 Z AK

Since the sum over i on the right is of order p? for small p and (e PAx — 1) is negative
and of order p, the limit in (6.15) is negative for al p small enough. Hence, for these p,
and N large enough, the term in brackets in the integral in (6.14) is negative, so that
I, < 0. This and (6.10)—6.13) imply, for suitable p > 0O, that for al N large enough

h > 6N

75 :

(6.16)

where 6¥ B 0as N — .
By the definition of hy, for N large, dl the integrals in the expression for I; are
nonpositive, so (6.16) and the definition of hy yield

ANt VNYN R;
1t e_p NY ™ (s) 1— e_pA <YN s) <
VN Jo ( RO <TF

which is equivalent to (6.1) by (5.10), (2.3), (4.5) and boundedness of the R}.
By (6.1) and theorem 1, any limit point in distribution of { XV, N > 1} satisfies

N
>ds—>0 1=12,...,K -1,

t
X;(t) = Xio— Nz/ X;(s)ds + / ZAZOéZ,U,Z wi@), i=1,...,K—1,
0

t
Xi(t) = Xkpo— MK/O Xk (s)ds + /2Axak kg Wi(t) — ¢k (1),

X(t) = (X1t), ..., Xk(t)) €6,
b (t) is continuous, increasing, ¢x(0) =0

t
Pr(l) = /0 1(X(s) € 09) do (s)-
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The theorem would follow if this specified X (¢) uniquely. Note that

K
Y(t)=-) Xi(t)- 5,

=1
S0 that

K K-1 t t
V(0= > Xio- B+ Y (- ) | Xil)ds e [ V(s)ds— Pt
i=1 i=1 0 0

K
— Z V2A i Wit) + ¢k (1), (6.17)
i=1
Y (t) > 0, and
t
ok = [ 1(Y(6) = 0) doc(s)
0
so that (X1(%), ..., Xk_1(t), Y(t)) isasolution of a semimartingale problem of diffu-

sion type with normal reflection in the domain R~ x R, [15, chapter 10, section 2].
It has a unique solution by [15, theorem 10.2.2]. The theorem is proved. O

Proof of corollary 1. As a consequence of theorem 2, we have YV 9 Y, where Y
is defined in (6.17). When p; = p, 1 < i < K, we can write (6.17) as

t K
Y0 = YO p [ V) ds =t =3V 2Aa W) + s ()
i=1

7. Proof of theorem 3

The proof proceeds aong the lines of the proof of theorem 1, so we omit some
details. The equations for the queue-length processes are easily seen to be

Q. (=0, 0+ /0 t 1<§A@f (s-) <N - AZ-) dBN(s) - D, (1),
=
i=1...,K -1, (7.1)
Qx(®) = Qx(0) + /O t 1<§A@§V (s-) <N - AK> dBR(s) - DR (1), (7.2)
where "

[N/A:]

D=y /tl(@fv(s—)%)dsi,j(s), i=1,...,K,
j=1 70
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N K-1 .4 K N
D) =Dr®)+>_ /O ej.v(sn(ZArQr (s—) > N — Aj>
j=1 r=1

K-1
X 1( > A,QN(s—) < N — A]) dBN(s),

K —N
E;V(s) — ’727‘1 ArQy 15{2 — (N - Aj)—‘ V0, (7.3)

and [z] is the smallest integer that is not smaler than z. Introducing

——N A TS <N N N
W0 = /0 1 4,07 () < N - A ) (dBN () — AN ),
j=1

i=1,..., K -1,
t
M%YA(t)::j—% i (ZAQ (s )gN-AK> (dBY(s) — A¥ ds)
N A;

= (D0 [ @) =1
we reduce (7.1) and (7.2), in analogy with (4.4) to
t
N0=X"0 - u / XN (s)ds + 314 (0) — TLp(0)
0

SR ¢ Kfl_N /R K-1 A

— VN~! 1 X Nag — ——— |d

Vi /O <]Zl j (S) > aK ]Zl ﬁ] \/N) S
i=1,..., K —1, (7.4)

t
TN =00 /0 XN(s)ds + Y 4(t) — BT (1)
K
_\/N,Y%/tl(Zij(s)>—ﬁ—%>ds
B NAK [ v (S o g A
Z\/N '/fj (3)1(ZXT(S)> I \/N>

K-1
x 1 XVs) < VNag - B - )ds+M t), (7.5
(2 L
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where

W%:Kfﬂ / o (3_)1<§75y (s-)> 6~ ﬁ)
= VN o VN

=1

X 1( ZX (s—) < Z ) (dB)(s) — AY ds). (7.6)

Also, as in lemmas 4.1 and 4.3,

MY, = (1,0, t>0), M= (M@0, t20), i=1... K,
are pairwise orthogonal, locally sguare integrable martingales and the sequences
{Mﬁlfh N > 1}, {MZJYD, N > 1} are C-tight.

We next show that

¢ K—l_N
lim p(/ 1<ij(s)>\/NaK Zﬁj )ds>0>:0,
0 j:l

N—oo

i=1..., K—-1 (7.7)

Let XN(t) = XY(t)/VN, i=1,...,K —1. Since ax > 0, limit (7.7) would follow
by

sp | XN@)| B0, T>0i=1..,K-1 (7.8)
t<T
By (7.4),
= = b (t) — M, p (1)
XfV(t):sz(O)—ui/Xsz(s)dH Mia 1,
0 VN
¢ /K-1 1 K2 A
N v N %
S [ RN ax- = 5 e
0 (Jz::l J \/Nj:l J N
i=1... K1 (7.9)
Since {I,4, N > 1} and {,p, N > 1} aretight,
—N —N
MY () — M
sup‘ O MipOl ey g (7.10)
t<T VN

and sinceYzN(O) 4 Xi0,i=1,...,K — 1, we have that

x¥o 2o i=1..,K-1 (7.11)
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Also since 7Y — a;u; by (4.5), it is easy to see from (7.9), with the use of Gron-
wall’s inequality, that the sequence {(X%V,..., XY ,), N > 1} is C-tight in D([O,
o0), RE=1). For > 0, let a subsequence (V') be such that

|imp(wp|)?gV’(t)\>n):limp(wpp?gV(t)\;n), i=1...,K—1 (712
N t<T N t<T

and
(XY, LX) S (K Xreoa),s (7.13)

where X; = (X;(), t > 0), i = 1,...,K — 1, are continuous processes. Let ¢ €
(0, e /4T). Introduce, for z(-) € D([0, 00), R), the first passage times

e (z(:)) =inf (t > 0 |a(t)| + et > ok /2) AT. (7.14)

Then 7. is continuous at continuous functions (a proof can be carried out in a manner
similar to the proof in [15, theorem 6.2.3]). Denoting

IV (RNLLRRL), K= (R, Kia),

B K-1 B B K-1 B
YN=3" XY, V=) X
i=1 i=1
we derive from (7.13) that
(XN, (YY) & (X, (V). (7.15)

By (7.14), SUp;.. sy l2(®)] < ax/2 for z() € D([0, 00),R) (by convention supy =
0), so

N | K-l A
sup \YN(t)\<aK—\/—NZBj—N, i=1,...,K—1,
-1

t<r(YN)
for N large enough. Hence by (7.9), for these NV,

tAT-(YN)

XN An () =XF@ - [ XN
Mt A 7e(VV) = Mop(t A (V)
N ,
Taking the latter limit along the subsequence (V "), we obtain by (7.10), (7.11), (7.15)

and the continuity of X and Y, and the random time change theorem [4, section 17],
that P-as.

1=1,...,K -1

- - tAT(Y)
it A (T)) = / Xi(s) ds,
0
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which obvioudly implies that

X,;(t) = <), i=1,...,K—1. (7.16)
We now show that 7.(Y) = T. Assume the contrary. Then by (7.14), ’Y(TE(Y))’ +
67’5(Y) = ag /2. Since by the choice of ¢, 67’5(Y) aK/4 it follows that

|Y(7’€(Y))| > ax /4 > 0 which contradicts (7.16) and the fact that ¥ = 571X
Thus 7.(Y) = T, and (7.12), (7.13), (7.16) imply that

|imP(st\)~(gV(t)| 277) -0, i=1,...,K—1
N t<T

completing the proof of (7.8), and hence (7.7).
Introduce, in analogy with the proof of theorem 1,

K
iy =-Y X't -8 (7.17)
i=1
Also denote
N SR ; K—l_N v K-1 A
N(t) = : , - ) ds,
;' (1) N~; /0 1( ;XJ (s) > VNag ;ﬁ] \/N> s
i=1,...,K—1, (7.18)
sN(t) = \/_WNAK teN(s)1<i7N(s) > — A; )
1 = J \/N
K—l_N \/_ K-1 A
1 X, Nag — F— —— |ds,
X (; ; (8) > aK ;ﬁ] \/N>S

i=1...,K -1 (7.19)
Limit (7.7) obviously implies that

spleN@) o, supleN@) B0 i=1... K1 (7.20)
t<T t<T
Also, by (7.4), (7.5), and (7.17),

=N =N K t N
Y=Y (0)+ZM/ X; (s)ds
i=1 0

K-1

K K-
+ 3 (Myp(t) — Moa®) + SNy - Y 6V () - Mp(t)
i=1 i=1 =1

KlA
+\/NZNK

eN( )1( \’%)ds
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+) /t 1<?N(s) < A—K>ds] . (7.22)
0 VN
For the sequel, note that, as it follows by (7.3),
A
Ak

o<e§v(s)<[ W i=1,...,K -1 (7.22)
Next, since by (7.6), Mg = (Hg(t), t > 0) is alocaly square integrable martingale
with the predictable quadratic variation process

AR e

X 1( Y X X (s) < Z B8; — )ds, (7.23)

it is easy to see, in view of (7.22), asin lemma 4.3, that the sequence {Mg, N > 1}
is C-tight.

Limit (7.20), tightness of {37, 4, N > 1} and {WD, N > 1}, and the conver-
gence X (0) % Xo imply by (7.4) that the sequences { X, , N > 1},1<i < K —1,
are C-tight. Moreover, applying the argument of the proof of (5 1) and (5 4) in theo-
remlto X, ,i=1,....,K,and ¥, and using (7.5), (7.17)~(7.22) and C-tightness
of the sequences{MiVA, N > 13, {Mﬁm N > 1} and {Mg, N > 1}, we can prove
that

aILrgollmP<SJp|XK(t)| > a) =0, (7.24)
and
b (SN A P o
/01< \/N>ds,»ﬂo, i=1.. K. (7.25)

This, as in the proof of theorem 1, yields

(M4 = Mip) iy

(\/ZA ozl,uZW)l 1 K (7.26)

Also, it follows from (7.25), (7.22), (2.3) and (7.23), that <ME>(1€) .0, and the
Lenglart—Rebolledo inequality (lemma 4.2) implies that

sp [ ()| B o, T>o (7.27)
t<T

An application of lemma 3.2 to (7.21) shows as in the proof of theorem 1, in view

of (7.20), (7.22), (7.24), (7.26) and (7.27), that the %quence{(lev, - ,7%), N > 1}
is C-tight and any limit point in distribution is as in the assertion of that theorem.
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Further, the first convergence in (7.20) implies, by (7.18) and (7.4), that an analog
of (6.1) holds so that, by the argument that completed the proof of theorem 2, the limit
is the process (X1,...,Xg). The result follows.

8. Asymptotic optimality

We define a policy 7 in terms of the “controls’ {(W'N(t), t>0,1<i< K}
that it generates. Let the (stochastic) control process (W'N (t), t = 0) be defined such
that o)™ (t—) indicates if atype i arrival at time ¢ is blocked: if /7" (t—) = 0, then
the customer is accepted, and if w;"N (t—) = 1, the customer is blocked. We then can
write

K t
T, N — ) ?T,N - d N ]
N (1) ;/O VTN (s)dBY (s)
In analogy with (2.1) we can write
QI () = QYO + / t (L= 97 Y(s-))dBY(s) - DY (1), 1<i<K.
0
Let
t
o) = VI [ ur s
0
Then in analogy with (4.4) we have
XN = X0 — / PN ds £ M) - MIR G - TV, 6
0
where
t
MO = [ (@ e aue),
0

and

MO = (ng - | Qi) ds) |

We are now in a position to define M(ZV), the set of policies that we consider. A policy
m € M(N) if and only if

(i) w7 is FN-adapted, 1 <4 < K, and
(i) S, XN < -8, t >0

These conditions are unrestrictive from a practical point of view. Condition (i) smply
requires that the policy not use any information about the future. Condition (ii) requires
that accepted customers must find a sufficient number of idle servers to serve them.
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Proof of theorem 4. Since easily

AN L [t N RY N -G N
C (t):;Xi/o 1<Y (s—) < >dMi,B(S)+;E¢@' (),

VN

it follows from the proof of theorem 2 that (,A’N(t) LN (cx [AR)PK (L), SO, in particular,
for every continuity point z of the distribution of ¢ (t),

i AN — p[ K
A}EnOOP(C (t)>z) = P(AK dr(t) > x) (8.2
We thus prove that, for every x« > 0,
lim P(C™N(t) > z) > P<C—K¢K(t) > x) (8.3)
N—o0 AK

Let (IV') denote a subsequence that attains the lim inf in (8.3). If, for some e > 0 and
1=12,...,K,

im P (| [

N’'—oco

>s>>0,

an application of the Lenglart—Rebolledo inequality (lemma 4.2) easily implies that
Cmvr N (1) B oo for a subsequence (N”) of (V') , so that (8.3) trivialy holds in this
case. We now assume that for every i = 1,2,..., K

/o t N (s)ds B o, (8.4)

Again by the Lenglart—Rebolledo inequality (lemma 4.2) we then have that, for arbi-
trary € > O,

lim P(C™N(@t) > z)

N—oo

K
. 1 ! t N/
> |lim P —E ci)\iv/w:N" (s)ds>x+6>. (8.5
(\/N’ par 0

N’'—oco

We now estimate the sum in thg right parentheses.
Introduce the processes (Xi’rN'N(t), t>0), 1<i< K —1, defined by

t
XNy = XN ) — /0 XN (s)yds + MY N(), 1<i< K -1,

where M7V () = MY N (#)— MTA ™ (2). Since 7V (¢) is nondecreasing, by part 1
of lemma 3.3,

XN < XTVN@), 620, 1<i<K -1 (86)
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Let the process (?”N'N (t), t > 0) be nonnegative and satisfy the equation

K-1
PN =YY+ Y - ) [ X0
i=1
et~ 3 ME Q) [ 7 es+io. @
=1

where (¢77V (), t > 0) is nondecreasing, ¢7"¥(0) = 0, and
PPN () = / t 1(Y™N(s) = 0) dp3 N (s), t>0. (8.8)

Existence (and uniqueness) of (Y”N*N (t), t > 0) follows by existence (and uniqueness)
of the solution to the corresponding Skorohod problem [22].
Defining
K

YN ==Y XN () -

i—1
we obviously have that Y™~V (¢) > 0 and

K-1

YO =YY+ Y- md) [ X
i=1

t K
- SN [y e+ Yoo
i=1 i=1

Comparing the latter with (8.7), recalling that yrN (t) is nonnegative and taking into
account (8.8), the inequalities (8.6) and u; > puk, 1 < i < K — 1, we conclude, by
part 2 of lemma 3.3, that

K
i=1
Therefore, since ¢;/A; > ¢k /A, 1 <i< K —1,
K t K .
ZCMiV/ N (s)ds = VN Y LoV > \/_ qyw N
=1 0 i—1 )
so that by (8.5)

lim P(C™N(t) > ) > lim P<—¢”N’ Ny >zt 5>. (8.9)

N—oo N’'—o00
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If we define
RS0 = XRO — e [ K6+ M0 - 670
then

K
Yol = =3 XN - s
i=1
In analogy with the proof of theorem 2, using (8.4) we abtain

(MZTN’N)léiéK = (\/mwi)l<i<f<’

0 X™N _ X;, 1<i< K, where X; solves
t
Xi(t) = Xio — Mz‘/ Xi(s)ds + /2A;c 10 Wi(2).
0

It is not difficult to deduce then, by (6.17), (8.7) and (8.8), that yvN 4y and

NN

% 9 ¢x. The inequality (8.3) follows by (8.9), Fatou's lemma and the arbitrari-
ness of e.
As a consegquence of (8.3), we have, for every nonnegative, nondecreasing,
bounded and continuous function f(x),

lim Ef(C™N(t) > Ef<c—K¢K(t)>,
N—oo AK

where, in view of (8.2), equdity is attained when 7 is the trunk reservation policy.
The theorem is proved.
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