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ABSTRACT

We consider a canonical revenue management problem in a network set-
ting where the goal is to find a customer admission policy to maximize the
total expected revenue over a fixed finite horizon. There is a set of resources,
each of which has a fixed capacity. There are several customer classes, each
with an associated arrival process, price and resource consumption vector. If
a customer is accepted it effectively removes the resources that it consumes
from the system. The exact solution cannot be obtained for reasonable sized
problems due to the curse of dimensionality. Several (approximate) solution
techniques have been proposed in the literature. One way to analytically
compare policies is via an asymptotic analysis where both resource sizes
and arrival rates grow large. Many of the proposed policies are asymptot-
ically optimal on ‘fluid’ scale. However, as we demonstrate in this paper,
these policies may fail to be optimal on the more sensitive diffusion scale
even for quite simple problem instances. We develop a new policy that
achieves diffusion-scale optimality. The policy starts with a probabilistic
admission rule derived from the optimization of the fluid model, embeds a
trigger function that tracks the difference between the actual and ezpected
customer acceptance, and sets threshold values for the trigger function, the
violation of which invokes the reoptimization of the admission rule. We show
that re-solving the fluid model, which needs to be performed at most once,
is required for extending the asymptotic optimality from the fluid scale to
the diffusion scale. We demonstrate the implementation of the policy by
numerical examples.



1 Introduction

In this paper, we investigate a canonical revenue management problem and
develop a new approach that exhibits better performance for ‘large’ prob-
lems than previous approaches. The problem is defined as follows: there is
a set of resources with fixed capacities to be used by customers who arrive
randomly during a fixed finite time interval. Customers are divided into
different classes based on their usage of resources and the (fixed) price they
pay for the service. Depending on their classes, arriving customers are ei-
ther immediately accepted for service or rejected - no waiting or backlog is
allowed. If a customer is accepted it removes the resources that it consumes
from the system. Unused resources at the end of the time interval have no
salvage value. The objective is to find an admission policy to maximize the
total expected revenue.

A classical example of this problem is airline seat inventory control,
where a resource corresponds to a flight leg and capacity corresponds to the
number of seats on the flight. Customer classes are defined by (itinerary,
fare) combinations. The airline tries to allocate seats to different customer
classes in a way that maximizes the expected revenue. Other instances of
this problem can be found in various service industries, such as car rental,
hotel room reservation, and bandwidth provisioning in telecommunication
networks. The same problem also exists in supply chain management, e.g.,
when a inventory manager needs to allocate some non-replenishable stocks
of components to different orders.

If the exact numbers of customer arrivals of each class over the time
interval were given in advance, then the optimal number of customers of
each class to accept could be obtained by solving an integer program. (In the
asymptotic regime that interests us, the relaxation of this integer program
to a linear program introduces asymptotically negligible error, so we only
consider this relaxed linear program, not the exact integer program. It
should be noted that the optimal objective of the linear program is an upper
bound on the optimal objective of the integer program.) Of course, in normal
situations, the actual numbers of arrivals are not known until the process is
over, so we refer to the expected revenue obtained under the above procedure
as the ‘hindsight optimum’. Specifically, for each sample path of arrivals,
let the hindsight revenue be the revenue that the decision-maker could have
achieved with ex post optimization of the admission decisions. The hindsight
optimum is the expected value of the hindsight revenue. In this paper, we
study ex ante policies which are determined based on limited information
(mean, standard deviation, or distribution) about the arrival processes. The



hindsight optimum sets the upper bound for expected revenue that can be
achieved and is used as the reference point for measuring the performance
of a given policy.

We develop our analysis under the following asymptotic framework. We
introduce a sequence of problems of increasing size by scaling up customer
arrivals and capacities by a factor of k (k = 1,2,..,). We define the optimal-
ity gap of a given policy as the difference between the hindsight optimum
and the expected revenue generated by the policy. We develop policies un-
der which when problem size (k) increases, the optimality gap, after being
normalized by some parameter related to k, diminishes to zero. A policy has
a better asymptotic performance if the optimality gap can converge when a
smaller normalizing parameter is used.

Previous research has shown that many existing policies are asymptoti-
cally optimal on the fluid scale, i.e., if the optimality gap is normalized by
the problem size k, the resulting quantity converges to zero as k increases.
However, as we demonstrate for an example (and conjecture more generally),
these policies are not optimal on the diffusion scale, i.e., if the optimality
gap is normalized by vk instead of k, then the resulting value will not con-
verge to zero. Our key contribution is to propose a new policy that achieves
asymptotic optimality on the diffusion scale.

Our policy is developed from the observation that achieving hindsight op-
timality would have been trivial if the service provider could renege, i.e., take
away resources from customers who have already been admitted and/or ac-
cept customers who have been previously rejected (Some proposed schemes
in the literature, such as overbooking and options give the service provider
this flexibility at a cost.). While such reversal is not allowed in our problem,
the service provider can still benefit from rebalance, i.e., to offset the effect
of previous admissions by adjusting rules for accepting future arrivals. Our
policy starts with an admission rule derived from solving a linear program
and, at an appropriate time, adjusts the rule by re-solving the LP with
updated state information.

The revenue implication of re-solving a math program for updating con-
trol parameters has received considerable attention in recent studies. Nor-
mally, one would expect that re-solving should be beneficial as it makes use
of more observations of customer arrivals. However, Cooper [3] illustrates
a counterexample in which re-solving actually reduces the ezpected revenue.
His case is studied in more detail by Secomandi [11] who shows that re-
solving guarantees a (weak) revenue improvement under a certain condition
that he terms the ‘sequential improvement property’. In this paper, we
demonstrate the necessity of re-solving by showing that



1. without re-solving, no commonly-used booking limit policies, which
include the one in [3], can be asymptotically optimal on the diffusion
scale, regardless of how well these limits are preset; and

2. our policy, which re-solves the same LP model as in [3], is optimal on
the diffusion scale. The analysis makes it evident that re-solving is
crucial for reaching this optimality objective.

A related subject of interest is to decide the number of times to re-solve
the math program and more generally, when to re-solve. The issue is posed
as a topic for future research in [11]. On the one hand, the adjustment
should be made early enough so that there remain enough capacities and
future arrivals to rebalance. On the other hand, it is desirable to keep the
number of corrections to a minimum. In this paper, we show that it is
sufficient to re-solve the LP model only once to achieve the diffusion-scale
optimality, but the timing is critical. We develop a trigger and threshold
mechanism to decide the re-solving time.

The development of asymptotically optimal policies sheds interesting
insights on improving revenue performance for problems of all sizes. How-
ever, small-size problems sometimes give rise to what might best be termed
‘round-off’ issues that can limit the effectiveness of an asymptotically op-
timal policy. In these cases, one can still use the same insight but build a
different implementation heuristic. We discuss this issue with respect to our
policy in the paper.

Our policy applies to general situations with few information and compu-
tation requirements. Some existing policies are derived for Poisson arrivals,
a restriction we remove in our case. In Section 3, we outline conditions
imposed on arrival processes, which apply at least to all renewal processes
with finite second moment of interarrival times. Our policy only needs the
knowledge about the mean arrival rate of each customer class, which is as-
sumed to be constant over the interval. The calculation requires nothing
beyond linear programming.

The rest of the paper is organized as follows. We present the mathemat-
ical formulation of the problem and review relevant literature in Section 2.
In Section 3, we formalize the concept of asymptotic optimality and prove,
for an example, that booking limit policies are not asymptotically optimal
on the diffusion scale. In Section 4, we develop our policy and analyze its
asymptotic properties. We demonstrate the advantages of the new policy
via numerical examples and discuss implementation heuristics in Section 5.



2 Model Formulation and Previous Work

2.1 Notation, Model, and the Hindsight Optimum

There are J customer classes indexed by j = 1,2,..,J and L resources
indexed by [ = 1,2,.., L. Let a;; denote the amount of resource ! required
to serve a class j customer, 7; denote the price a class j customer pays for
the service, and Cj denote the capacity of resource I.

Customers arrive during a fixed time interval which, without loss of gen-
erality, we take to be [0,1]. For j = 1,2,..,J, denote the number of class
J customer arrivals in the period [0,¢] by Aj(t). We provide our assump-
tions on the arrival processes (sufficient to obtain our asymptotic results)
in Section 3. A concrete example covered by our assumptions is where
{A;(t),t > 0},1 < j < J are independent renewal processes with finite sec-
ond moments of interarrival times. Let the random variables z; denote the
total number of class j customers accepted in the time interval [0,1]. The
following constraints must be satisfied:

0<z; <Aj(1), 1<j<Jand Y ayz;<C, 1<I<I,
J

i.e., the number of customers accepted cannot exceed the number of cus-
tomers arriving (arrival constraints) and the usage of a resource cannot
exceed its capacity (capacity constraints). The expected revenue is E[R] =
B[}, rjz;]-

The hindsight optimum is defined to be E[R] = E [Z r;Z;] where Z;(j =

J
1,2,..,J) solves the linear program

max{) | rjz;] Y aye; < C,0 < z; < Aj(1)} (1)
J . 3
J J

This typically unrealizable outcome is the standard by which we judge the
performance of our policy.

2.2 Previous Work

This revenue management problem has been studied extensively in the lit-
erature. Various techniques, such as mathematical programming, Markov
decision processes, and optimal control, have been used to develop different
admission schemes. We do not attempt to cite and discuss every significant



contribution in this area. Instead we refer readers to [13] for a comprehen-
sive literature review. Here we focus on a few studies that are the most
pertinent to our own work. They include works on booking limit, nesting,
and bid price control. Common to our approach, all three schemes rely on
solving mathematical programming models to define admission policies.

We also want to point out two papers on a related revenue management
problem where dynamic pricing is used rather than admission control. The
first (to our knowledge) paper to consider asymptotic optimality in a revenue
management context was [6] who considered a single resource problem. They
showed that, with an appropriately chosen price, a fixed price policy is
asymptotically optimal on the fluid scale. This was extended to the network
setting in [7].

2.2.1 Booking Limit

Under this approach, the service provider sets a fixed quota for each cus-
tomer class and accepts customers First-Come-First-Serve (FCFS) up to
these limits. Actually, if these limits could be set by (1), then one would
achieve the hindsight optimum. While it is not feasible to solve (1) in ad-
vance because Aj(1),j = 1,2,...,J are not known, a simple heuristic is to
use Aj = E[A;(1)] as proxies and set booking limits by the following ‘distinct
deterministic model’ [15]

ey . < < 1. <\ L
ni?x{; iz ;al]a:] <C,0<z; <)} (2)

Despite the simplicity of the model, it is shown in [3] that using the solution
of the ‘fluid linear program’ (2) is asymptotically optimal on the fluid scale
(see subsection 3.1).

The arrival constraints in (2) impose unnecessary restrictions on cus-
tomer acceptance that may reduce total revenue. For instance, if C; = oo,
then to maximize revenue, all customers should be accepted. However, ap-
plying the booking limit set by (2) results in rejection of any arrival in excess
of the mean. This limitation is avoided in [16] where the booking limit is
set by the following ‘Expected Marginal Revenue’ or ‘Probabilistic Distinct’
model,

Ixr;g)g{z rjE[min(A;(1), z;)]| Z aijz; < Ci}. (3)

The new objective function, E[),;r; min(A;(1),z;)], is the expected rev-
enue achievable in the absence of capacity constraints, which is a concave



increasing function of the booking limits. When the capacity becomes suf-
ficiently loose, the model allows the booking limits to be set to oc so that
every customer is accepted. Notice that solving (3) needs more information
than solving (2). In the latter case, only the mean arrivals are used as in-
puts while in the former case, entire distributions of arrivals are needed to
formulate the objective function.

As another twist of the above approach, a new optimization model is
developed in [8], [9] in which capacity constraints are replaced with the
following set of fixed-point approximations:

a;T; + Z alj/E[min(Aj/(l),xj/)] <y, V3,1 a; > 0. (4)
J#3

Using numerical examples, the authors demonstrate the superior perfor-
mance of the policy that sets booking limits based on the refined optimiza-
tion model.

2.2.2 Nesting

It is easy to envision situations in which booking limit policies become ineffi-
cient. Suppose there is one class of customers who pay a higher price for the
service and use fewer resources than another class. Let there be a sample
path on which there exists a time when the number of arrivals of the first
class exceeds its booking limit while the second class still has unused quota.
The service provider gives up revenue if she rejects the former class and
accepts the latter, which is exactly what can happen under a fixed booking
limit policy. Nesting is a suggested remedy. Under this approach, customer
classes are ranked based on the price and resource usage, and high-ranking
classes are allowed to use quotas of low-ranking ones.

The nesting approach is shown to be effective for ‘single-leg’ problems
where there is only one resource so that, ignoring integrality, customer
classes can be completely ranked based on price per unit of resource used
(rj/aj, j =1,2,...J). The advantage of nesting becomes less clear in a net-
worked problem where there are multiple resources. In this case, customer
classes can typically only be partially ordered. (How do you rank two classes
of customers if one uses more of resource 1 but less of resource 2 than the
other?) While it is possible to come up with an integrated measure that
forces a complete ranking, for each of these measures, it is always possible
to construct a counter-example to show its disadvantage. For example, a
simulation study in [15] shows that among many ranking criteria, the use
of the dual variables of the arrival constraints (z; < X;) in (2) produces
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the best result. However, it is shown in a numerical example [9] that this
scheme generates less revenue than the fixed booking limit policy in which
no nesting is used.

2.2.3 Bid Price Control

Bid price control is yet another approach that sets an admission policy
based on dual variables in the linear program (2). A bid price y; is defined
as the Lagrange multiplier attached to a capacity constraint (Z] ajjz; <
C}). All customers of a class will be accepted if the price that class pays,
rj, is higher than the aggregated bid price ), a;ju;, and rejected if the
price is lower. However, how to treat customers whose price exactly equals
the aggregated bid price (i.e., r; = ), a;p) is a tricky question. When
the admission depends only on the bid-price, these customers have to be
accepted or rejected entirely, but the optimal strategy may require accepting
a fraction of these customers. As shown in [12], there exist examples where
the bid price control is sub-optimal because it cannot properly handle the
admission of customers in these boundary classes. Nevertheless, they also
identify interesting cases where the policy does work well, which is when the
price a customer pays follows a continuous distribution instead of taking on
a finite number of distinct values. Consequently, there is a probability zero
that a customer’s price equals the aggregated bid price, so the admission
decisions of these customers has no impact on the total expected revenue.

3 The Asymptotic Framework

We introduce a sequence of problems, indexed by k£ = 1,2, ...., that we obtain
by scaling up both the capacities and arrival rates with k. Thus we let

ck=kC, 1=1,2,.,L, (5)

where 0 < C; < co. We assume that there is a probability space (22, F,P) on
which the sequence of arrival processes is defined. We make two assumptions
on the arrival process. The first assumption states that a functional central
limit theorem holds for a properly centered and scaled sequence of arrival
processes. Given a sequence of arrival processes {A* k > 1}, where A*¥ =
(AF,...,A%), and A% = (A%(2),0 <t < 1), we define

AR(t) — ktA;
k _
j (t) =1 \/E ’

1<j<J, 0<t<l1, and k> 1. (6)



Let 8f = (6§(t),0<t<1),1 <j<Jandk>1,and g = (8f,... ,05),k >
1. Let 8 = (b1,...,05), where B; = (B;(t),0 <t < 1),1 < j < J,
denote a J dimensional driftless Brownian motion with covariance matrix
(a?j, 1 <4,5 <J). Let D?[0,1] denote the space of right continuous func-
tions with left limits defined on the time interval [0,1] and taking values
in R/ (endowed with the standard Skorohod topology). We let %, denote
convergence in distribution.

Assumption 1 g* 4, B on D7[0,1] as k — oo.

It may be helpful for some readers to place the somewhat abstract devel-
opment above on a more concrete footing. Toward that end we examine a
specific example where Assumption 1 holds. Suppose that Aq,... Ay are J
independent renewal processes with arrival rates A;,1 < j < J and (finite)
interarrival time variances v;. For k > 1 and 0 <t <1 let

AR(t) = A;(kt). (7)

(The speed-up of the k** arrival process by a factor of k in (7) corresponds
to scaling up the arrival rate by a factor of k.) With A;?(t) defined as in (7),
Donsker’s Theorem [1] implies that Assumption 1 holds with ajzj = )\;?Uj, 1<
j < Jand g}, =0 for i # j.

The Skorohod Representation Theorem (cf. [14], Theorem 3.2.2) pro-
vides us with a way to replace the convergence in distribution of Assump-
tion 1 by almost sure convergence, which simplifies our analysis. Applied in
the context of Assumption 1, the Skorohod Representation Theorem states
that there exist random elements ﬁk,k > 1 and B defined on a common
probability space such that

grlpge glp 8)
and
P(lim 3" =pf)=1. (9)

Rather than place the ~ on all of our random variables, we employ a (rea-
sonably standard) abuse of notation and simply assume that (9) holds for
our original random elements. A consequence of (9) is that we can write,
for 1<j<J,

AR(t) = Kt + VEB; () + €5(), (10)



where eg? (t) satisfies

klim k=12 sup |ef(t)| =0 a.s. (11)
—0o 0<t<1

Recall that our performance measure is the expected total revenue. Weak
(or almost sure) convergence does not guarantee convergence of expected
values. We thus assume the following.
Assumption 2 With ¢¥(¢) defined as in (10),

lim k~'/2E[ sup |f(#)] =0, 1<j<J. (12)
k—o0 0<t<1

We do not provide general conditions under which Assumption 2 holds.
We do, however, show that it holds for the independent renewal processes
introduced above.

Lemma 3.1 (see Appendix for proof) IfAi,...,A; are independent re-
newal processes with finite second moment of interarrival times, and A? (t)
is defined by (7) for 1 < j < J,0 <t <1 and k > 1, then Assumption 2
holds.

Our objective is to develop an admission policy that is asymptotically
optimal on the diffusion scale, i.e.,

lim (E[R*] — E[R*)/VEk =0, (13)

k—o0
where E[RF] is the hindsight optimum and E[RF] is the expected revenue
under our policy. To motivate the development of such a policy, in this sec-
tion we first present Cooper’s [3] result on fluid-scale asymptotic optimality
of the booking limit policy that uses the solution of the fluid LP for booking
limits. We then present an example showing that the more sensitive notion
of asymptotic optimality represented by (13) cannot hold for any booking
limit policy in the context of that example. We conjecture that this result
holds in much greater generality but do not attempt a precise statement
or proof, which are beyond the scope of this paper. To indicate one of the
issues that makes a precise delineation of the conditions under which (13)
can hold for a booking limit policy we show that, in fact, (13) does hold for
a variant of our example.

10



3.1 Fluid Scale Asymptotic Optimality of Some Existing Schemes

Cooper ([3]) studies the asymptotic properties of the booking limit policy.
Under the assumptions that customer arrivals follow some simple point pro-
cesses, and scaling of the problem satisfies

CF=kC, and AFQ)/ES ENQ)], 1=1,2,.,L, j=1,2,...,],
he proves that

r; Xk — E[RF
lim 22715 [ ]:0, (14)

k—o00 k

where {X]’-“,j = 1,2,..,J} is the optimal solution of (2) for the k** prob-
lem and E[RF] is the expected revenue under the policy that uses X ]k (=
1,2,..,J) as fixed booking limits. Since Zj rjXJ’?’ is the upper bound of the

total revenue for any policy [3], including the hindsight optimum E[R*], the
above implies that

im E[RF] — E[R¥]

k—00 k

= 0. (15)

In this paper, we use Equation (15) as the definition for asymptotic opti-
mality on the fluid scale.

Talluri and van Ryzin [12] discuss the asymptotic properties of bid price
control. They prove that if customer payment for the service is continuously
distributed over a finite support, then the scheme is asymptotically optimal
on the fluid scale. Furthermore, the difference from the hindsight optimum
on the diffusion scale, i.e., the left hand side of (13), converges to a constant
(not necessarily zero) as k increases. They also show that if the price for
the service takes discrete values, as is the case we are considering, the bid
price control is not asymptotically optimal on the fluid scale.

3.2 Diffusion Scale Analysis of Booking Limit Policies

Although many fixed booking limit policies are asymptotically optimal on
the fluid scale, we provide a simple example where no fixed booking limit
policy can be asymptotically optimal on the diffusion scale. The conclusion
holds regardless of how the booking limits are set and even in cases where
the use of booking limits is combined with nesting.

Consider the case where there is one resource with capacity C that is
used in unit amount by two classes of customers. Suppose that 1 > 9, i.e.,
class 1 customers pay a higher price.

11



Assume that customer arrivals of the two classes are independent re-
newal processes with arrival rates \; (j = 1,2). We introduce a sequence of
problems as specified by equations (5)-(7). With just one resource (L = 1)
we do not need an index for it. Thus we let C*¥ = kC. We consider cases
where

A+ X >Cand )\ < C, (16)

i.e., the capacity is more than enough to serve the mean demand of class 1
customers but not sufficient to serve the combined mean demands of both
classes. We assume that there is sufficient variation in the arrivals of class
1 customers in the sense that o2 > 0.

Define II as the family of all fixed booking limit policy sequences. Each
p € Il is associated with a sequence of booking limits {Xf’p (1=1,2),k>1}
and satisfies the following conditions:

1. Customers are accepted first-come-first-serve as long as admission is
open to their class.

2. Admission to the low-paying class 2 customers closes when the number
of accepted customers of that class hits Xéc P

Note that the two conditions do not exclude policies that allow the high-
paying class 1 customers to ‘borrow’ or ‘steal’ the booking limit from the
low-paying class 2 customers. Therefore, the definition of IT is broad enough
to include not only partitioned booking limits policies but also nested ones
(standard nesting as defined in [13]).

Let E[R*] be the hindsight optimum of the ¥ problem and E[R*?] be
the expected revenue under any policy p € II. The conclusion we want to
prove is formally stated as follows.

Theorem 3.1 In the above problem instance, for any p € 11,
E Rkl __ k,p
. E[RY]— B[R]

k—o00 \/E

We let W* € F, k > 1 denote a sequence of subsets of sample paths. By
the definition of the hindsight optimum, R¥(w) > R¥P(w) for all w, including
w ¢ Wk. Therefore,

> 0. (17)

E[R"] — E[R*?] > E[R*1(W*)] — E[R**1(W")), (18)

where 1(WF) is the indicator function of W*. This observation immediately
leads to the following Lemma.

12



Lemma 3.2 Let {W* k > 1} be a sequence of sets with W* € F and
klim P(W*) >0 . For any policy p € 11, if
—00

. E[R] — E[R*?]
lim
k—o0 \/E

=0,

then

Rk _ pkyp
lim inf R (w) — R (w)

=0. 1
k—o00 weWk \/E 0 ( 9)

To prove Theorem 3.1, it is sufficient to show that no p € II satisfies (19).
We make this point in the following analysis of two cases, which leads to
contradictory necessary conditions for the satisfaction of (19) by any p € II.

For the first case let W* be the collection of sample paths on which the
number of class 1 customer arrivals falls below its mean by an amount no
less than vk and the number of class 2 arrivals is at or above its mean, i.e.,
for £>1,

Wk = {AF(1) <kX —VE and AE(1) > kX}
= {Bf(1) < -1 and (1) >0} (20)

By the assumption of renewal arrivals and the functional central limit the-
orem,

lim P(W*) = P[31(1) < —1 and B(1) > 0] > 0. (21)

k—o00

(Note that, if 0? = 0, the the above limit is 0.) The revenue achieved under
a policy p € II satisfies

Rk’p < TlAlf(l) + T2X§’p. (22)

The hindsight optimal revenue satisfies (on W)

R* = riAT(1) +ra[A5(1) A (CF = AF(1))]
> rAT(1) + ra[kdg A (R(C — A1) + VE)). (23)

By the assumption that A; + Ao > C, if k is sufficiently large,

ko A (E(C — M) + VE) = k(C — A1) + VE,

13



and thus

R¥(w) — RM(w) k(C — A1) + VE — XEP

i inf > o 1
el wle%vk N3 =12 lclggo N

_ : X5 — k(C — M)

= 1 kli)rgo[l - 7 ]- (24)

Therefore, to satisfy Lemma 3.2, we need
Necessary Condition 1

kp o
lim X2 k(C — M) > 1.
k—o0 \/E

Now we deal with the second case. Let tg = (C — A1)/A2. Note by
equation (16) that 0 < ¢y < 1. Consider cases where the number of arrivals
of class 1 customers is below its mean by at least vk in period [0,%] and
accelerates later in the process. In the same period [0,%y], the number of
arrivals of class 2 customers is at least vk more than its mean. Specifically,
let

Wk = {A¥(to) < khito — VE,A¥(1) > kX
and Ab(to) > kot + V&)
= {Bi(to) <-1,8{(1) >0 and B5(to) > 1}. (25)

The probability of this happening satisfies, by the functional central limit
theorem,

lim P(W*) = P[Bi(to) < —1,61(1) >0 and By(te) > 1] > 0.

k—o0
For each w € W*, the total number of customer arrivals satisfies
AT(D) +A5(1) > AF(1) + AS(to)
> kM + (CF—kN) = CF, (26)

which is not less than the total capacity. Therefore, the hindsight optimum
is achieved by accepting as many class 1 customers as possible and using
the remaining capacity (if any) to serve class 2 customers. The resulting
revenue satisfies

R > ’I‘QCk + (7‘1 — 7‘2)[’6)\1 A Ck] = ’I"QCk + (7‘1 — T‘Q)k)\l. (27)

Under any policy p € II, the number of accepted class 2 customers in
period [0, ?p] is the minimum of 1) the number of class 2 customer arrivals;

14



2) the number allowed by capacity availability; and 3) the number allowed
by the booking limit, which should be no less than

A5 (to) A [CF — Af(to)] A X57
> (C* — kA 4+ VE) A (CF — kito + VE) A X577
(C* — kA1 + VE) A X5P. (28)
The number of class 1 customers served under policy p cannot exceed

C*F — [(CF — kAL + VE) A X5,

which equals k\; — V& if Xf’p > C* — kA1 + Vk. In this case, the revenue
under policy p satisfies

RFP < ryCF 4 (11 — 1) (kA1 — V), (29)
and consequently,
Pk _ pkyp
lim inf 2@~ RPW)
k—oo weWk \/E

This means the satisfaction of (19) requires
Necessary Condition 2

> (r1 —r2). (30)

kp _ _
i X2 — K(C = N)
k—00 \/E

The contradiction between Necessary Conditions 1 and 2 indicates that (19)
in Lemma 3.2 cannot hold under any policy p € II, and thus proves Theorem
3.1.

We observe that, if 0% = 0, there exist X]]-c’p such that

<1

E[R*] — E[R"?]
vk
which means there exist problem instances to which some fixed booking

limit policy can be asymptotically optimal on the diffusion scale. The proof
of (31) is given in the Appendix.

— 0as k — oo, (31)

4 An Asymptotically Optimal Policy

In this section, we propose a new admission policy and analyze its asymp-
totic properties. We present the policy in Section (4.1) and prove that it is
asymptotically optimal on the diffusion scale in Section (4.2).
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4.1 Policy Description

Our policy is called the ‘Thinning and Trigger (T'?)’ policy and is composed
of the following three elements.

1. Initial Optimization and Probabilistic Acceptance Rule

At t = 0, solve the linear program

max{z zjj| Z AT 4 S C[,O S Zj S )‘j}- (32)
Tj - -
J J

Let X;(j = 1,2,...,J) denote a solution. We then accept class j cus-
tomers with probability X;/)A;. Based on this rule, customers of class
J are all accepted if X; = Aj, all rejected if X; = 0, and partially
accepted if 0 < X; < A;. Correspondingly, we divide customer classes
into three groups j € J) if X; = A;, j € Joif X; =0, and j € J, if
0<X 5 < )\j.

2. Trigger Function and Thresholds

Let z;j(t) denote the number of class j customers accepted by time ¢
under the above probabilistic acceptance rule. Define Y;(t) = z;(t) —
X;t (j = 1,2,...,J) as the difference between the actual number ac-
cepted and the expected acceptance at time t. The trigger function is
defined to be

Lt)=a Y [T =a ) =) = A, (33)

JEIN JETA

where « is a constant whose value is determined as follows: consider
the incidence matrix A = (ay;), 1 =1,2,..,L, j =1,2,...,J. For each
non-singular submatrix of A, pick the maximum absolute value of all
elements in its inverse. Take the maximum of all these values over all
non-singular submatrices. If the resulting value is greater than 1, set
a to that value. Otherwise, set a = 1.

We explain the rationale behind the value of & in the proof of Theorem
4.2. Tt will also become evident that for the ease of calculation, we can
replace a with a larger constant in the trigger function. For example,
in case each resource is used in unit amount (i.e., a;; is either 1 or 0
forall j =1,2,..,J and [ =1,2,...,L), then o < max[l,L A J—1]. In
this case, we can define the trigger function as

[(t) = max[1, LA J—1] > |T;(t)],
JEIN
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which yields the same asymptotic results.
Let 0,(t) = (1 —¢)X; and 6;(t) = (1 — t)(\; — X;), and define

si(0) = ()~ )| Vi:X;>0,
Sit) = ;) 1050 Vi:X; <) (34)

as two sets of thresholds.

3. Reoptimization At ¢ =0, I'(0) = 0, s;(0) > 0 and S;(0) > 0. These
values evolve continuously over time and are compared whenever one
decides whether to accept or reject a customer. Let 7 be the first time
when the comparison shows that I'(¢) exceeds a threshold value, i.e.,

— inf{'(t) > mi () A min S;(£)} AL 35
T ;go{ ()_jer:glgjﬁsg() ;i ()} (35)

At this point, recalculate the acceptance ratio by solving the LP

max{ E Tj$j| E Qa5 S C[(T),O S Z; S (1 - T))\j}, (36)
T - -
J J

where Cj(7) = C; — >_; aijz;(7) is the amount of capacity of resource
[ left at 7, and (1 — 7)), is a proxy for the expected number of class j
customer arrivals in the remaining period (7,1]. Denote the solution
of the reoptimization by X;(7). The new probability for acceptance is
X;(7)/Aj(1—7) and applies all the way to the end of the time interval,
at t =1 (In other words, no more reoptimization is necessary).

4.2 Asymptotic Properties of the 72 Policy
We now analyze each element of our 7 policy and prove that it is asymp-
totically optimal on the diffusion scale.

4.2.1 Probabilistic Acceptance Rule

For k = 1,2.., ¥ = kX;, j = 1,2,..,J and Cf = kCj, | = 1,2,..,L, so
X Jk = kX;. Therefore, the same acceptance ratios X;/\; apply to problems
of all sizes.

In the k** problem, imposing the probabilistic acceptance rule on the
class j (j =1,2,..,J) arrival process

AR() = kAt + VEB; (1) + 5(t), 0<t <, (37)
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induces a new process zf in the following manner. For each j, 1 < j5 < J,
let {¢;,% > 1} be a sequence of i.i.d. random variables with P{¢;; =1} =
1 — P{4;; = 0} = X;/\;, with all J of these sequences independent. Then

A1)

i=1

For j =1,2,....J, let

_ X g — kX
% :

Then <,25§c LN ¢; where ¢; is a driftless Brownian motion with infinitesimal

variance 0]2- =X\ — Xj)/)\?. Note that 0]2- > 0 if and only if j € J,. We

can then write

o5 ()

: Ak
%Ag(t) + Ve ( Jk(t)).

We apply the Skorohod representation theorem to the sequence of processes
{qﬁ?, k > 1} (utilizing the same abuse of notation as before) which allows us
to write

a¥(t)

(1) = (1) + JW

z;“ (t) =

with k~1/2 SUPg<i<T |<5;c (t)] = 0 a.s. as k — oo for any T' < co. Thus we

can write, for 0 <¢ <1,

X; X; A% (t) A% (%)
2 (t) = kXt + VESLB;(t) + L (t) + Vhg (=) + 5 (=),
Y J
(38)
Under Assumption 1 and the Skorohod Representation Theorem,

Ak
sup | ]k — At = 0 as. as k — oo,
0<t<1

so the almost sure continuity of Brownian motion yields

AB(t
sup |¢;( ]k( )) —¢i(\t)] = 0 a.s. as k — oo,
0<t<1

and )
A%(t
k=2 sup |(5f( ]k
0<t<1

)| = 0 as. as k — oo.
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Denote by 7% the time that the trigger value first reaches a threshold and
invokes reoptimization in the k¥ problem. The following lemma provides
bounds and limits needed in our proofs.

Lemma 4.1 (see Appendix for proof) If Assumptions 1 and 2 hold, then

A5 (t)

a) il;IfE[(%(T))Z] <00, 0<t <, (39)
b) g{ﬂ(%(@)ﬂ < o0, (40)
c) klixgoE[\af(A;c}g(t))|] =0,0<t<1, (41)
o gm0 (@2

Theorem 4.1 shows that the probabilistic acceptance rule alone is suffi-
cient to achieve asymptotic optimality on the fluid scale.

Theorem 4.1 (See Appendix for Proof) Let {X;,1 < j < J} be a so-
lution to the fluid LP (32). Suppose class j customers are accepted with prob-
ability X;/X\; until the capacity of a required resource runs out, 1 < j < J.
Let E[RF] be the resulting expected revenue and E[R*] be the hindsight op-

timum in the k™ problem. Under the scaling (5), if Assumptions 1 and 2
hold, then
E Dkl k
lim —[R |- EIF] =0.
k—o00 k

To extend asymptotic optimality from the fluid scale to diffusion scale
requires the trigger and threshold mechanism, the properties of which we
discuss next.

4.2.2 Trigger Function and Threshold

Let T'*(1) be the trigger value at ¢+ = 1 of the k™ problem (without reopti-
mization), i.e.,

TF1) =a Y |F(1) — kx| =a Y [AF(1) — k).

JEIA JEIA

The value is used in Theorem 4.2 to bound the hindsight optimal solution.
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Theorem 4.2 Let {X;,1 < j < J} be an optimal solution to the fluid LP
(32). Under the scaling (5), if Assumption 1 holds, then a.s. for large
enough k there erist

Zy € [kX; —TF(1),kX; + TF(1)), j=1,2,...7, (43)
where {Ef, 1 < j < J} solves the hindsight LP
max{z %5 Zaljxj <kC,0<z; < Af(l)} (44)
T e -
J j

PROOF. Define nf = A%(1) — kX; = VEB;(1) + €i(1), so that I'*(1) =
aYicr, [n¥]. By Assumption 1, a. s. for large enough &,
51 < k(X — X;), for j & T (45)
Let y;“ be a hindsight optimal solution that optimizes
J J
H%?X{Z %] Z ajjr; <kCp, 0<z; <EkXj+ 77;“} (46)

=1 =1

Define £; = {l € {1,... ,L} : Y7_, a;;X; = Ci}. By definition and (45),

J
Zalijj < kC[ l= 1, ...,L, (47)
=1
J J
—Zaljk‘Xj < - Zaljyf l e Ly, (48)
j=1 j=1
0<kX; < kX\+nb i ¢ I (49)
0<EkX; < k) 7€ Jx, (50)
—kX; < —yi4nf €I (51)
kX; < yf j € Jo (52)

Denote the parameter matrix on the left hand side of the above by

A
B=| -4 (53)
N
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where A = (a;;), A; is a submatrix of A containing only rows corresponding
to I € L, and each row in submatrix N is either 0 or £€. Let « be the
minimum value such that there is no nonsingular submatrix of B whose
inverse contains an entry that is larger than « in the absolute value. Given
the structure of B, « is either 1 or the upper bound on the absolute value of
all entries in any inverse of nonsingular submatrix of A, whichever is larger.
We now show that there exists

E;C € [ka_a Z |7I§C'|aka+0‘ Z ‘nf’H .7: 1521""J

J'ETN J'ETN
such that
J
Zaljéf < kC l=1,..,L, (54)
j=1
J J
- Z azf < — Z aijy; l e Ly, (55)
j=1 j=1
0<z < kx+nf i ¢ I (56)
0<zF < kxj+nf j€ I (57)
—z; < Y i€, (58)
Zo< oyt j € Jo- (59)

This existence result is proved by applying the proof of Theorem 10.5 in [10]
with a slight change: comparing the right hand side of constraints (54)-(59)
and constraints (47)-(52), the perturbations 7];-C (4 € J)) in equation (57)
and —7];“ (4 € J») in equation (58) correspond to non-zero elements of " — b’
in Theorem 10.5 of [10]. We want a version of Theorem 10.5 in [10] with the
right hand side of their equation (25) (nA || ¥’ — b" || in their notation)
replaced by (in our notation) T'*(1) = aylicr |nf| Let e = T%(1). Our
desired result follows if we replace the inequality

y(O" =) +te> =y 1l b’ =" lloo +e >0

in equation (27) of their proof with

y(® =) +e> =1yl Y [nF[+e>0.
JEI

Note that Zf(] =1,2,....,J) is feasible for (46). To show it is also optimal,
expanding the second part of the proof of Theorem 10.5 in [10] with details
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of our model, let y; (I =1,2,...,L) and y; (j = 1,2, ..., J) be the Lagrange
multipliers associated with the constraints ijl ajjr; < Cpand z; < A in
the fluid LP (2), respectively. Observe that

J
w =20 if [ ¢ Ly (i. e.,Zaljmj < Cl),
7j=1
v 2 (=<)0 if j € I\(Jz, Jo), and

L
Tj:’Yj+Zalj,ul f1<j;<J
=1

Multiply both sides of (55) by the corresponding p;, both sides of (57)
and (58) by the corresponding 7;, sum the products, and apply the above
conditions. Then

J J J
Z ij_;-c = Z ’)’j,?;'c + Z s} Z aljé_;-c
j=1 j=1 lecy j=1
J J J
> Y b+ D m Yy gy =Y iyl (60)
j=1 leLy j=1 j=1

The conclusion is immediate by the definition of yf (j=1,2,...,J). O
The trigger mechanism starts to affect the admission process at 7% after
the trigger value first reaches a threshold. Let zf (7%) be the number of class
j customers that have been accepted by that time. At this point, the final
number of accepted class j customers will be in the range
[25(7%), 2§ (%) + A5 (1) — A¥(7%)]

= [z;-“(Tk),zf(Tk) +kX;(1 - ™) + Af(Tk)], (61)

where

AK(r*) = VEIB; (1) =55 (7)) €5 (1) —€f (")

J

is the deviation of the actual number of class j arrivals from its mean in
(7*,1]. The lower bound is reached when no class j customer is accepted
after 7% and the upper bound is reached when all of them are accepted.
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For all t < 7% and for all j such that X; >0,
kX, — 25 (t)=05(t) — Th(t)>05(t) — |Th(t)|>T () > 0, (62)

so that

J J
Zalj 5 Z ) <kCp, 1=1,2,... L.
j:l :

Consequently, before 7% capacity constraints do not interfere with the ad-
mission, so according to (38),

X; X;
z;-c(Tk—) — kaTk + \/E)\—]_Bj(Tk—) + /\—?e?(Tk—)
j j
Ak(T =)
k

Based upon the above discussions and Theorem 4.2, the following theo-
rem establishes a bound between the hindsight optimum and the best solu-
tion one can find in the range of (61).

lc,rk_
+ \/Equ(Aj(k )) ok (=2 ), 5=1,2,...,J.

Theorem 4.3 There exist

éf € [zf(rk),zf(Tk) + kXj(1 — Tk)+A§(Tk)], 1<j<J,

such that Zalﬂ <kC, 1=1,2,..,L and
j=1

J J
> riE > R~ Z][IA’c )|+ GITR(1) = TH(H)), (63)

Jj=1
where G = |J| mlax{malx{alj/alj:|alj: > 0}} is a constant.
35

PROOQOF. Following Theorem 4.2, let Zf(] =1,2,...,J) be a hindsight opti-
mal solution such that

kX, —TH(1) < 28 <kX; +T%(1).

Define J; = {j|5§c < Z;-C(Tk),j =1,2,...,J}. It follows that |J1| < J and
X;>0ifj € 7.

Define ¥ = (Hllaxazj)\.flﬂrk(l) — k(7).
N
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Recall that Tf(t) = zf(t) — kXjt, and

05 () =kX;(1—t) (X; > 0), 05(t)=k(X\; — X;)(1 —t) (X; < Xy).

(64)
Also by the definition of 7%, for all ¢ < 7%,
—TH(t) > —05(t) +|Th()| (X;>0) and
TE@) < 85() — TS @)] (X5 < M) (65)
1. If j € Jh, let Zf = zf(’rk). For alll € L,
Doa(Ei-zp) < Y aylz () - (kX; - TH(1))
JET JjET
= > ay[YH(rF) - 05 (*) + TF(1)
jeNn
< Y ay[-THER) + TR < @ (66)
JEN

2. If 25(r%) < 25 < 28 (7%) kX (1—7F) + Ak (7F), let

Ej = maX{Z;?(Tk),Z;-C—‘I//ajmin}, Qjmin = mlin{alj|alj > O}.

3. If Zf > Z;-C(Tk) + kX (1 —7F) + Af(Tk)a let

2 = () + [k (1 - 1) + AR — gl

kX +T5(1) — 2
TF(1) — [YE(*) + 65(7%) + A5 (%) — ¥/a; min]
ITF(1) = T¥(9)| + 1A (T9)| + ©/a; min-

|AR(7*)| + GIT*(1) — TF(7%)). (67)

(VAN VAN VAN VAN

Under the above construction

sk

Z; € [zf(Tk),z;-“(Tk) + kXi(1— ™) + Af(Tk)],
2 > Z5 — |AY(F)| - GITR(1) — TR(7Y). (68)

24



To complete the proof, we need to show that
J
> ay <kCp, 1=1,2,...L. (69)
=1
It follows from the above construction that, for j ¢ J1,
éf < mamx{z;-“(Tk),Z;-c — U/ajmin}-

Define Jo = {j ¢ J : 25 = 25(r%)} and J3 = {j ¢ J1 : 25 (%) < 25},

If jg (2) then
D azy =) aZ (),
J¢ JE
so that
J
Zal] J_Zalﬂ z; <kC’l
j=1

If J; # 0, then

Z a'lJ < Z a’l] + Z al] Z - \Ij/aj mln) (70)

J¢E JET JET3

so that, combining (66) and (70),

J
~k agj
Sap < Yoyt SagHe Yz -vy
j=1 JET JET> JjET3 jeg, %imin
J

< Z a;z; < kC.
j=1
Note that in (70) we used Zf > z;“(Tk) forj¢ 1. O
As an immediate implication of Theorem 4.3, let Rk( ,1) be the hind-

sight optimal revenue for the period (7%,1] after z%(7*) (j =1,2,....J)
customers have already been accepted. Then

J
— () rizf (%) + RF (75, 1)) <Zr][|Ak B+ GITk (1) — Tk ()]

7j=1
(71)

Our next theorem shows that this difference converges to 0 on the diffusion
scale.
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Theorem 4.4 Given 7% as defined above, under the scaling (5), if Assump-
tions 1 and 2 hold there exists a constant M < oo such that

0< lim E[VE(1 —7F)] < M, (72)
k—o0
which implies that
lim E[1 — %] =0. (73)
k—o0
As a result,

E[JAF(r*)[ 4+ T*(2) - T* ()]

lim 7 -0, j=1,2,.,J (74)
PROOF. By definition of 7%,

either Tk (%) > Q?(Tk) - |T§, (7%)| for some j' ¢ Jo, (75)

or rk(r%) > 9;-“(7']“) - |T§, (Tk)| for some j' ¢ J. (76)

If (75) is true,
a Y VEB (") + ()| = kX (1 - 7%) - |V

Xp o,
/\;, B (T7)

JEIN
AE (7F AE (7F
o Ko+ Vg () 4 g (T (1)
5’
Thus
., Ak (TF
VB =74 < o 3 1,0+ 2208 () + o () x;
JEIN J
J k k Af’( k)
+ @) [e(r |e,( )+ 165 ( )/ (VEX). (78)
JEIN
For1<j;j<J,as k — o0,
A
E[|ef(r*)[)/VE = 0 and E[|85 (-~ ( ))l]/\f—ﬂ)

by Assumption 2 and Lemma 4.1 respectlvely. Taking expectations on both
sides and letting kK — oo we obtain, again using Lemma 4.1,

lim BIVE( - )

X. Ak (7
< (O‘ > Bl + )\—;,Enﬁj’(Tk)” + Bl (= )]) /Xy =M

—~
B
~

JEITN
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A similar procedure shows the conclusion applies if (76) is true.
As for the second part, recall that

A5(rF) = VE[Bi(1) = Bi(7M)] + €f (1) — €f ()
A —TH) = al YO [VEB; (1) + €5 ()] = [VES; (%) + e (TO)]]]-

JEIN

Under Assumption 2 it suffices to show that

Jim B[|3;(1) - ()] = 0. (79)
Note that
Bi(t*, 1) _ (1) = Bi(r)
1—7k — 1—7k

is normally distributed with zero mean and a finite standard deviation. By
Schwarz’ inequality,

.,rk
Bl ) = B -2
< VB - BT (80

Since 78 <1, (1 — 7%)2 <1 — 7%, s0 that using (80), (79) follows from (73)
and yields (74). O

We would be able to conclude that our policy is asymptotically optimal
on the diffusion scale if the reoptimization invoked by the trigger mechanism
could deliver a revenue of R¥ (7% 1) after 7%. Even though this cannot be the
case, we show next that the difference is sufficiently small that the conclusion
is still valid.

4.2.3 Reoptimization

We divide the revenue generated under the 72 policy (RF) into two parts,
Z]J':1 rjz;-“(Tk), which is collected before the trigger point, and RF(7*, 1),
revenue obtained afterward. It follows that

J
RF = erz;-c(Tk)—i-Rk(Tk,l)

> () +RE(E, D)= (B (7, 1) = R, 1)) (81)

j=1
J
= [
Jj=1
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Take the expectation of the above and note that by Theorem 4.4 and
(71),

(E[RF] — Zr] 2 (") +RE (5, 1)) /VE = 0 as k — oo. (82)

To prove that the T policy is asymptotically optimal on the diffusion scale,
we only need to show that E[R*(7*,1)] differs from E[R*(7*,1)] by o(Vk).
Intuitively, 1 — 7% is on the order of 1/v/k by Theorem 4.4, so E[R* (7%, 1)]
should be on the order of vk. We also know from Theorem 4.1 that the
probabilistic acceptance rule is asymptotically optimal on the fluid scale.
Combining these two facts leads us to conclude that the difference between
E[R*(7*,1)] and E[R¥(7* 1)] should be of a lower order than v/k. This
conclusion is formally stated as the following theorem, which also formally
states our main result.

Theorem 4.5 Given 7% as defined above, under the scaling (5), if Assump-
tions 1 and 2 hold then

E[RF(7*,1) — RF(7%,1)]

li =0.
e v ’ 9
so that
Rk _ Dk
lim EH R (84)
k—00 \/E

PROOF. Apply the same reasoning that leads to (102) for the acceptance
process over [7%,1]. Then
E[Rk(Tka 1)] — E[Rk(Tka 1)]
\/E

< G|J|er Iﬁg B + S21ek (1) — ek ()| VR

A’?(l) Ak (TR)

Ak Ak(rF
gy gy AT e B g ANy

The terms involving |3;(1) — B;(7¥)| are covered by (79). The terms in-

volving |ef( ) — €¥(7%)| are covered by Assumption 2. The terms involving

.7
Ak(1) AR(TR)
) — gy

)| are covered by Lemma 4.1. The remaining terms,

28



A Tk
1nvolv1ng | (% ) q’)]( ))|, require a bit of effort. By Theorem 4.4
78 5 1 as k — oo so that
A’“( ) AN(TR) P
65(2=) = (L) B0 as k- oo
by the a.s. continuity of Brownlan motion. To complete the proof we

show uniform integrability of |¢;(—% A ) — gb](A ()

ing Minkowski’s inequality,

Ak(1 Ak (rk A Ak (rk
\/E[wj( 10 gy B < \/ Bl(# (1))>21+\/E[(¢j< ulir)

Both terms on the right hand side are uniformly bounded in k£ by Lemma
4.1, so uniform integrability follows.
Finally, recall that

)|. We can write, us-

Zr, Ky + RE (7% 1).

Combining (82) and (83) yields

B[R — R
vk
If we let E[R% ] denote the expected revenue under the (unknown) op-

timal policy we have E[R*] < E[RE,] < E[RF]. Thus a consequence of
Theorem 4.5 is that the gain of the hindsight optimal policy is o(vk):

—0 as k — oo. O

. E[R*) - E[R
k0o Vk

We conclude this section by pointing out that the ideas behind our ap-
proach may spawn a family of other admission policies that employ re-solving
strategies to achieve asymptotic optimality on the diffusion scale. The crit-
ical element of our policy is to choose a right time to reoptimize, which has
to be early enough so there remain sufficient capacities and future arrivals to
cancel out previous deviations from the hindsight optimum, and late enough
so the deviations that occur afterwards become negligible on the diffusion
scale. As long as these conditions are met, the reoptimization time does not
need to be a random stopping time defined by our triggering mechanism.

opt] —0.
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For instance, one may design a set of open loop policies by fixing a constant
0 < Ky < 1 and for each problem in the sequence k = 1,2, ..., presetting the
re-solving time at

Ky

k _
th=1-22,

a>0.

As a rough estimation, the total deviation from the hindsight optimum ac-
cumulated before t¥ is on the order of k'/2. At t*, the remaining amounts
of capacities and future arrivals are on the order of k'~%, so the deviation
can be corrected by the reoptimization if 0 < o < 1/2. The deviation after
t¥ is on the order k(1=®/2_ Therefore, by the same argument that supports
our policy, one may expect the above open loop policies are also optimal on
the diffusion scale (with 0 < a < 1/2). Nevertheless, the scaling parameter
k is only meaningful when we introduce a sequence of problems. So these
open loop policies, which rely on the value of k, are hard to specify and
implement for any individual problem instance. This downside needs to be
balanced against the upside that there is no need to keep track of the trigger
function and thresholds. We leave further investigation of these issues for
others to undertake.

5 Numerical Studies

In this section we discuss the implementation and performance of the T2 pol-
icy through numerical case studies. In Section 5.1, we numerically demon-
strate the asymptotic optimality of the policy and the corresponding revenue
improvements. We identify some practical difficulties of applying the policy
to small problems in Section 5.2 and propose solutions in Section 5.3.

We consider an example with three resources and eleven customer classes.
All resources have 100 units of capacity. We assume the arrival process of
each customer class is Poisson and generate sample paths of arrivals accord-
ingly. Table 1 gives the arrival rate, price, and resource usage of each class.

5.1 Convergence Property and Performance Advantage of
T? Policy

We demonstrate the asymptotic optimality of the T2 policy by comparing
it with the LP policy discussed in [3]. The two policies use the same infor-
mation about demand (mean arrivals) and employ the same optimization
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Table 1: Example Setup: Input Table

class | arrival rate | price resource usage
1 | 2 [ 3

1 60 90 1

2 35 90

3 30 130

4 30 130 1

5 25 130 1

6 21 130 1

7 18 50 1

8 14 90 1 1

9 20 50 1

10 25 90 1

11 16 50

technique (linear programming). Nevertheless, their performances differ sig-
nificantly, as shown in the following example.

We scale both customer arrival rates and capacities by a factor of k = 2K
(K =0,1,..,12). For each k, we generate 100 sample paths and for each
sample path, simulate customer admission and revenue collection under each
policy. The mean revenue under a given policy is estimated by averaging
the revenues of all sample paths. The shortfall of the mean revenue from
the hindsight optimum is defined as the revenue loss. Figure 1-a shows that
under both policies, the revenue loss increases with the problem size.

We divide the revenue loss by the scaling parameter £ and plot the
normalized values in Figure 1-b. Qualitatively, the trends are the same for
both policies: as k increases the normalized revenue loss converges to zero,
even though quantitatively, the convergence rate is higher under the 7
policy. The observation is consistent with the result that both 72 and LP
policies are asymptotically optimal on the fluid scale.

We then divide the revenue loss by the square root of the problem size,
VEk = 2K/2. Figure 1-c shows a qualitative difference between the two
policies. As the problem scales, the revenue loss normalized by vk still
converges to zero under the T2 policy, but does not decrease under the
LP policy. The figure illustrates our analytical result that the 7' policy is
asymptotically optimal on the diffusion scale, while the LP policy appears
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Figure 1: Comparison of Revenue Loss: LP & T?

not to be.

The advantage of the T2 policy over the LP policy can be observed even
before the problem size is scaled up. Figure 2 shows such a comparison of
revenue samples under each policy when the problem is at its original size,
ie,, k=1 (K =0). The revenue collected on each sample path under the
T? policy is sorted in an ascending order, and matched with the revenue
collected on the same sample path under the LP policy. The figure shows
that in most cases the 7" policy dominates the LP policy. We define the ratio
of the revenue obtained under a given policy to the hindsight optimum as
the revenue achievement indez. In this example, the average index over the
100 samples is 96.6% and 94.2% under the T2 and LP policies, respectively.
The t-Test shows that this difference is significant at 0.001 confidence level.

Having demonstrated the advantage of the T? policy, we now describe
an alternate implementation of its admission rule. Instead of accepting
customers according to a given ratio probabilistically, one may take a de-
terministic approach and associate each customer class with an admission
counter. The counter for class j (j = 1,2, ..., J) starts from 0 at ¢ = 0, and
advances by an increment of X;/)A; when a class j customer arrives. The
customer is admitted when and only when her class counter is at least 1.
When a customer is admitted the counter is decremented by 1.

The new approach removes the randomness associated with the proba-
bilistic admission, but introduces rounding errors in the expected values, i.e.,
the expected number of class j (j = 1,2, ..., J) customers accepted by time
tis E[|X;A;(t)/)A;]] instead of the intended value of X;t. Nevertheless, as
the problem size increases, the impact of the rounding error becomes negligi-
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Figure 2: Revenue Comparison: LP & T2

ble. In our case studies, when k = 1, the deterministic admission rule leads
to a slightly worse performance than the probabilistic approach (average
revenue achievement indexes are 96.0% and 96.6%, respectively), reflecting
the impact of the rounding error. Once k > 8, the performance of the two
approaches are almost identical.

5.2 Limitation of the 72 Policy

Since an asymptotically optimal policy may not be optimal, for a given
(finite) system we cannot expect that the T2 policy can outperform any
policy that is not asymptotically optimal on the diffusion scale. While Figure
2 shows that the 72 policy beats the LP policy when k& = 1, we provide
here an example of a policy that, while not asymptotically optimal on the
diffusion scale, has performance close to that of the 7 policy for small and
moderate sized problems. That policy is the Fixed-Point (FP) policy of Li
and Yao (see [8]). Like the LP policy, the FP policy controls admission based
on some pre-set booking limits that remain unchanged for the whole period,
so by our discussion in Section 3, we conjecture that it is not asymptotically
optimal on the diffusion scale. Nevertheless, the FP policy was developed
specifically for Poisson arrivals and uses the distribution function of arrivals
(instead of relying only on the mean number of arrivals, as is the case with
the LP policy) for optimizing booking limits. As a result, in our example,
the FP policy gives higher average revenues than the LP policy.
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Figure 3: Revenue Comparison: FP & T2

100

We apply both the T2 and FP policies to the above problem for k = 1,
simulate customer admissions on 100 sample paths, and compare revenue
samples in Figure 3. Despite the fact that the T2 policy has better asymp-
totic behavior than the FP policy, there is no revenue improvement. The
t-Test also shows that the difference in the revenue achievement index be-

tween the two polices is insignificant.

To explain this result, recall from the proofs of Theorems 4.4 and 4.5
that the advantage of the T policy is based on two essential factors. First,
reoptimize the admission rule (albeit only once) to correct deviations from
the hindsight optimum. Second, to remove all deviations over the entire
period on the diffusion scale, the reoptimization time, 7%, is pushed to the
very end of the horizon as kK — oo. If the second condition does not hold
and the reoptimization takes place early, then the policy becomes much

less effective.

For instance, if the reoptimization takes place right at the

beginning, then there is hardly any difference between 7' policy and a policy

that does not reoptimize.

Early reoptimization is likely to happen when the problem size is small.
Recall that the reoptimization is triggered when the trigger function I'*(¢)

violates a threshold,

either kX;(1—¢) Vj: X; >0 or

k(A —

X)1-t)Vj:X; <A

Even though T'*(t) is on the diffusion scale (v/k) and all of the thresholds
are on the fluid scale (k), the former can still exceed the latter at an early

34



El
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128 | 256 | 512 | 1024 | 2048 | 4096
0.79 | 0.86 | 0.89 | 0.93 | 0.95 | 0.96
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Table 2: Time to Reoptimize the Admission Rule (average of 100 cases)

time if £ is small. In the above example, the average reoptimization time
is 0.12, so the reoptimization does not correct deviations occurred in the
remaining 88% percent of the period (0.12,1]. Therefore, it should not be
entirely surprising that the T policy does not significantly outperform the
FP policy.

The difficulty disappears as we scale up the problem size. Table 2 gives
the average time to reoptimize the admission rule (denoted by 7%, bar stands
for average and k indicates the problem size) under the T2 policy in the above
problem when we increase k from 1 to 4096 (K = 0, ...,12). The table shows
that 7% monotonically increases with k£ and approaches to the limit ¢ = 1,
just as the same asymptotic trend expected by our analytical result in (73).

As the time to reoptimize increases, the advantage of the T2 policy be-
comes evident. We perform the same numerical experiments as above for
different problem sizes and test the hypothesis that the mean of the revenue
achievement index under the T? policy is no greater than that under the
FP policy. When k = 1,2 (K = 0,1), the p-values of the t-tests are —0.19
and —0.34 respectively, so the hypothesis should clearly be accepted. When
k =4 (K = 2), the p-value is 1.47 and the hypothesis can be rejected at
0.1 significance level. When k£ = 8 (K = 3), the rejection of the hypothesis
is almost certain (at 0.05 level, p-value is 1.75), which indicates an observ-
able improvement of the T policy. While we expect the trend will be more
obvious as the problem size increases further, we stopped at this point be-
cause the exponential growth of the fixed-point equations makes it difficult
to calculate booking limits under the FP policy.

5.3 Strategies for Handling Small Problems

A natural strategy to improve the performance of the T2 policy for small
problems is to allow repeated reoptimization instead of reoptimizing just
once, as the T? policy does. After each reoptimization, the trigger and
threshold functions are reset and restarted for the remaining period. The
next reoptimization is invoked whenever the new trigger value exceeds a new
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threshold. We refer to the new approach as the relaxed T? policy, apply it to
the same example as in Figure 3, and compare the result with the FP policy
in Figure 4-a. The figure shows a visible improvement of revenue under the
relaxed T2 policy.

Once we relax the restriction that the reoptimization can take place only
once, another policy that uses an even simpler admission rule, referred to
as the Open-Admission (OA) policy, can be applied. Like the 7 policy,
the OA policy employs a trigger-threshold mechanism (though the trigger
and threshold functions are defined differently), and as the name indicates,
accepts all class j (j = 1,2,...,J) customers if X; > 0 (where X, is an
optimal solution to the fluid LP) and reject all others. This policy leads to
excessive acceptance (on the fluid scale) of class j customers if 0 < X; < ),
and relies on reoptimization, which can reset X; = 0 to reject all future
arrivals, to eliminate the excess.

To describe the OA policy, let 79 be the last time when the fluid model
was optimized and X;(r) be the solution of the fluid LP. The procedure is
as follows

1. Initialization: 7o = 0 and solve the fluid LP (32).

2. Accept all class j customers if X;(79) > 0. Note that if the fluid LP
gives a binary solution, i.e., for each j = 1,...,J, either X;(m9) = A;
or X;(79) = 0, then the admission rules are equivalent between the T2
and OA policies.

3. In case of the binary solution, use the same trigger function and thresh-
olds as the T2 policy.

Otherwise, for each resource [ = 1,..., L, define a trigger function,

J
1—1t
Iy(t) = ; alj[l_—TOXj(To) + z;(t)] — C, (85)
where z;(t) is the number of class j customers accepted by ¢, and a
threshold.
L 1=t
si(t) = min{s— = a1;X (7o) a; X;(70) > 0}. (86)

Both trigger and threshold values are updated when an arrival occurs.

4. In the case of the non-binary solution, reoptimize the fluid model when-
ever I'j(t) > s;(t) for any I.
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Figure 4: Revenue Comparison

In the case of the binary solution, the reoptimization is triggered in
the same way as under the T? policy.

In both cases, reset t = 7y and go back to step 2.

For the same example, we plot revenue samples under the OA and FP
policies in Figure 4-b, which shows a clear lead of the former. The rev-
enue achievement index is 98.3% and 96.3% for the OA and FP policies
respectively. The difference is at 0.001 significance level by the t-Test.

In Figure 5, we compare the scaled performance of the OA and FP
policies to obtain an indication of their asymptotic properties. The layout
of the figure is the same as that of Figure 1. Again, we stop at k = 8 (K = 3)
due to the difficulty of calculating FP booking limits for very large problems.
Nevertheless, a clear and consistent trend is observable from this limited
number of data points. Under the FP policy, the revenue loss decreases
with problem size on the fluid scale but not on the diffusion scale. Under
the OA policy, it declines on both scales.

We end our discussion of the OA policy by mentioning an interesting
observation. Intuitively, one would expect that, for the same problem, there
will be more reoptimizations under the OA policy, which overloads the sys-
tem, than the relaxed T policy, which does not. To our surprise, we ob-
served the opposite in some examples. The observation can be explained by
the difference of trigger functions. Under the OA policy, the trigger function
is

J
1—1¢
Pl(t) = jzlalj[l — 7_OAij(T()) + Zj(t)] — Cl, l = 1, ...,L,
which allows different customer classes to cancel out each others’ random
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deviations of arrivals. Under the T policy, the trigger function is
T(t)=a Y |z(t) - Mtl,
JEJIN

which does not have this pooling effect. Even though the deviations are
on the diffusion scale, for small problems, their cancellations can still be a
significant factor compared with the fluid-scale bias associated with the OA
policy, which makes the observed effect possible.

6 Appendix

6.1 Proof of Lemma 3.1

Due to the independence of the J renewal processes, it is sufficient to prove
this result for each j separately. To simplify the notation we drop the
subscript 7.

Combining equations (6) and (10) we can write

BE@t) = Bt) + k~2¢ @), k>1, 0<t<1.
Thus, using Minkowski’s inequality (cf. Durrett [4]) with p = 2 we have

(BI( sup (K72 W)}2 = (BI( sup 6°(6) — 6(2))I}?

< {Bl(sup 80D + (BI sup 150D}, (87)
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Let C1 = E[(supg<s<1 |6(t)])?]. Then €1 < co. So we focus on the first term
on the right hand side of (87). We want to show that

sup E[( sup |8*()])*] < oo.
k>1 0 0<i<1

We prove this as follows. By equations (6) and (7) we have

A(kt) — ktA
—

Let &,i > 1 denote the interarrival times of the renewal process A =
{A(t),t > 0}. We can write

B (t) =

A(kt)+1 A(kt)+1
A(Rt) +1—Kth= D (L=X&)+A DY, &—Fkt),
=1 =1
so that
A(kt)+1
E[(sup [B*(1)))’] < 4E[sup (k* Y (1-X&))*
0<t<1 0<t<1 =1
)\2 A(kt)+1
+ 7 kt _'
Bl (2, &

(For any real A, B,C, (A+ B+ C)? <4A% +4B? 4+ 2C?.)

Let F = (F(t),t > 0) be a filtration such that &, is F(n) measurable
and &, is independent of F(n — 1),n > 1. By Lemma 2 of [2], for every
t > 0,A(kt) +1 is a stopping time with respect to F. Let F, = (Fi(¢),t > 0)
with Fi(t) = F(A(kt) + 1). For n > 1, let 7F = inf{t > 0 : A(kt) > kn}.
Then {7%,n > 1} are stopping times for Fj. Let

A(ktATE)+1

mi(t)= D, (1-X&)

i=1

forn >1,k>1and 0 <t <1, and let mﬁ = (mﬁ(t),t > 0). Then, by
the proof of Lemma 2 of [2], m is a square integrable martingale. Thus, by
Doob’s inequality (c.f. [5], proposition 2.16(b)),

E[ sup (my(t))%] < 4B[(mf(1))%]. (88)
0<t<1
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The predictable quadratic variation process of mk, (mk) = ((mk)(¢),t > 0),
is given by

(mEy(t) = N2a?A(kt A TF), (89)
where 02 = Var(¢;). Let LE(t) = (mE(t))2 — (mE)(t). Then, by the defini-

n
tion of predictable quadratic variation, (L (¢),¢ > 0) is a martingale with
2

LE(0) = (1 — X\&1)? so that E[LE(0)] = )\20 Thus
E[(mk(1))?] = MX26%(E[A(k A TF)] + 1) < N2o2(E[A(K)] + 1). (90)

Combining (88) and (90) yields E[supg<;<1(m. k(#)?] < 4202 (E[A(K)] +1).
By standard results on renewal processes Tk — 00 a.8. as n — 00, SO by
Fatou’s Lemma,

A(kt)+1

E[sup (k2 > (1-2&))’] < k 'liminf B[ sup (mF ()’
0<t<1 n—=00 0<t<1

i=1
By the renewal theorem, k~'(E[A(k)] +1) — X as k — 00, so
A(kt)+1
sup E| su —1/2 (I—-2A < o0.
k211) [Ogtgl ; &))°

We now deal with the term E[supg<;<; (Z?:(Ift)ﬂ & —kt)?]. We can write

A(kt)+1
Zz 1 6 _kt<£Akt+1 so that

A(kt )+1
sup ( Z & — kt)? sup 512
0<t<1 1<i§A(k)+1

We have the simple bound E[sup; <;<a (k)41 E1<E Z Alkt) t1e2 By Wald’s
Lemma (A(kt) +1 is a stopplng time w1th respect to F and E[A(kt) +1] is

finite for kt < oo), B[S a0 ¢2] — E[A(kt) + 1]E[¢2]. Thus
Akt)+1
E[sup ( Y & —kt)’] < E[A(kt) + 1]E[E]],
0<t<1l i
and supy>q k™ E[Supo<t<1(ZA(kt e — kt)?) < oo

By (87) we thus know that supy>; E[(supp<;<1 |k~ 1/2€k(t)])?] < oo, which
implies that {supp<;<i |k~Y/2ek(t)|,k > 1} is uniformly integrable. Taken
together with (11), this proves the lemma.
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6.2 Proof of Equation (31)

Let XF? = kC and let X5 = k(C — A1). Note that X5 > 0 since A; < C.
Let z;-c’p and Zf denote the total number of class j customers accepted
by policy p and the hindsight policy respectively. Then

zZv = A¥(1) AkC,
AP > AR1) A (KC — XEPY = AR(1) AR (91)
Since A1 + A2 > C, a.s. for k large enough,
zn = A A(KC -7 =kC - ZF,
P = AR AXEP A (RC = ZFP) = (KC — kM) A (KC — 25P)
(kC — 2P) — (kA — 2P)*

> (kC — 2PP) — (kA — A¥(1))T. (92)
As a result,
Rk = r9kC + (7“1 — 7‘2)2{6,
REP > 1kC A+ (r1 — 1) 2P — ro(kAy — AR (1)) 7. (93)
Therefore,
pk _ pkyp N sk ko AR
lim R R S lim (7"1 7"2)'21 Zl |+T2[k}\1 1( )]
k—o00 \/E k—o00 \/E
— AF(1
With renewal arrivals 0? = 0 implies that the interarrival times are

deterministic so that [kA; — A¥(1)] < 1 for all & > 0, which implies that
E|kA; — A¥(1)] < 1 and

. E[RF] — E[R*?] . Blkx — AF(1)]
< —_rr-
Jim, 7 < (ritre) lim ———

6.3 Proof of Lemma 4.1

=0.

a) We can write

AR Ak Ak
Bl = Bl (H ko = oY)
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By (10) and note (3;(¢) is a driftness Brownian Motion,

AR (W)
—
The first term on the right hand side does not depend on k, and the second
term converges to 0 as k — co. So a) follows.
b) This follows by a slight variation of the proof of a). We can write

El(¢; (22702 = B{E[(4; (27202 A5 (F)]} = o2 B2, By (10),

k(. k (o ek (k
i B | B,

Since 7F < 1 and the upper bound of the second term (supg<i<1 B;i(t)/Vk)
is decreasing in k, the above is again uniformly bounded in k.
¢) For convenience we drop the subscript j in this part of the proof. Take 0 <

O YO NI A S o
P =)

] = N E[] +

t < 1. We have ¢*F(—=~

, so that, by Minkowski’s

inequality,

5]6(%) 3/2\12/3 _ kAR ()
[E(|T| N7 =1E(¢"(—
Rt

< D) prps o mo

By part a) of this lemma the second term in the last line is bounded uni-
formly in k. Let C4 denote a finite bound. By Chebyshev’s inequality, for
M >0,

) = (PP

L preyprs (95)

lc
PO 5wy < L mg M
L R o g0 <
= BBl (22 AW} < 25 B[] < 250,

Where CA = )\ + E[Sup03t31 |,B(t)”/\/E + Sukal Sup05t51 E|€k(t)|/k < 0.
Thus

k
BI#CLDP) = [T I 2 o)
k
1+ [ P(|¢’“(A 0

o
< 1+ CA(;?/ z43dz =1+ 3Cpo>. (96)
1

IN

)| > 2?/%)dz
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Ak
k(—k(t)) P23 < Cp+ [1 + 3CrcY?3, which
vk

So now we can write [E(|

proves c).
d) This proof is similar to that of part c. Analogously to (95) we have

k(AR () k(rk k(. k
BT s = (o ) - ey
k Tk k Tk
< B e, (97)

By part b) of this lemma the second term in the last line is bounded uniformly
in k. Let Cj denote a finite bound. Analogously to (96) we have

AR (TF) 1

so that
k(.-k
E(|¢k(A ;T ))|3/2) <14 3Cro?, (99)
which allows us to write
k(A’“(Tk))
[E(IT,’;F’/?)P/S < Cj+ [143Cr0”]3,

proving d).

6.4 Proof of Theorem 4.1

Let 2;“ be the total number of “thinned” arrival of class j customers, i.e.,

j : Ak(1 Ak(1
4 = kX, 4 VEL0,(0) + 1) + VEd 1) g

For each j =1,2,..,J, let c;“j (I : a;; > 0) be the minimum possible amount
of resource [ available to serve class j customers under the probabilistic
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acceptance rule. Then
C;cj Z kCl Zal]lz,

3'#i
X~,
= kC— > kX, +\F ﬁ]() A_,e;?,(1)
Ve J

k
Vg (2 “’)H’“(A”,ﬂ(”n
> ahX; - 3 ap [f ﬂj (1) + X_’Ie;?,(l)

J'#]
2 Ak
+ Ve J,f”) 5 ( ,f))]. (100)

Let zf be the number of class j customers actually accepted under the
probabilistic acceptance rule. Then

k ok ok
zj = (l:gl;goclj/azj)/\zj

J X'/ X'l
> kXj =G _[VESZI8y (1) + 351 (1)
=t !
Ak (1 Ak (1
Vg (2 g 22y, (101

where G = max; j{a;;}/ ming,;>0{as;} is a constant independent of k.
Note that E[R¥] = ZJ TJE[Z-] is the expected revenue under the proba-

bilistic acceptance rule. Because k™ ( [2¥],... , E[#%]) is a feasible solution
of the fluid LP, E[R¥] < k Z , SO (101) implies that

B[R - BIRY] < G|J|DJEM 21350 + S21esa)
; AE(1
+ VI J,f)n A am

For j =1,2,...,J, E(|8;(1)]) is finite so that E(|3;(1 )|)/\/_—> 0 as k — oo,
E(|ek(1 )|)/k — 0as k — oo by Assumptlon 2, E(|¢]( DN)/VE = 0 as

k — oo by Lemma 4.1, and E(\(Sk( )\)/k—)Oask—)ooby Lemma 4.1.
Thus

lim E[RF] — E[R¥]

k—00 k

=0. O (103)
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