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We view each station in a Jackson network as a queue of tasks, of a particular type, which
are to be processed by the associated specialized server. A complete pooling of queues,
into a single queue, and servers, into a single server, gives rise to an M/PH/1 queue, where the
server is flexible in the sense that it processes all tasks. We assess the value of complete pooling
by comparing the steady-state mean sojourn times of these two systems. The main insight from
our analysis is that care must be used in pooling. Sometimes pooling helps, sometimes it hurts,
and its effect (good or bad) can be unbounded. Also discussed briefly are alternative pooling
scenarios, for example complete pooling of only queues which results in an M/PH/S system,
or partial pooling which can be devastating enough to turn a stable Jackson network into an
unstable Bramson network. We conclude with some possible future research directions.

(Service Facility Design; Flexible Server; Specialized Server; Service Operations, Efficiency, Stability,

Economics of Scale)

1. Introduction

A fundamental problem in the design and management
of stochastic service systems is that of pooling, namely
the replacement of several ingredients by a functionally
equivalent single ingredient. We analyze the pooling
phenomenon within the framework of queueing net-
works where in our case, as will be explained momen-
tarily, it can take one of three forms: pooling queues (the
demand), pooling tasks (the process) or pooling servers
(the resources). Here we consider pooling queues and
servers simultaneously, but keep the task structure in-
tact, and we provide an efficiency index (5) to determine
when such pooling is or is not advantageous.

Our models are described in terms of customers who
seek service provided by servers. Service amounts to a
collection of tasks, of which there are a finite number of
types. Two main models are considered: in the first spe-
cialized model, each task type has a server and a queue
dedicated to it. For example, Figure 1 exhibits a
queueing network in which every customer requires a
service that constitutes three tasks, and the tasks are
carried out successively, each by its own specialized
server. Customers arrive at rate o, average task dura-
tions are m; and servers’ capacities are ¢;. In the second
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flexible model, servers are capable of handling all tasks
and they collectively attend to a single queue of ser-
vices. For example, Figure 2 exhibits such a model,
which arises through pooling the tandem network from
Figure 1: customers arrive at rate «, seeking the same
three-task service as before; they all join a single queue,
which is now attended by a single flexible server of ca-
pacity 2 cy.

Customer arrivals are assumed Poisson and task du-
rations exponential. (We comment on these distribu-
tional assumptions in the Addendum.) As articulated in
§2, we allow a service to consist of a random sequence
of tasks in a way that the service duration has a phase-
type distribution (a phase corresponds to a task). The
specialized (unpooled) model turns out to be a Jackson
network (Jackson 1957), as in Figure 3, and the flexible
(pooled) architecture is modeled by an M/PH/1 sys-
tem (Neuts 1981) as in Figure 4.

In addition to the above two main models, we also
consider briefly alternative designs of pooling. For ex-
ample, Figure 5 depicts the network from Figure 1, with
its queues pooled into a single queue and the servers
made flexible while still maintaining their individual
identities (see §5.3). Figure 6 depicts partial pooling of
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Figure 1 A Specialized Model with Tasks Attended by Specialized Serv-
ers
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Figure 2 A Flexible Model with Complete Pooling into a Single Queue
and a Single Flexible Server
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Figure 3 A Specialized Model with Task Repetition and Feedback
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Figure 4 The Flexible Model, under Complete Pooling, that Corresponds
to Figure 3
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only queues and servers 1 and 2 (see §5.4). Figure 7
depicts a split of the service so that a customer, upon
completion of a task, rejoins the queue (see §5.5), and
additional designs are possible as well. A common fea-
ture of our models is that service is unaltered. For ex-
ample, in Figures 1, 2, 5, 6, and 7, service always consists
of tasks 1, 2, and 3 in succession.

1.1. Motivation
The present research arose from an analysis of a service
network consisting of several specialized departments.
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The network was redesigned as a pooled single depart-
ment, which was still responsible for the same services,
but whose servers were flexible enough to process all
tasks. In trying to analyze this transition, we found that
prevalent pooling models failed to cover our network
scenario.

Our models provide a new simple framework that
helps in assessing the effects on pooling of utilization,
variability, and service design. While this is not aimed as
a review paper, our framework also relates, as it hap-
pens, rather disparate concepts and results, for example
(Bramson 1994, Jackson 1957, Klimov 1974, Neuts 1981,
Smith and Whitt 1981, and Tcha and Pliska 1977). We
believe that the usefulness of the framework goes be-
yond the original motivating applications, pertaining to
the design of telephone call centers (Brigandi et al.
1994), evaluation of communication networks (Smith

Figure 5 Complete Pooling of Queues Only (Servers Are Made Flexible
but Maintain Individual Identities.)
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Figure 6 Partial Pooling
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Figure 7 Splitting Services (Each Task Returns to the End of the Queue.)
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and Whitt 1981), evolution (growth) of computer sys-
tems (Kleinrock 1976), group-technology in manufac-
turing (Burbidge 1991), team-based product develop-
ment (Adler 1995), business reengineering (Buzacott
1996, Hammer 1990, Hammer and Champy 1993, and
Loch 1998) (elaborated on below), and more.

Prior work on pooling seems to fall mainly into two
categories: pool queues or pool servers. (In most of our
analysis we do both.) As an example, pooling only
queues would change several M/M/1 queues, say K,
with arrival rate X and service rate y into an M/M/K
queue with arrival rate K\ and service rate y; results of
this flavor are contained in (Rothkopf and Rech 1987
and Smith and Whitt 1981). Pooling only servers would
change an M/M/K queue with arrival rate A and ser-
vice rate u into an M/M/1 queue with arrival rate A
and service rate Ku; pooling of this type is considered
in (Stidham 1970). For an illuminating depiction of
these common pooling models, see (Kleinrock 1976),
Figure 5.5. Pooling also arises as an asymptotic phe-
nomenon under appropriate rescaling of time and space
(Laws 1992, Reiman 1984, and Reiman and Simon 1990):
for example, in heavy traffic, appropriate routing has
the effect of pooling servers (hence, in heavy traffic, the
performance of the systems in Figures 2 and 5 coin-
cides).

Our paper is in concert with current emphasis on
business process reengineering (Hammer 1990 and
Hammer and Champy 1993). Indeed, referring to pool-
ing as “integration of work,” Loch (1998) predicts that
““the one idea from the reengineering era most likely to
persist is that of integrated work.” Similarly, in sum-
marizing (Hammer 1990 and Hammer and Champy
1993), Buzacott (1996) has “‘several tasks combined into
one” as the first assertion of the superiority of a system
that is designed using reengineering principles.

Both Buzacott (1994) and Loch (1998) use tasks in se-
ries and the transition from Figure 1 to Figure 5 as their
paradigm for pooling in reengineering. It was shown in
both Buzacott (1994) and Loch (1998) that the pooled
system (with a single queue) is superior to the unpooled
alternative, and higher task variability makes the ad-
vantage greater. The network-framework that we pro-
vide allows the results of Buzacott (1994) and Loch
(1998) to be viewed in a more illuminating perspective.
First we show, in §5.1, that pooling a tandem structure
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is always advantageous but for more general architec-
tures this need not be the case. In particular, it has been
known (Smith and Whitt 1981) that pooling a parallel
structure can sometimes hurt unboundedly (see §5.2);
we add the observation that partial pooling can turn a
stable system unstable (§5.3, based on results of Bram-
son (1994)). Second, the variability considered in Buz-
acott (1994) and Loch (1998) is only task variability. In
general, however, there are additional sources of vari-
ability, and their effects on pooling, as we now discuss,
can be opposite to the variability effects in Buzacott
(1994) and Loch (1998). Variability may be either pre-
dictable or stochastic: first-order sources for predictable
variability are service design (e.g. scheduling tasks in
tandem vs in parallel) or heterogeneity across task types
(e.g. varying means); second-order sources for stochas-
tic variability are, for example, fluctuations of task du-
rations within a task type (e.g. due to human factors).

Our framework allows the consideration of both pre-
dictable and stochastic service variability. The sources
that we explore here, however, are mainly first-order
structural, since the tasks that constitute a service are not
altered. (Stochastic task variability is fixed by assuming
an exponential duration for each task type.) In broad
terms, with task variability fixed and workload approx-
imately balanced, the design of the service determines
its variability and, in turn, the effect of pooling: as serv-
ers’ utilization increases and service variability de-
creases, pooling advantages are found to increase. This
explains the apparent contradiction with the conclusion
of Buzacott (1994) and Loch (1998). (Note that a bal-
anced workload need not be optimal; see §4.)

1.2. Summary

The specialized and flexible models are introduced in
§2. We start with a crude stability analysis in §2.3, show-
ing that flexibility increases the workload that a spe-
cialized system can handle; see also §2.1 in Buzacott
(1994).

In §3 we quantify the effects of pooling in terms of an
efficiency index (5), which is the product of a utilization
factor &, and a variability factor &, We show that
pooling always helps in light traffic, because a customer
at the pooled system typically enjoys a service rate that
is the total capacity of the specialized system. In heavy
traffic, pooling effects can go either way.
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For given arrivals and services, resource utilization is
determined by how capacity is allocated among the
servers. In §4 we use the square-root allocation of Klein-
rock (1976) to show that optimal capacity allocation mit-
igates the advantage of pooling. This advantage also de-
creases as variability increases. Indeed, crude analysis
of the efficiency index (5) reveals the insight that with
low enough variability pooling is always advantageous.

In §5 we explore both network and pooling designs.
Sections 5.1 and 5.2 treat tandem and parallel systems
respectively. With tandem tasks the structural variabil-
ity is small enough so that pooling always helps. For
parallel tasks, as already discovered by Smith and Whitt
(1981), the effect can go either way. In §5.3 we consider
pooling queues only, as in Figure 5. Performance is
worse than with pooled servers, with the difference be-
ing maximal in light traffic and diminishing in heavy
traffic. In §5.4 we investigate the effect of pooling design
by considering partial pooling, as in Figure 6. It turns
out that one can interpret the recent results in Bramson
(1994) to show that partial pooling can turn a stable
system unstable. In §5.5 we require service splitting, as
in Figure 7, rather than pursuing service until all of its
tasks are completed. Through an example we show that
the relative performance of these two systems depends
on the structural variability of the total service time.
There are numerous additional pooling issues that can
be pursued, within the framework opened up here.
Some are briefly discussed or mentioned in the con-
cluding §6.

2. The Models

In our two models, customers arrive for service accord-
ing to a Poisson process, at a rate of a per unit of time.
A service constitutes a random sequence of tasks. There
are K types of tasks, indexed by k = 1, ..., K, and we
refer to a task of type k as simply task k. The work con-
tent in task k is exponentially distributed with mean ;.
Let g be the probability that task k is first in a given
service, and let Pj be the probability that task k is a
direct successor of task j; 1 — K, Pj is therefore the
probability that service ends after task j.

Assume that arrivals of customers are independent of
services and that, within each service, sequencing of
tasks and task durations are all mutually independent.
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Also assume that each service constitutes a finite num-
ber of tasks with probability one; this is equivalent to
the existence of the matrix

R=1[I-PI",

where P is the K-dimensional matrix P = [P;]. (The el-
ement Rj; is the expected number of times that a task k
is performed during a single service, given that j is the
task to start that service.)

To sum up, customer arrivals are characterized by a
scalar «, and services by a triplet (g, P, m): q" = (g4, . . .,
qx), P = [Pyl and m" = (my, ..., my). (It is naturally
assumed that K = 2, @ > 0,m > 0 and g'R > 0.) Servers
will be characterized momentarily, as they are model-
dependent.

2.1. The Specialized Model
In the specialized model, every task k has a server k
dedicated to it, whose service capacity is ¢, > 0 units of
work per unit of time. It follows that the processing
times of task k by server k are i.i.d., each distributed
exponentially with mean 1,/ ¢,. Furthermore, envision-
ing tasks of every type queueing up for processing at
their respective dedicated servers, our specialized
model reduces to an open Jackson network (Jackson
1957) with K single-server stations, arrival rates aqT, ser-
vice rates c;/my and a routing matrix P. (See Figure 3.)
We assume that the specialized system is stable (er-
godic). This entails that each server k has traffic inten-
sity less than unity:
Ny

S

Pk

<1

Ck
here N = aq'R is the vector whose k-th coordinate \;
stands for the effective arrival rate (in units of task k) to
server k. Equivalently, stability prevails if and only if

Crk
<a= A —%
C=E T TRM),

where M is the k-dimensional diagonal matrix, with My
=m, k=1,..., K. This is a consequence of the repre-
sentation

(qTRM)k
= —.
Cr

s
k
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2.2. The Flexible Model
In the flexible model, customers arrive for service as
before, but now they obtain service from a single flexible
server, whose service capacity is c’e (e is the k-
dimensional vector of one’s). Services are as above,
hence the work content in services are i.i.d., each with
a phase-type distribution (Neuts 1981) that is character-
ized by the triplet (g, P, m/c"e): there are K phases each
corresponding to a task, the duration of phase k is ex-
ponential with mean m, the initial phase is chosen ac-
cording to g and successive phases according to the
routing matrix P. In other words, the flexible model re-
duces to an M/ PH /1 queue, in which the average work
content in a service is 4" RMe and the server’s capacity
is c"e; the average service time is therefore g"RMe/c’e.
(See Figure 4.) We assume that this queue is stable (er-
godic), which entails that its traffic intensity satisfies
q"RMe
c’e

o=« <1

Equivalently, stability prevails if and only if
cTe

a<af= .
q"RMe

2.3. Stability Analysis

The flexible system can handle any load that the spe-
cialized one can. This is formalized in terms of each of
the following two inequalities:

a® =aof, or (1)

pf = \k/ o (2)

To verify (1), note that for any positive vectors a2 and b,
T

_[ i v_} 3)

bTE k bkl k bk

since the left hand-side is a convex combination of a;/
b, k =1,..., K, namely,

28 _ o b &

S b 23b b
Letting a4, = ¢, and by = (9" RM); establishes (1). Simi-
larly, letting a, = (g"RM); and by, = ¢, yields

pl=73 dpi, di=c/ce, 4)
k

which implies (2).

MANAGEMENT SCIENCE/ Vol. 44, No. 7, July 1998

If « > o then the flexible and specialized models are
both unstable (have no steady state), hence a steady-
state comparison between them is vacuous. If a € [a?,
af), then the specialized model is unstable while the
flexible one is stable, in which case pooling is advanta-
geous trivially. One is left with @ < @° = o, which will
be assumed from now on.

3. Performance Analysis

Let W* and W/ denote the steady-state average sojourn-
times in the specialized and flexible models respec-
tively. Then

1 Pk
We ==
a%(l—pi)

by Little’s law and Jackson'’s characterization of individ-
ual stations as M/M/1 queues in steady state. For the
flexible model, the Pollaczeck-Khintchine formula
yields

W = E(S)[l PRI c2(5)} .

(1 -ph 2
Here S is a phase-type random variable characterized

by (g, P, m/c"e), whose moments are given by Neuts
(1981)

n!
(CTE')” q

E(S") = T(RM)", n =1,

and whose squared coefficient of variation is C*(S)
= Var(S)/E(S)?. Define the efficiency index of pooling to
be & = W*/ W'. Then pooling is advantageous, as far as
average sojourn time is concerned, when & > 1. Simple

algebra leads to the representation

1 P
-2
g K- pl K (5)
- f . 1+ C*S)’
pif (1 - pf) + pfﬂ
1-0p
in which
1+ C*(S) _ E(S?) _ g"(RM)%e
2 2E(5)? (§"RMe)*’
We write € = §,8,, where
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1+ C3(S)
2

1-ph)+p

are the utilization index and variability index respec-
tively. They represent the effects of utilization and vari-
ability on pooling efficiency, the analysis of which con-
stitutes the rest of the paper.

Ranges of the Indices. The ranges are given by
S L & € (0, 2K)
u K 7 7 v 7 7

and
& € (0, »);

the indices can take on all values within the specified
intervals, and the end-points of the intervals provide
tight asymptotic bounds. To elaborate, let

X

(1-x)"’

fx) = 0=x<1,

a strictly convex, strictly increasing function with f(0)
= 0 and f(1-) = . Then, using (4), these properties

imply
1 s l S
E hA f(Pk) E p f(pk)
g, = >
f(Ek dkpic) p dkf(pii)

1 cTe 1

_EVka_K.

One way for &, | 1/Kis to let pi | 0, for all k = 2, while
maintaining p/ =~ pj, both being bounded away from 0.
This requires that ¢;/c”e T 1. On the other hand, &, 1 %,
for example, as a | 0, a /¢, | O for all k, and c;/c, T o for
some pair j # k.

Turning to &,, the upper-bound 2K is an immediate
consequence of C*(S) = 0 and p/ = 1. The lower bound
0 is approached as C*(S) 1 « while maintaining p
bounded away from 0. Finally, the ranges of & will
emerge during later analysis.

Observations on Variability and Utilization. If
variability is low enough, formally if C*(S) < 1, then &
> 1 since &, > K; in other words pooling is advanta-
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geous. If utilization is balanced, formally if p; = pj, j,
k, (hence also p/ = pi, Uk,) then &, = 1 and pooling
efficiency is determined by the variability index. In par-
ticular, increasing utilization (p/ 1 1) and reducing vari-
ability (C*(S) ! 0) attains the maximum pooling effi-
ciency achievable under balanced utilization (2K).

Light Traffic. In light traffic, the pooled system is
always better because its customers are served at the
pooled capacity of all specialized servers. Formally,
light traffic prevails as a | 0, while keeping the other
parameters unaltered. Let § = () in (5). Then

T T
lim £(a) = 5 & RM)k/”’ RMe o1, ()

T
all k Cx ce

since the limiting efficiency belongs to the interval

c’e c'e
[chk ’ /\kCJ ’
in view of (3). Pooling, therefore, is always better in
light traffic, and it is K times better when the ¢,’s are all
equal.

Equation (6) can be explained with the light traffic
theory of Reiman and Simon (1989). The light traffic
limit of the mean sojourn time is the mean sojourn time
of a single customer that moves alone through the sys-
tem. For the pooled system, this time is " RMe/c"e. For
the specialized system, the mean sojourn time is 2
(g"RM)y/ ¢, since the k-th summand is the total time at
station k.

Heavy Traffic. There are two cases of heavy traffic:
a® = o’ and @° < of. We consider the case a® = o here,
and treat @° < o/ at the end of §4. The equality a® = of
occurs if and only if a® = ¢/ (g"RM); for all k, in which
case p; = p/ for all k. Let & = &(p) in (5), where p denotes
the common utilization. Then §, = 1, and

2K
lim &(p) = —— .
im &(p) = 725y

This finite limit prevails even though, as p T 1, both
W:(p) and W/(p) grow unboundedly. Indeed, as p 1 1,

(1 = p)W(p) = KE(S),

1+ C3(S)

(1 - p)Wi(p) > E(S) 2
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4. Division of Work or Capacity

Allocation
Fix a, g, P and m. Introduce an additional scalar y > 0,
to be interpreted as total available service capacity, and
consider positive vectors ¢ such that c’e = y. As before,
pf = ag"RMe/c"e = 3, N\iamy/c’e < 1, hence p/ is fixed,
v > 2 \gny, and &, is also fixed. It follows that, as a
function of ¢, the index & = &(c) is minimized by the
solution to
. Nty
min y ————,
¢ o — Ny

st Ya=vy c=0.
k
This is Kleinrock’s well-known capacity allocation

problem [Kleinrock (1976), §5.7], solved by the “’square-
root”” allocation

) Vv )\kmk
2 VAjm;

The corresponding value of & is given by the product of
&,, in which pf = m"™\ /vy, with

Cr = 7\kmk + (’y — Z )\]m]
j

1
R (2 v(qTRM)k)Z

= =1. 7
= ("RM), @

1
E (Ek v)\kmk)z

&,
i N

The last inequality is a simple consequence of the
Cauchy-Schwartz inequality, that also guarantees
equality to unity if and only if (9"RM), = (3"RM);, Uk,
j, in which case also ¢ = ¢;, Uk, j. The quantity (4" RM);
represents the amount of work of task k that is embod-
ied in an arrival. Hence, under the optimal capacity al-
location, &, = 1 if and only if workload and capacity are
both balanced.

Optimal capacity allocation typically results in un-
even utilization of the servers (see also Calabrese (1992)
and Hillier and So (1991)), which in turn is associated
with a smaller benefit from pooling. That is indicated
by (7), from which it follows that § = 2K; in words,
pooling benefits do not exceed 2K. This upper bound
can be approached only in a balanced system that is
both heavily utilized (o’ T 1) and almost deterministic
(C*(5) 1 0).
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Heavy Traffic, Continued. We can now treat the
other case of heavy traffic, o° < &/. If «* < o/, and «
€ [, &), as observed in §1, the specialized model ex-
plodes while the flexible one is stable, so pooling is triv-
ially advantageous. To allow for a meaningful compar-
ison, fix g, P, M and total capacity vy, then assume that
for each «, the specialized system employs the corre-
sponding optimal capacity allocation. This makes «* a
function of «, enforcing (@) T &/, as @ 1 a. Thus, both
the specialized and flexible system approach heavy traf-
fic, in a way that

2K
14 CXS)’

1

E (Zk v(qTRM)k 2
lim &(pf) =
lim &(p") 3, (4"RM),

by (5) and (7). The discussion that follows (7) applies
here as well.

5. Design

This section is devoted to some effects of network de-
sign on pooling efficiency. In §8§5.1 and 5.2 respectively,
we consider tasks that are processed in tandem and par-
allel. The pooling of queues only, as depicted in Figure
5, is briefly discussed in §5.3. We then highlight possible
negative effects of poor pooling design (with partial
pooling) in §5.4. In §5.5 we consider the effect of having
customers rejoin the queue for each task.

5.1. Tandem Tasks

Here C*(S) is small enough to render pooling always
advantageous. Indeed, for K tasks in tandem, g, = 1 (so
gk = 0,k = 2), Py = 1 for k < K, pi = amy/cy, pf
= amTe/cTe, and C3(S) = m™m/(m%e)* = 1. It follows
that &, = K, hence & = 1 since §, = 1/K always.

5.2. Parallel Tasks

Here the effect of pooling can be good or bad. For K
tasks in parallel (each service consists of exactly one
task, which is task k with probability gqx), P = 0, p;i
= agumy/ i, and pf = ag"m/c"m. The service time of the
pooled system is hyper-exponential, hence C*(S) = 1.
This also follows immediately from

1+ CXS) I quni _
2 (Zk kak)2 7

(8)

where the last inequality is a consequence of viewing
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3K gqumi and = gy as the first and second moments of
a discrete random variable.

From C*(S) = 1 it follows that &, = K. Under optimal
capacity allocation, in fact & = K by &, = 1. The upper
bound K is attained, for example, as follows: &, = K
when my, = m, Uk, since then C*(S) = 1; , = 1 by letting
also g = 1/K, Uk.

We now show that it is possible for a pooled system
to be arbitrarily worse than the specialized one. To this
end, we achieve & | 0 by constructing families of parallel
systems that adhere to optimal capacity allocation, im-
plying &, = 1, while having p/ fixed and C*(S) 1 e, im-
plying &, | 0.

One way is to follow Smith and Whitt (1981), where
there exist tasks which are both rare and ““challenging”.
Such tasks rarely challenge the specialized system but,
when pooled, they delay all other tasks sufficiently to
render pooling inefficient, unboundedly. The driver is
variability, made high enough for & | 0. To be specific,
vary g, and my; in a way that does not change the K
products gumy; simultaneously let, say, m; T o, while
maintaining m,/m,; bounded for all k = 2; « is fixed to
guarantee stability. (g, | 0 by p7 = agym;/c; <1and m,
T o, thus tasks of type 1 are both rare and challenging.)
It follows that p/, the optimal capacity allocation, and
the denominator in (8) are all constant, but C*(S) 1 «
with the numerator of (8).

A second way is to have slow servers in addition to
challenging customers. Specifically, in an optimal allo-
cation, take ¢; T y and g; { 0 (hence 24—, ¢, ¢ 0 and
Zk=2 g T 1: the servers 2, . . ., K are the slow ones), while
maintaining pj bounded away from 1. One can then
show that gqun,/q:m; = 0, Ok = 2. By (8)

1+ CS) _ /g
2 (A S qume/ umy)?’

verifying that, again, C*(S) 1 .

5.3. Heterogeneous Servers

There are situations in which servers cannot be pooled
into a single server and, while still flexible, they must
retain their individual identities. The flexible model
would thus become a multi-server single station (M/
G/S), with phase-type service and possibly heteroge-
neous servers, as depicted in Figure 3. Both systems en-
joy the same stability region [4], nevertheless perfor-
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mance is now worse than with a single server because
service is not always rendered at the maximal capacity
c’e. (This can be verified through coupling.)

A comparison between our specialized system and a
flexible system with heterogeneous servers would re-
quire formulae for the M/PH/S queue with heteroge-
neous servers. Such formulae do not exist so we restrict
our attention below to light and heavy traffic. In specific
cases, there exists approximations which enable certain
(approximate) comparisons. For example, Buzacott
(1996) uses second-moment approximations to compare
series systems (as in Figures 1 and 3) while varying sto-
chastic variability of tasks.

In light traffic, the performance of the single server
could be made better than the heterogeneous system by
a factor of ¢"e/ Vcy. Indeed, by the light-traffic rationale
(Reiman and Simon 1989), the mean sojourn time of the
single-server system is E(S)/c"e. For the heterogeneous
system, assume that services are always performed by
the fastest available server. The mean sojourn time, in
light traffic, is then E(S)/ V¢, which yields the above
factor.

The heavy traffic limit of the single server and the
heterogeneous system coincide (Iglehart and Whitt
1970). One expects, therefore, that the difference in per-
formance between the systems is maximal in light traf-
fic, and it diminishes as utilization increases to heavy
traffic. A precise justification would require a compari-
son via stochastic ordering.

5.4. Partial Pooling
In partial pooling, K specialized servers are pooled into
K’ < K servers, typically more flexible, thus resulting in
a queueing network with K’ stations. In this section we
show, by way of examples, that it is possible for partial
pooling to make a stable system unstable. Our examples
are based upon networks introduced by Bramson
(1994), which have opened up a yet uncharted research
territory.

We start with a specialized system that is a tandem
network, as in §5.1, with K taken odd for notational con-
venience. Let

a=1, m=mg=d, me=6k=+2K;
C1 :26, Cr = 1 - (K_3)6,
C3/C5/"'/CK72:2/(K_3)/
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e, Cxk1 = 26,

Cqy Co -

Bramson (1994) chose first 399/400 = d < 1, then K
large enough for d“°* < 1/50, and finally ¢ small
enough so that 0 = § < (1 — d)/50(K — 2)*. The spe-
cialized network is, therefore, stable and its (complete)
pooling, as in §5.1, is advantageous.

We consider now two (related) poolings. In the first,
the K servers are pooled into 3 servers as follows: server
1 attends to tasks 1 and K; server 2 serves tasks 2,4, . . .,
K — 1; server 3 cares for tasks 3,5, ..., K — 2. Thus, a
customer starts with server 1, moves on to 2, then 3,
back to 2, and so on, until service K — 1 at server 2, then
the last service back at 1 and finally out. Each server
uses the FIFO discipline, under which Bramson (1994)
proved that the network is unstable. (See his comment,
immediately following the statement of Theorem 1.) In
particular, with probability 1, the sojourn time of cus-
tomers increases to infinity, as f T . Instability arises
because the system roughly alternates between busy pe-
riods of server 2, attending mainly to incoming tasks 2
while starving server 1, and busy periods of server 1,
attending to tasks K while starving server 2. The star-
vation of both servers is a consequence of FIFO, under
which ample é-tasks are forced into queueing behind
few d-tasks. (A more refined and quantitative intuition
is provided in Bramson (1994).)

The second pooling is into 2 servers as follows: server
1 serves tasks 1 and K and server 2 attends to the rest.
The service discipline is again FIFO, where immediate
feedbacks at server 2 (of tasks 2, . . ., K — 2) join the end
of the queue, upon service completion. (There were no
immediate feedbacks in our first example.) Thus, a ser-
vice starts at server 1, moves on to 2 where it cycles for
K — 2 times, then back to 1 and out. Again, such a net-
work was proved unstable in Bramson (1994), Theorem
1, following the same rationale as above.

In the second pooling, server 2 could have served
tasks 2,..., K — 2 of a given service in succession, rather
than separating the service so that a task joins the end
of the queue upon service completion. Then the system
would have been stable (Baccelli and Foss 1996), which
gives rise to the general issue of splitting services. We
address this next.
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5.5. Splitting Services

Suppose that, after a task completion, each customer
returns to the end of the (single) queue; see Figure 7.
Thus, the queue consists of services that are at different
stages of their processing. Although such a protocol
seems naive, there are circumstances under which it is
superior (in terms of mean wait) to having services car-
ried out in an uninterrupted manner. For its perfor-
mance analysis, one must retain task-identities in
queue. An exact analysis is then possible (Simon 1984),
in terms of a set of linear equations whose solution
yields mean waiting times. More explicit results can be
obtained in heavy traffic (Dai and Kurtz 1995 and Rei-
man 1988). We just examine a special case, with the aim
of showing that the advantage can go either way.

In our special case, all tasks have exponential service
requirements with the same mean, m. This gives rise to
a product-form system (Baskett et al. 1975 and Kelly
1979), under which the distribution of total queue
length is that of an M /M /1 queue with traffic intensity
p’. The sojourn time per “pass’ is thus m/[c"e(1 — p/)],
and the mean number of passes through the queue is
g"Re. If we let W” denote the mean sojourn time in the
naive system, we obtain

f
m P
W'=—¢q"Re| 1 + .
cTe ! e[ 1-pf ]
For this case, M = ml, implying that

of 1+ CXS)
1-p 2 '

W = C’”Te qTRe[l +

We thus see that W" is less than (resp. equal to, greater
than) W/ if C*(S) > 1 (resp. C*(S) = 1, C*(S) < 1): the
naive protocol is superior under high variability. Note
that, in this special case, W"* = W°. (The comparison
amounts to the inequality &, = 1/K, which was estab-
lished in §3.)

6. Addendum

We conclude the paper with a discussion of our distri-
butional assumptions and possible further research di-
rections.

Distributional Assumptions. Only the exponential
tasks require an elaboration since the role of the Poisson
process as a model for exogenous random arrivals is
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well established. Empirical experience (Asmussen et al.
1994 and Mandelbaum 1994) with human services sup-
ports the phase-type service structure, as evidence sug-
gests that homogeneous human tasks are surprisingly
often exponential. Admittedly, however, exponentially
distributed task times will not be a good assumption for
all applications. Then the simplicity of the resultant
analysis becomes a driving motivation: explicit results
make it easier to obtain insights from the analysis. (One
could in fact analyze generally distributed tasks, in the
spirit of Buzacott (1996), Wein (1989), and Whitt (1983)
and in analytical support of Loch (1998); this would
require approximations of nonparametric Jackson net-
works and it is left as a possible avenue for future re-
search.) Although there is a basis for questioning the
universality of exponentially distributed task times, it
should be pointed out that the distribution of the total
service time as a phase-type distribution is not a prac-
tical restriction because phase-type distributions are
dense in the set of all distributions (see, for example
Asmussen (1987)).

Stochastic Ordering. Most of our results invite
finer comparisons, via various stochastic ordering
schemes. For example, under what conditions would
complete pooling of a tandem network lead to sto-
chastically smaller sojourn times? (For an example of
this type of result, see Buzacott et al. (1994), Example
1.7.1.) Beyond the basic assessment of flexible vs. spe-
cialized models, other possibilities include paramet-
ric analysis, from light to heavy traffic (see the dis-
cussion at the end of §5.3) or an investigation of the
effects of task-variability, for example refining Buza-
cott (1996).

Control. It is possible to maintain identities of tasks,
or customer-types. One reason is to identify the types
that benefit and those that suffer from pooling. More
generally, this enables the incorporation of control (ad-
mission, sequencing, routing), with the goal of improv-
ing performance. Recall the devastating effects of FIFO,
within the partial pooling of §5.3. Also note that pooling
all servers into a single server while maintaining task
identities raises the question of task sequencing, as an-
alyzed in Harrison (1975a), Harrison (1975b), Klimov
(1974), and Tcha and Pliska (1977). With appropriate
sequencing control (allowing preemption) the pooled
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system can always be made at least as good as the un-
pooled system. This is achieved by reproducing in the
pooled system (using preemption) the performance of
the original unpooled system. Preemption plays an im-
portant role here because with it certain customer types
can be made effectively invisible to some other types,
thus preventing the phenomenon of ‘“challenging”
tasks from §5.2. (The well-known formula for the wait-
ing times in the M/G/1 queue with nonpreemptive pri-
orities (Kleinrock 1976) allows the reproduction of the
arguments from §5.2.)

Economies of Scale. Consider a parallel specialized
network, with statistically identical tasks and servers
(equal m;’s and ¢;’s). Then € = K since §, = 1 and C*(S)
= 1. In words, pooling advantage equals the number
of servers pooled. This is a manifestation of economies
of scale because the pooled larger-scale system can
achieve, with higher utilization, the service level pro-
vided by the specialized system. Such higher utiliza-
tion could be the outcome of reduced capacity, hence
reduced cost. In the spirit of reengineering (Loch
1998), one often seeks to take advantage of economies
of scale (increasing K by pooling), in a way that out-
weighs the variability overhead that ensue (C*(S) in-
creasing). The desirable outcome is an operation that
is as efficient as mass production (p/ near unity) and
as flexible as customized services (large C*(S)), yet
provides a very high operational service level (fast re-
sponse, due to short and predictable sojourn times.)

The notion of flexible specialization (Priore and Sa-
bel 1984) or mass customization is a current key con-
cept in manufacturing strategy. This is also a main
goal in the design of distributed telephone call cen-
ters (Brigandi et al. 1994) and packet switches for
integrated broadband telecommunication networks
(Schwartz 1996). The main obstacle to achieving this
goal is the significant transactional overhead that
arises due to pooling. Consider, for example, the time-
overhead required for matching queueing customers
to servers that become idle, in a face-to-face service
operation with, say, 20 servers in parallel that attend
to a single queue. Another interesting example in-
volving overhead is to trade off transportation times
in the specialized model (adding ample-server sta-
tions) against set-up times in the flexible model, due
to switching among task-types.
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The general issue here is cost/benefit analysis of
economies of scale (increasing K or p/) in the presence
of various pooling-dependent constraints and over-
heads. Special attention can be given to specific topol-
ogies, for example hub-networks.

More Networks. Analyze pooling within queueing
networks that are richer in features and capabilities, for
example fork-join networks, where one must also trade
off the effects of coordination and synchronization; or
finite-buffer networks, with various blocking protocols,
giving rise to the option of pooling buffers.!

! The comments of the area editor, associate editor and two anony-
mous referees helped turn a rather different first version of the paper
into its more readable, so it is hoped, present form.

Part of the research of A.M. was carried out while visiting Bell Labs.
The hospitality of the “Mathematics of Networks and Systems Re-
search Department”” is greatly appreciated.
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