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We analyze the performance of a tandem queueing network populated by two customer types. The interarrival times of each type
and the service times of each type at each station are independent random variables with general distributions, but the load on each
station is assumed to be identical. A setup time is incurred when a server switches from one customer type to the other, and each
server employs an exhaustive polling scheme. We conjecture that a time scale decomposition, which is known to occur at the first
station under heavy traffic conditions, holds for the entire tandem system, and we employ heavy traffic approximations to compute
the sojourn time distribution for a customer that arrives to find the network in a particular state. When setup times are zero (except
perhaps at the first station) and additional “product-form” type assumptions are imposed, we find the steady-state sojourn time
distribution for each customer type.

We consider a tandem queueing system with K single-
server stations. Customers of two types, denoted by

A and B, arrive to station 1 according to independent
renewal processes. Each customer is served once at each
station, and customers exit after being served at station K.
Although each customer type has its own general service
time distribution at each station, we require the means of
these distributions to be identical. A setup (or switchover)
time is incurred at each station whenever a server switches
from serving one customer type to the other. We assume
that each server employs an exhaustive polling scheme:
Serve all customers of the type that is currently set up;
when there are no more of these customers in queue,
switch to the other customer type and serve all its custom-
ers exhaustively.

Our goal is to derive the sojourn time distribution for
each customer type in both the transient and steady-state
cases. In the transient case, we attempt to find the sojourn
time of a customer who arrives to the network and finds it
in a particular state, which is taken to be the the 2K-
dimensional queue length process and the location (i.e.,
the customer type that is currently set up) of each server.
Hence, in contrast to steady-state performance analysis,
where unconditioned or conditioned sojourn times can be
considered, the transient sojourn time distribution we
compute is conditioned on the state, and hence is
state-dependent.

The motivation for studying this problem comes from
manufacturing systems. Although queueing network mod-
els for manufacturing typically do not include setup times,
many factories incur significant setup times and/or setup
costs (the recent trend is to reduce setup times at the
expense of large material, equipment, and/or labor costs)
when a machine switches from producing one type of

product to another. To exploit these economies of scale,
manufacturers are forced to produce their products in
large batches, and the exhaustive policy considered here is
the most natural way to reduce setups without incurring
unnecessary idleness.

In manufacturing settings, sojourn time (also called
manufacturing cycle time, lead time, or throughput time)
distributions help managers to release and schedule work,
quote delivery dates for customers, coordinate with down-
stream operations (such as distribution), price their prod-
ucts, and set performance metrics. Steady-state sojourn times
are helpful for tactical and strategic level decisions and are
the best available estimates for factories that cannot gen-
erate real time queue length information. For systems with
real time information capability, transient sojourn times
are preferable to steady-state estimates for operational de-
cisions, and they can greatly enhance performance (see
Wein 1991 for a simple example in due-date quotation).

Our queueing network model is essentially a set of poll-
ing systems in tandem. Although the performance analysis
of polling systems has generated an enormous literature,
there are no studies that consider a network of interacting
polling systems. Karmarkar et al. (1985) develop a fixed
batch size queueing network approximation that is useful
for tactical level decisions, but does not capture the de-
tailed system dynamics of the network. Because our
queueing network model appears to defy exact analysis, we
employ heavy traffic approximations to address the prob-
lem. Recently, Coffman et al. (1995, 1998), henceforth re-
ferred to as CPR I and CPR II, proved an averaging
principle for single-server polling systems with and without
switchover times. This principle is a result of a time scale
decomposition that arises under the traditional heavy
traffic normalizations: On the time scale giving rise to a
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diffusion process for the total workload, the individual
workloads (for each class) move (asymptotically) infinitely
fast. When viewed on the time scale that makes the rate of
movement of the individual workloads positive and finite,
the total workload remains constant, and the individual
workloads move deterministically (i.e., behave as a fluid).
Consequently, the dynamics of the individual workloads
can be analyzed deterministically.

In this paper, we assume that the time scale decomposi-
tion uncovered by CPR I and CPR II holds for all stations
in the tandem system, not just for station 1; heuristic argu-
ments supporting this conjecture are given in §2. The pri-
mary contribution of this paper is the deterministic
analysis of the individual fluid workloads for a tandem
queueing system. For the system described at the begin-
ning of this paper, our deterministic analysis yields a recur-
sive procedure for the transient sojourn time distribution
of each customer type at each station in isolation, as a
function of the K-dimensional station workload process.
To perform a steady-state sojourn time analysis of each
customer type at each station in isolation, the stationary
distribution of the vector describing the total workload at
each station is required. We compute the steady-state so-
journ time distribution by making the additional assump-
tions that setup times are zero and that the total workload
vector has a product-form distribution (product-form con-
ditions for an approximating Brownian network are slightly
less restrictive than the corresponding conditions for a tra-
ditional queueing network). In addition, we derive a
product-form solution in heavy traffic for the case where
only the first station has setup times. We also briefly de-
scribe how our results can be used to compute a custom-
er’s transient sojourn time in the network conditioned on
the entire 3K-dimensional system state and the steady-
state sojourn time in the network for each customer type.

The remainder of this paper is organized as follows. The
model is formulated in §1, and the heavy traffic normaliza-
tions are introduced in §2. Section 3 contains the deter-
ministic analysis that forms the basis of this paper. The
deterministic results are used in §4 to obtain the transient
and steady-state sojourn time distributions for the original
queueing network. For several simple examples, we also
compare our steady-state sojourn time estimates to those
computed via simulation. In §5, we perform a steady-state
analysis for the case where setup times are incurred at
station 1. Concluding remarks are offered in §6.

1. THE MODEL

The queueing network has K single-server stations and two
customer types, A and B. Customers of each type arrive to
station 1 according to independent renewal processes with
rates �A and �B, proceed through the tandem network
from station 1 to station K, and exit after service is com-
pleted at station K. Following traditional terminology, we
define a different class of customer for each stage of each
type’s route; these classes are denoted by Ai and Bi for i �

1 . . . , K. Each class may have a different general service
time distribution, but all service rates equal �. Let �j �
�j/� for j � A, B, and define the traffic intensity of this
balanced system by � � �A � �B. Finally, let cj0

2 denote the
squared coefficient of variation of the interarrival times for
type j and let cji

2 represent the squared coefficient of vari-
ation of the service times for class ji.

The server at each station serves each class to exhaus-
tion, and then switches to the other class. We assume that
a random setup time is incurred when a server switches
from one class to the other. However, because of the scal-
ing of time and the rarity of switchovers in heavy traffic,
our transient sojourn time estimates are independent of
the setup time; consequently, we do not introduce any
setup time notation. Heavy traffic models possess an insen-
sitivity property: In sufficiently heavy traffic, some fine de-
tails about the queueing system (such as the underlying
probability distributions beyond the first two moments, the
distinction between nonpreemptive and preemptive-
resume in a priority queueing system, and the variance of
setup times in steady-state analysis) are unimportant and
do not appear in the results, and in this paper we have
another example of this property. Nonetheless, it is impor-
tant to keep in mind that setup times (and/or setup costs),
while not appearing in the final results, cause the system to
adopt an exhaustive polling scheme, and the results under
an exhaustive polling scheme are fundamentally different
than under a FCFS scheme; hence, the heavy traffic analy-
sis captures the essence of system behavior of queueing
networks with setup times.

2. HEAVY TRAFFIC PRELIMINARIES

In a typical heavy traffic analysis, one defines a sequence of
queueing systems indexed by n that approaches heavy traf-
fic as n 3 �. Because a heavy traffic limit theorem will not
be proved, we avoid unnecessary notation by considering a
single large integer n satisfying �n(� � 1) � c, where c is
negative and of moderate size. This condition requires
each server to be busy the great majority of the time to
satisfy demand. In §4, we see that our sojourn time esti-
mates are independent of the system parameter n.

For class ji, j � A, B; i � 1, . . . , K, let {Lji(t), t � 0}
denote the workload process and {Wji(t), t � 0} be the
virtual waiting time process. The quantity Lji(t) denotes the
remaining work for the server at station i embodied in
class ji customers at time t and is commonly referred to as
the unfinished workload, and Wji(t) is the waiting time
experienced at station i by a type j customer arriving to the
network at time t. Using the standard heavy traffic scaling,
we define the normalized processes Vji(t) � Lji(nt)/�n
and Zji(t) � Wji(nt)/�n. As is typical in heavy traffic sys-
tems, if we let W̃ji(t) denote the actual waiting time at
station i of the first type j customer to arrive to the system
after time t, then W̃ji(nt)/�n converges together with the
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normalized virtual waiting time process Wji(nt)/�n. Fi-
nally, let Vi(t) � VAi(t) � VBi(t) denote the normalized
workload at station i at time t.

The first step in analyzing the processes Vji(t) is to ana-
lyze the processes Vi(t). In the case where the setup times
are zero and the service time distributions depend only on
the station, the heavy traffic limit theorem in Reiman
(1984) can be applied to obtain the limiting vector work-
load process {(V1(t), . . . , VK(t)), t � 0}. This limit process
is a reflected Brownian motion in the K-dimensional non-
negative orthant. The result of Reiman (1984), which is for
a FCFS network, applies to any nonpreemptive work con-
serving discipline where the service time distribution de-
pends only on the station, because the queue length
processes (and hence workload processes) are equal in
distribution.

With service time distributions that depend on customer
class, no setup times, and FCFS discipline at each station,
the heavy traffic limit theorem in Peterson (1991) also
yields a reflected Brownian motion in the K-dimensional
nonnegative orthant as the limiting vector workload pro-
cess. The vector workload process under exhaustive polling
may not be the same as with the FCFS discipline, so Peter-
son’s results do not directly apply. However, it seems clear
from heavy traffic scaling arguments that the heavy traffic
limit of the vector total workload process (with zero setup
times) is the same under exhaustive polling as in FCFS, as
long as the mean service time depends only on the station.
The heavy traffic scaling argument is as follows. The drift
of the limit diffusion process depends only on arrival rates
and mean service times, so it is the same in both cases. The
variance of the limit diffusion process depends on varia-
tions in the centered and normalized processes over O(n)
time; on this scale, based on results in CPR I and CPR II,
the fraction of each type served is the same as in FCFS, so
the variances should match. We use this conjectured “ex-
tension” to Peterson’s results in our analysis. When the
mean service times at a station are different for the two
types, the vector workload process is different for exhaus-
tive polling and FCFS, as described in §5.1.

As mentioned in the introduction, the individual work-
load components Vji(t) move infinitely quickly in the limit,
so no “standard” limit theorem is available for the 2K-
dimensional workload process {(VA1(t), VB1(t), . . . ,
VAK(t), VBK(t), t � 0}. This difficulty is circumvented in
CPR I and CPR II by considering smoothed versions of
the individual workloads, where the smoothing is obtained
by integrating over a time interval. The averaging princi-
ples of CPR I and CPR II imply that, in heavy traffic, for
any bounded continuous function f and any T � 0,

�
0

T

f�V j1 �t		 dt is well approximated by

�
0

T � �
0

1

f�uV 1 �t		 du� dt , j � A , B. (1)

This result reveals a time scale decomposition of the total
workload V1 and the individual workloads VA1 and VB1.
The one-dimensional total workload V1 varies as a diffu-
sion process (a Bessel process if setup times are positive
and a reflected Brownian motion if setup times are zero),
whereas the two-dimensional process (VA1, VB1) moves in-
finitely quickly in the heavy traffic limit. If time is slowed
down by a factor of �n (we are considering V� j1(t) � Vj1(t/
�n) � Lj1(�nt)/�n), so that the two-dimensional work-
load moves at a finite and positive rate, then the total
workload V� 1 remains constant and the movement of the
two-dimensional workload process (V� A1, V� B1) is determin-
istic. Moreover, the setup times do not affect the determin-
istic movement of the normalized two-dimensional
process. (It may be a bit confusing to see the claim that
V� 1(t) 
 V1(t/�n) is constant while V1(t) is not, since
V� 1(�n) � V1(1). The resolution is that t is meant to be
O(1): weak convergence results hold for t � [0, T], where
T is fixed.) CPR I and CPR II also use (1) to derive an
averaging principle for virtual waiting times in a single-
server polling system, which implies that,

�
0

T

f�Z j1 �t		 dt is well approximated by

�
0

T � �
0

1

f� uV 1 �t	
� j

� du� dt , j � A, B. (2)

In this paper, we assume that the time scale decomposi-
tion holds not just for station 1, but for each station i �
1, . . . , K in the tandem network. We also assume that
properly modified versions of the averaging principles (1)
and (2) hold for these downstream stations. We do not
provide any proofs here, only a heuristic argument.

Examining the proof of (1) in CPR I and CPR II, we see
that it follows roughly the intuition given under (1). Time
is divided into intervals during which the total workload
does not move much. Then over each of these intervals the
individual workload processes are examined on the �n
time scale. A fluid-type (strong law of large numbers) anal-
ysis shows that the individual workloads move in a simple,
deterministic, periodic manner: The individual workloads
grow linearly from zero to the total workload, and then
linearly shrink back to zero. This fluid limit yields the inner
integral on the right hand side of (1) over each small
interval; piecing the intervals together (actually piecing to-
gether upper and lower bounds) yields the outer integral.

The above method can be extended roughly as follows.
We divide time into intervals over which the total vector
workload does not move much. Over each of the intervals
the individual workloads can be examined on the �n time
scale. Because of the tandem structure, this analysis can be
carried out in a sequential manner, using the results from
the analysis of station 1 to analyze station 2, etc. The
structure of the limiting fluid that arises from this analysis
is the subject of §3. This analysis shows that the fluid limits
for stations 2, . . . , K have a periodic structure, but it is not
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linear as it is for station 1. As a consequence of the more
complicated movement, which includes having the individ-
ual workload stay constant for certain lengths of time (see
Figure 1, bottom graph), the associated workload averag-
ing principle is more involved than for station 1; because
our interest lies more in sojourn times, we do not display it
here. As shown in §3, this more complex structure is also
mirrored in the fluid-level virtual waiting times, which take
on a discrete distribution.

Our analysis also uses the snapshot principle, which we
assume to hold for our system. This principle, which was
first observed by Foschini (1980) and proved by Reiman
(1984) in the context of a single-class queueing network,
asserts that in the limiting heavy traffic time scale, the
vector of total workloads (V1, . . . , VK) does not change
during a customer’s sojourn in the network. This is clearly
a consequence of the time scale decomposition assumed
above, and so does not represent another assumption.
With O(�n) customers in the system, customers spend
O(�n) time in the system. As mentioned above, the vector
total workload process does not change over time intervals
of this magnitude.

Under these assumptions, we undertake in the next sec-
tion a deterministic analysis of the 2K-dimensional nor-
malized workload process.

3. DETERMINISTIC ANALYSIS

Throughout this section, we slow down time so that the
total workload vector (V� 1(t), . . . , V� K(t)) � (V1, . . . , VK) is
fixed, and {V� ji(t), t � 0}, j � A, B; i � 1, . . . , K moves at
a finite rate in a deterministic fashion. Because it is ex-
tremely difficult to perform a transient analysis condi-
tioned on the complete 3K-dimensional state of the system
at the time of a customer’s arrival, our goal in this section
is to derive the distribution of the normalized virtual wait-
ing time Zji, j � A, B; i � 1, . . . , K, given the constant
workload vector (V� 1(t), . . . , V� K(t)) � (V1, . . . , VK). That

is, we consider a customer that “randomly” arrives while
the station 1 workload V� 1(t) equals V, and suppress the
finer state information. In Section 4, we describe how one
can use our analysis to compute the virtual waiting time
conditioned on the 3K-dimensional system state. If we de-
note the arrival time of a randomly arriving customer as
time 0, then the initial conditions are random, and consist
of V� ji(0), j � A, B; i � 1, . . . , K and si(0), i � 1, . . . , K,
where V� Ai(0) � V� Bi(0) � Vi and si(t) is the customer type
being served by server i at time t. Hence, the deterministic
path of {V� ji(t), t � 0} is dictated by V� Al(0), sl(0), l �
1, . . . , i; as we will see shortly, it suffices to focus on V� Ai(t),
i � 1, . . . , K, because V� Ai(t) � V� Bi(t) is equal to Vi for all
t.

The derivation of our main result consists of three main
steps: First, we show that, independent of initial condi-
tions, the process {V� Ai(t), t � 0} enters a unique limit cycle
within a finite amount of time; that is, the trajectory of the
process keeps repeating the same cycle. Second, we iden-
tify the limit cycle for station i. The cycle consists of the
service of class Ai customers for CAi time units followed by
the service of class Bi customers for CBi time units, and the
cycle repeats itself every Ci � CAi � CBi time units; we
refer to Ci as the cycle length for station i, and refer to Cji

as the cycle length for class ji. Finally, we derive the nor-
malized virtual waiting time from the limit cycle.

Before stating the main result, we illustrate our method
on the single-server polling model in CPR I and CPR II,
and then informally describe the dynamics of V� ji(t), j � A,
B; i � 1, . . . , K for a fixed total workload vector (V1, . . . ,
VK). Since arrivals to station 1 are exogenous, class A1
work arrives to station 1 at rate �A, regardless of the sys-
tem state. The server depletes work at rate one, and hence
V� A1(t) decreases at rate 1 � �A when class A1 is being
served, and increases at rate �A otherwise. Because � � 1
in the heavy traffic limit, we assume that V� A1(t) increases
at rate 1 � �B, rather than �A, when class B1 is being

Figure 1. The workload process dynamics for an example: �A � 0.4, �B � 0.5, � � 1, V� A1(0) � 6, V� B1(0) � 0, V� A2(0) �
16, V� B2(0) � 0, and s1(0) � s2(0) � A.
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served. Because setup times do not appear at this time
scale in the heavy traffic limit, {V� A1(t), t � 0} follows the
familiar “saw-tooth” path that arises in the economic
production quantity model; see the top graph in Figure 1.
Hence, regardless of the initial conditions (V� A1(0), s1(0)),
the process {V� A1(t), t � 0} essentially enters a limit cycle
at time zero. However, for convenience and without loss of
generality, we specify the start of a cycle as the moment
that V� A1(t) increases from zero. If t�1 denotes the starting
time of the first cycle at station 1 (t�1 � 10 in Figure 1),
then

V� A1 �t	 � �1 � � B 	�t � t�1 	 for t � � t�1 , t�1 �
V 1

1 � � B
� ,

(3)

and

V� A1 �t	 � V 1 � �1 � � A 	� t � � t�1 �
V 1

1 � � B
� �

for t � � t�1 �
V 1

1 � � B
, t�1 �

V 1

1 � � B
�

V 1

1 � � A
� . (4)

Class B1 customers are served during the interval de-
scribed in (3) and class A1 customers are served in (4). It
follows that

C A1 �
V 1

1 � � A
, C B1 �

V 1

1 � � B
and

C 1 �
V 1

1 � � A
�

V 1

1 � � B
. (5)

Therefore, V� A1(t) � 0 for t � t�1 � C1 � 32 and the cycle
in (3) and (4) repeats itself at this time.

For station 1, we can use the limit cycle (3)–(4) to derive
the transient normalized virtual waiting time ZA1 condi-
tioned on the system state at station 1: V� A1(t), V� B1(t) and
s1(t) (for reasons stated earlier, the corresponding quantity
for downstream stations will not be derived). If a type A
customer arrives at time t � [t�1 � CB1, t�1 � C1], then class
A1 customers are being served, and ZA1 equals the class
A1 workload at time t, or V1 � (1 � �A)(t � t�1 � CB1). A
type A customer arriving at time t � [t�1, t�1 � CB1] must
wait t�1 � CB1 � t time units until all class B1 customers
are served, and then wait an additional V� A1(t) � (1 �
�B)(t � t�1) time units for the class A1 customers in front of
him to be served.

We can also derive the normalized virtual waiting time
ZA1 conditioned on V1. As a consequence of the determin-
istic cycles ocurring infinitely quickly in the limit, a ran-
domly arriving customer will arrive at a point in time that
is uniformly distributed throughout the limit cycle (that is,
uniformly distributed on [t�1, t�1 � C1]). Hence, if we let U
denote a uniform random variable on [0, 1] and again
assume that �A � �B � 1, then

Z A1 � �UV 1 with probability � A ,

UV 1 �
�1 � U	V 1

1 � � B
with probability � B

, (6)

and hence

Z A1 is uniformly distributed on � 0,
V 1

� A
� . (7)

This result can be derived directly from the averaging prin-
ciple of CPR I and CPR II for virtual waiting times by
setting V1(t) � V1 for all t and letting f(x) � I{ x�z} in (2);
a similar analysis implies that

Z B1 is uniformly distributed on � 0,
V 1

� B
� . (8)

Notice that E[Zj1] � V1 if �A � �B. To develop an approx-
imation scheme that is applicable when � � 1, we propose
the following heuristic modification to (7)–(8):

Z j1 is uniformly distributed on � 0,
V 1�

� j
� for j � A, B.

(9)

This modification is chosen so that E[Zj1] � V1 if �A � �B

for all values of �. Because we assume perfect balance
throughout the system (synchronous cycles are required to
derive Theorem 1 below), similar refinements are not nec-
essary for downstream stations.

Stations 2, . . . , K behave in a fundamentally different
way than station 1, and consequently the averaging princi-
ple for virtual waiting times (2) does not hold for the
downstream stations. In particular, rather than receiving
steady streams of both types of customers, downstream sta-
tions receive alternating streams of type A and type B cus-
tomers. As mentioned earlier, the actual timing of the
arrival streams of classes A, i � 1 and B, i � 1 to station
i � 1 is dictated by the dynamic location (i.e., the class that
is currently set up) of the server at station i.

Let us consider the behavior of {V� A2(t), t � 0}, which is
influenced by the locations of servers 1 and 2. If s1(t) � A
then class A2’s queue is receiving work from station 1 at
rate one, and if s2(t) � A then class A2’s work is being
depleted at rate 1. Hence, if s1(t) � s2(t) � A or s1(t) �
s2(t) � B, then V� A2(t) remains constant; if s1(t) � A and
s2(t) � B then V� A2(t) increases at rate one, and if s1(t) � B
and s2(t) � A then V� A2(t) decreases at rate one. Moreover,
V� A2(t) � V� B2(t) � V2 for all t � 0.

We are now ready to state and prove our main result.
Let us define

n Bi �
V� i�1

C Ai
, n Ai �

V� i�1

C Bi
; and n i � n Ai � n Bi

for i � 1, . . . , K � 1. (10)

THEOREM 1. Fix (V1, . . . , VN). Then for i � 1, . . . , K � 1,

C A,i�1 � �n i � 1	C Ai , C B,i�1 � �n i � 1	C Bi , and

C i�1 � �n i � 1	C i , (11)

Z A,i�1 � �
V i�1 � jC Bi with probability

1
n i�1

for j � 0, . . . , n Bi � 1,

V i�1 � jC Bi with probability
1

n i�1
for j � 1, . . . , n Ai � 1, (12)
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and

Z B,i�1 � �
V i�1 � jC Ai , with probability

1
n i�1

for j � 0, . . . , n Ai � 1,

V i�1 � jC Ai , with probability
1

n i�1
for j � 1, . . . , n Bi � 1. (13)

PROOF. The proof is by induction on i. Let us first focus on
deriving the workload (unfinished work) at station 2. Our
first step is to show that the process {V� A2(t), t � 0} enters
a limit cycle within a finite amount of time. Without loss of
generality, we define the first cycle at station 2 to begin at
time t�2 � inf{t � 0: V� A1(t) � V1, V� A2(t) � 0}. At time t�2,
the server at station 1 switches from class B1 to class A1.
Since V� A2(t�2) � 0, the server at station 2 will be serving
class B2 just after time t�2 (and perhaps just before time t�2

also); hence, V� A2(t) increases at rate 1 starting at time t�2.
Since V1 and V2 are fixed, the deterministic process

{V� A2(t), t � 0} is fully specified by the initial conditions
(V� A1(0), V� A2(0), s1(0), s2(0)). We now compute t�2 for the
four cases characterized by the values of (s1(0), s2(0)). If
s1(0) � s2(0) � A, then V� A2(t) stays constant for the first
V� A1(0)/(1 � �A) time units. Thereafter, until V� A2(t)
reaches zero, it alternates between decreasing at rate 1 for
CB1 time units and staying constant for CA1 time units, and

t�2 �
V� A1 �0	
1 � � A

�
V� A2 �0	

C B1
C B1 � � V� A2 �0	

C B1
� 1�C A1 ; (14)

readers are referred to the bottom graph in Figure 1,
where t�2 � 44.

If s1(0) � s2(0) � B, then after remaining constant for
V� B1(0)/(1 � �B) time units, V� A2(t) rises and stays constant
during  V� B2(0)/CA1 periods of length CA1 and  V� B2(0)/
CA1 � 1 periods of length CB1, respectively. At this point
V� A2(t) � V2, s1(t) � B, and s2(t) � A; then the process
V� A2(t) alternates between decreasing and constant phases
until t�2, where

t�2 �
V� B1 �0	
1 � � B

�
V� B2 �0	

C A1
C A1 � � V� B2 �0	

C A1
� 1�C B1

�
V 2

C B1
C B1 � � V 2

C B1
� 1�C A1 . (15)

If s1(0) � A and s2(0) � B, then V� A2(t) grows initially.
Before reaching t�2, it must rise by V� B2(0) and then drop to
zero. The length of the first growth period (which starts at
time zero) for V� A2 is V� A1(0)/(1 � �A) ∧ V� B2(0), and the
length of any subsequent growth periods (there are none if
V� B2(0) � V� A1(0)/(1 � �A)) is CA1. Once V� A2(t) starts de-
creasing, it proceeds as in the previous case. Hence,

t�2 �
V� A1 �0	
1 � � A

�

V� B2 �0	 �
V� A1 �0	
1 � � A

C A1
C 1 I�V� B2 �0	�

V� A1 �0	

1��A
�

�
V 2

C B1
C B1 � � V 2

C B1
� 1�C A1 , (16)

where I{ x} is the indicator function for the event x. Simi-
larly, if s1(0) � B and s2(0) � A, then

t�2 �
V� B1 �0	
1 � � B

�

V� A2 �0	 �
V� B1 �0	
1 � � B

C B1
C 1 I�V� B1 �0	

1��B
�V� A2 �0	� . (17)

Now we look at the evolution of V� A2(t) during the first
full cycle, which starts at time t�2. Readers are referred to
V� A2(t) for t � [44, 110] in Figure 1. The process V� A2(t)
initially alternates between nB1 � 1 (possibly zero) growth
periods of length CA1 and constant periods (that is, time
intervals where V� A2(t) remains constant) of length CB1, as
described by

V� A2 �t	 � � j � 1	C A1 � t � �t�2 � � j � 1	C 1 	

for t � 
t�2 � � j � 1	C 1 , t�2 � � j � 1	C 1 � C A1 �, (18)

and

V� A2 �t	 � jC A1 for t � 
t�2 � � j � 1	C 1

� C A1 , t�2 � jC 1 � (19)

for j � 1, . . . , nB1 � 1. The last growth period, which is
given by

V� A2 �t	 � �n B1 � 1	C A1 � t � �t�2 � �n B1 � 1	C 1 	

for t � 
t�2 � �n B1 � 1	C 1 , t�2 � �n B1 � 1	C 1

� V 2 � �n B1 � 1	C A1 �, (20)

is truncated when V� A2(t) reaches its maximum value of V2;
at this point, the process remains constant until server 1
exhausts the class A1 customers in queue:

V� A2 �t	 � V 2 for t � 
t�2 � �n B1 � 1	C 1

� V 2 � �n B1 � 1	C A1 , t�2 � �n B1 � 1	C 1 � C A1 � . (21)

The process then alternates between nA1 � 1 depletion
intervals of length CB1 and constant intervals of length
CA1, given by

V� A2 �t	 � V 2 � � j � 1	C B1

� 
t � �t�2 � �n B1 � j � 2	C 1 � C A1 	�

for t � 
t�2 � �n B1 � j � 2	C 1 � C A1 , t�2

� �n B1 � j � 1	C 1 �, (22)

and

V� A2 �t	 � V 2 � jC B1 for t � 
t�2 � �n B1 � j � 1	C 1 ,

t�2 � �n B1 � j � 1	C 1 � C A1 � (23)

for j � 1, . . . , nA1 � 1. Once again, the last depletion cycle

V� A2 �t	 � V 2 � �n A1 � 1	C B1

� 
t � �t�2 � �n A1 � n B1 � 2	C 1 � C A1 	�

for t � 
t�2 � �n B1 � n A1 � 2	C 1 � C A1 , t�2

� �n A1 � n B1 � 2	C 1 � C A1 � V 2 � �n A1 � 1	C B1 �

(24)

529REIMAN AND WEIN /



is truncated when V� A2(t) reaches zero, and the limit cycle
concludes when server 1 completes serving the class B1
customers in queue:

V� A2 �t	 � 0 for t � 
t�2 � �n A1 � n B1 � 2	C 1 � C A1

� V 2 � �n A1 � 1	C B1 , t�2 � �n A1 � n B1 � 1	C 1 �. (25)

Notice that at time t�2 � (nA1 � nB1 � 1)C1, the system
state (V� A1(t), V� A2(t), s1(t), s2(t)) is the same as at time t�2.
Hence, the system repeats the same cycle of length (n1 �
1)C1 thereafter. Class A2 is served in (21)–(24) and class
B2 is served in (18)–(20) and (25). Therefore, classes A2
and B2 are served in contiguous time blocks of length
(n1 � 1)CA1 and (n1 � 1)CB1, respectively, and (11) holds
for i � 1.

To calculate the virtual waiting time for class A2, notice
that type A customers arrive to station 2 only when class
A1 customers are being served. These time intervals corre-
spond to the nB1 � 1 growth periods in (18), the truncated
growth interval (20) and its subsequent constant period
(21), and the nA1 � 1 constant intervals during V� A2(t)’s
descent in (23). If we view (20) and (21) together as one
interval, then all n1 � 1 intervals are of length CA1; a
randomly arriving class A2 customer is equally likely to
arrive during each of these intervals.

A class A2 customer arriving during the constant periods
in (23) finds the server serving type A2 customers, and
hence the virtual waiting time there is given by V� A2(t).
Therefore, ZA2 � V2 � jCB1 with probability (n1 � 1)�1

for j � 1, . . . , nA1 � 1. A class A2 customer arriving at
time t during (18) must wait until time t�2 � (nB1 � 1)C1 �
V2 � (nB1 � 1)CA1, at which point class A2 begins exhaus-
tive service, plus an additional V� A2(t) time units for the
class A2 customers ahead of him to be served. Therefore,
the virtual waiting time equals V� A2(t) � t�2 � V2 � (nB1 �
1)CB1 � t. Substituting V� A2(t) from (18) into this expres-
sion gives ZA2 � V2 � [nB1 � j]CB1, which occurs with
probability (n1 � 1)�1 for j � 1, . . . , nB1 � 1. Similarly,
class A2 customers arriving during (20) have virtual wait-
ing time V2. Finally, class A2 customers arriving during
(21) find their class in service, and hence also have virtual
waiting time V2. Thus, (12) holds for i � 1.

A similar analysis of class B2 customers yields (13) for
i � 1. Finally, notice that each station is directly affected
only by its upstream station. Hence, if we define t�i�1 �
inf{t � 0: V� Ai(t) � Vi, V� A,i�1(t) � 0} then our entire
analysis holds for i � 1, except that we take �A � �B � 0
in Equations (14)–(17), because V� ji(t) decreases at rate
one, not 1 � �j, for i � 1. □

4. PERFORMANCE ANALYSIS

In this section, we use the results of §3 to analyze the
performance of the original tandem queueing system. Re-
call that two types of sojourn time analyses were identified
in the introduction: transient and steady-state. Ideally, a
transient analysis would estimate a customer’s total so-
journ time in the system conditioned on the complete

three-dimensional system state, and a steady-state analysis
would derive a customer’s total sojourn time in the net-
work. Although Theorem 1 and its proof provide a frame-
work for such an analysis, these results are not explicitly
derived here because they are extremely tedious to write
out, and they add little to our understanding of the prob-
lem. Instead, we are content to derive the transient so-
journ time for each station in isolation conditioned on the
K-dimensional station workload process and derive the
steady-state sojourn time for each station in isolation. At
the end of this section, we briefly discuss how one would
use our analysis to derive the more general quantities de-
scribed above.

In our heavy traffic analysis, we estimate the normalized
virtual waiting time Zji given the vector workload (V1, . . . ,
Vi). Since a customer’s service times are not known at the
time of arrival to the system, the workload process Vi is
not actually observable. However, if we let Qji(t) denote
the number of class ji customers in the system at time t,
then we can define the observable process

L i �t	 �
Q Ai �t	 � Q Bi �t	

�
for t � 0. (26)

Although Li is not equal to the sum of LAi and LBi, which
were defined in Section 2, Li(nt)/�n and (LAi(nt) �
LBi(nt))/�n converge together in the heavy traffic limit to
the workload process Vi. Suppose a customer arrives to the
system at time t and finds Li(t) � Li for i � 1, . . . , K. If
we make the substitutions Wji/�n for Zji and Li/�n for Vi

in Equations (5) and (9)–(13), then the heavy traffic pa-
rameter n cancels out of these expressions and we get

W j1 is uniformly distributed on � 0,
�L 1

� j
� for j � A, B,

(27)

and, for i � 1, . . . , K � 1,

W A,i�1 � �
L i�1 � jC Bi , with probability 1

n i � 1
for j � 0, . . . , n Bi � 1,

L i�1 � jC Bi , with probability 1
n i � 1

for j � 1, . . . , n Ai � 1,

(28)

and

W B,i�1 � �
L i�1 � jC Ai , with probability 1

n i � 1
for j � 0, . . . , n Ai � 1,

L i�1 � jC Ai , with probability 1
n i � 1

for j � 1, . . . , n Bi � 1,

(29)

where

C A1 �
L 1

1 � � A
, C B1 �

L 1

1 � � B
and

C 1 �
L 1

1 � � A
�

L 1

1 � � B
, (30)

and, for i � 1, . . . , K � 1,
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n Bi �
L i�1

C Ai
, n Ai �

L i�1

C Bi
, n i � n Ai � n Bi , (31)

C A,i�1 � �n i � 1	C Ai , C B,i�1 � �n i � 1	C Bi and

C i�1 � �n i � 1	C i . (32)

If we let Tji denote a random service time for class ji
customers and let Sji(t) be the sojourn time of a type j
customer at station i who arrives to the system at time t,
then we have the heavy traffic estimate Sji(t) � Tji � Wji,
where Wji is given in (27)–(29).

Now we estimate the steady-state sojourn time Sji for
class ji under some additional assumptions. Most impor-
tantly, we assume that setup times are zero. Peterson
(1991) has shown (for the case where service time distribu-
tions depend only on the station, see the discussion in
Section 2) that (V1, . . . , VK) has product-form stationary
density �(v1, . . . , vK) � �i�1

K 	̂ie
�	̂ivi, where 	̂i �

2�n(1 � �)/¥j�A,B �j�
�2(cj0

2 � cji
2), as long as the network

data satisfy a certain skew-symmetry condition. The skew-
symmetry condition, given by Peterson (1991, eq. (62)),
reduces in our case to �AcA0

2 � �BcB0
2 � �AcAi

2 � �BcBi
2 for

all i � 1, . . . , K. A special case of this condition is cji
2 � c2

for j � A, B and i � 0, . . . , K � 1, which is slightly less
restrictive than the standard product form conditions for
Jackson networks. Of course, this condition also allows for
other interesting solutions, such as cji

2 � cj
2, j � A, B, i �

0, . . . , K � 1, where cA
2 � cB

2 is possible. Harrison and
Williams (1986) show that the skew-symmetry condition,
together with the stability condition �i � 1 for all i, are
necessary and sufficient for the exponential product-form
solution. If skew-symmetry is not satisfied, then the numer-
ical procedure developed by Dai and Harrison (1992) for
the stationary distribution of reflected Brownian motion
on the orthant can be employed in conjunction with our
deterministic analysis to estimate steady-state sojourn
times. For the remainder of this section, we assume that
the skew-symmetry condition holds.

Since the random variable Y � aX is exponential with
parameter 
a�1 if X is exponential with parameter 
, heavy
traffic analysis predicts that (L1, . . . , LK) possesses an ex-
ponential product-form density with parameters

	 i �
	̂ i

	n
�

2�1 � �	



j�A,B

� j �
�2�c j0

2 � c ji
2	

. (33)

Hence, Equations (27)–(32) can be combined with (33) to
characterize our estimate of the stationary virtual waiting
time Wji, which is independent of the heavy traffic param-
eter n.

Unfortunately, the recursive nature of (27)–(32) pre-
vents us from explicitly writing the probability distribution
for the virtual waiting time Wji. However, performance
measures of interest for Wji, such as tail probabilities or
moments, can be computed by integrating with respect to
the stationary distribution of (L1, . . . , Li). For example,
Equations (28)–(29) imply that

E
W A,i�1 �L 1 , . . . , L i�1 � � L i�1 �
C Bi �n Bi � n Ai 	

2 , (34)

and

E
W B,i�1 �L 1 , . . . , L i�1 � � L i�1 �
C Ai �n Ai � n Bi 	

2 , (35)

for i � 1, . . . , K � 1. Hence, the steady-state expected
virtual waiting time for class A2 is

E
W A2 � � 	 2
�1 �

1
2 �

0

�

�
0

� � x 1

1 � � B
�

� � x 2 �1 � � A 	
x 1

�
x 2 �1 � � B 	

x 1
�

� 	 1 	 2 e �	1 x1 e �	2 x2 dx 1 dx 2 . (36)

Our results reveal several insights about system behav-
ior. Expressions (31)–(32) quantify exactly how the service
cycles at a station are forced to synchronize with the ser-
vice cycles at its upstream neighbor, and how this effect
ripples through the tandem network. Since ni � 2 for all i
by (31), it follows by (32) that Cji is nondecreasing in i for
j � A, B; that is, cycle lengths, and hence batch sizes, tend
to be larger at downstream stations. Moreover, CAi/CBi is
the same for all i, so that the cycle lengths of each cus-
tomer type grow in the same proportions as one moves
downstream. Also, the virtual workload is uniformly dis-
tributed at each station: it has a continuous uniform distri-
bution at station 1 and a discrete uniform distribution at
all downstream stations.

Finally, notice that since Cji increases with i, the quanti-
ties nAi and nBi will equal one with greater frequency as i
increases. Hence, Equations (34)–(35) suggest that as one
moves downstream (i.e., as i increases), the values of
E[WAi] and E[WBi] will both become closer in value to (but
not necessarily converge to) the quantity 	i; consequently,
we conjecture that the imbalance in mean waiting time at a
station between the customer types dissipates as one moves
downstream. Similarly, by (28)–(29), we conjecture that the
variability of the stationary sojourn times at each station de-
creases as one moves downstream. Although we have not
been able to prove these two conjectures, they have been
borne out by Monte Carlo simulations (that is, by generat-
ing random samples for Li) of the recursive Equations
(31)–(32).

Let us now focus on the symmetric case where �A � �B.
Then nAi � nBi and CAi � CBi for all i, and Ci�1/Ci is an
odd positive integer. Hence, WAi and WBi are identically
distributed for any given station i and E[Wji] � 	i

�1, which
is equal to the corresponding quantity in the heavy traffic
analysis of a tandem system under the FCFS discipline; of
course, the latter quantity coincides with exact results
when one further restricts all interarrival and service time
distributions to be exponential. Furthermore, by
(4.3)–(4.4), the conditional variance of Wj,i�1 is given by

Var 
W j,i�1 �L 1 , . . . , L i�1 � �
C ji

2n ji �n ji � 1	
3 , (37)
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for i � 1, . . . , K � 1 and j � A, B. To assess the accuracy
of our estimates and to corroborate the insights described
above, we display simulation results in Table 1 for a sym-
metric tandem system with K � 5 stations. Setup times are
zero, all interarrival times and service times are exponen-
tial, and the system parameters are �A � �B � 0.45 and
� � 1. Hence, 	i � 1/9 and E[Sji] � 10, which agrees with
the simulation results (this result can be derived directly
from Little’s formula in this special case). Equation (27)
implies that Var[WA1] � 135, and hence the estimated
standard deviation of class A1’s sojourn time is �136 �
11.66, which is slightly less than the simulated value of 12.1
(numbers in parenthesis in Tables 1 and 2 correspond to
95% confidence intervals). Using (37), we estimate the
stationary sojourn time standard deviation for class A2 to
be 10.93, compared to the simulated value of 11.6. In con-
trast, under FCFS, the variance of the waiting time in
queue is

2� � � 2

�� � � A � � B 	 2 , (38)

and so the standard deviation of the sojourn time for each
class is 10. As predicted, Table 1 shows that cycle lengths
grow and sojourn time standard deviations decrease as one
moves downstream.

Now let us assume that �A � �B. Then (30)–(32) imply
that CAi � CBi and nAi � nBi for all i. Consequently, by
(27)–(29), we have E[ZAi] � E[ZBi] and Var[ZAi] � Var
[ZBi] for all i; that is, the customer type with the lower
arrival rate incurs both a higher expected waiting time and
a more variable waiting time. This is in contrast to a FCFS
Markovian tandem network, where steady-state waiting
times for each type are identically distributed. We simu-
lated a five-station example for this case, where �A � 0.6,
�B � 0.3 and � � 1. The predicted steady-state expected
sojourn times are 7.75 for class A1, 14.5 for class B1, 8.56

for class A2, and 12.51 for class B2; the predicted sojourn
time standard deviations are 8.77 for class A1 and 17.46
for class B1. All six of these quantities are reasonably close
to the simulated values found in Table 2. Notice that the
results in Tables 1 and 2 are quite different, whereas the
corresponding results under FCFS would be identical. Ta-
ble 2 confirms the qualitative insights predicted by heavy
traffic theory: Type B customers have higher sojourn time
means and variances, the difference in expected sojourn
time between classes Ai and Bi decreases in i, and stan-
dard deviations for type B’s sojourn times decrease as one
moves downstream.

We conclude this section by briefly describing how our
analysis can be used to derive more general sojourn time
results. A customer’s total sojourn time in the system con-
ditioned on the 3K-dimensional system state can be de-
rived by analyzing each station in a sequential manner. In
the text above Equation (6), we define a customer’s so-
journ time at station 1 as a function of the three-
dimensional state of station 1 at the time of the customer’s
arrival. Hence, we know what time the customer exits sta-
tion 1 and arrives at station 2. Using the proof of Theorem
1, we can then find the three-dimensional state of station 2
at this point in time and derive the customer’s sojourn
time at this station. This procedure can be repeated for
stations 3, . . . , K to obtain the total sojourn time condi-
tioned on the full system state. Notice that the fluid anal-
ysis leads to a deterministic transient sojourn time
estimate. If one assumes that the fluid system state at the
time of a customer’s arrival to station 1 is consistent with
the limit cycle (there is a unique limit cycle for each real-
ization of the vector workload process (V� 1, . . . , V� k)), then
our derivation of Theorem 1 can be used directly to per-
form the calculations in this recursive procedure; since t�i �
Ci, one suspects that in heavy traffic the system state
spends most of its time in (or very close to) a limit cycle.
To illustrate these calculations for the simple example in
Figure 1, let us suppose that a type A customer arrives at
time t to find the system in the state V� A1(t) � 2, V� B1(t) �
4, V� A2(t) � 10, V� B2(t) � 6, s1(t) � B, s2(t) � B; this state
corresponds to time 58 in Figure 1. Hence, the customer
exits station 1 and arrives at station 2 at time 68. The
quantity V� A2 is in station 2’s truncated growth interval
(Equation (20)) at time 68, and so the customer has a
sojourn time of length V� 2 � 16 at station 2, giving a total
system sojourn time of 26. If the initial fluid state is not
consistent with the limit cycle then the recursive procedure
still holds, although the analysis is considerably more diffi-
cult. One would have to track the transient dynamics as we
did at the beginning of the proof of Theorem 1.

By Theorem 1, the limit cycle of a station is embedded
in the limit cycle of its downstream station; hence, the limit
cycle for station K is the limit cycle for the entire network.
To obtain the steady-state distribution of the total system
sojourn time for a customer type, we assume that custom-
ers arrive to station 1 uniformly over the network’s limit
cycle (recall that there is a different limit cycle for each

Table 1. Simulation results for a symmetric
network.

Class
Sojourn Time

Mean
Sojourn Time

Standard Deviation
Cycle Length

Mean

A1 10.0 (�0.2) 12.1 (�0.3) 4.73 (�0.05)
A2 10.1 (�0.2) 11.6 (�0.3) 6.06 (�0.07)
A3 10.0 (�0.1) 11.2 (�0.3) 6.80 (�0.08)
A4 10.0 (�0.1) 11.0 (�0.2) 7.25 (�0.09)
A5 10.1 (�0.2) 10.9 (�0.3) 7.55 (�0.09)

Table 2. Simulation results for an asymmetric
network.

Station
Sojourn Time Mean

Sojourn Time Standard
Deviation

Type A Type B Type A Type B

1 8.10 (�0.07) 14.0 (�0.1) 9.03 (�0.12) 18.1 (�0.2)
2 8.58 (�0.07) 13.0 (�0.1) 9.05 (�0.12) 16.7 (�0.2)
3 8.83 (�0.08) 12.3 (�0.1) 9.04 (�0.12) 15.8 (�0.2)
4 9.02 (�0.07) 12.0 (�0.1) 9.04 (�0.12) 15.3 (�0.3)
5 9.12 (�0.07) 11.7 (�0.1) 9.02 (�0.11) 14.9 (�0.2)
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value of the K-dimensional workload vector), and calculate
the deterministic total sojourn time conditioned on the
arrival time to station 1, as described in the last paragraph.
Then we uncondition on the arrival times by integrating
the conditional total sojourn time with respect to the uni-
form arrivals. This integration yields a sojourn time distri-
bution for each realization of the K-dimensional station
workload vector. Finally, this conditional sojourn time dis-
tribution needs to be integrated with respect to the
product-form stationary distribution of the workload vec-
tor to obtain the desired result. It would appear that a
discretization (of the vector workload process and perhaps
the uniform arrival process) procedure would be required
to carry out this tedious agenda.

5. SETUP TIMES AT STATION 1

In this section we perform a steady-state analysis when
setup times are incurred at the first station. The presence
of setup times alters the vector station-level workload pro-
cess; indeed, with only the first station present, it is shown
in CPR II that the workload process converges to a Bessel
process in heavy traffic. There is no analogous heavy traffic
limit theorem for the tandem network with setup times in
the first station. A heuristic derivation of the infinitesimal
drift vector, along the lines presented in CPR II, yields
�1(x) � (�A�Bs/x1) � c, �2(x) � ��A�Bs/x1, and �k(x) �
0, 2 � k � K, where c � �n(1 � �), s is the mean setup
time over a cycle (switch from A to B and from B to A),
and x is the workload vector. Since our goal is to obtain
steady-state performance measures, we assume that the
covariance matrix satisfies the skew-symmetry condition
described in §4, so that �ii

2 � 2��1, 1 � i � K, and �ij
2 �

���11{�i�j��1}, 1 � i � j � K, where � � �2/[�AcA0

2 �
�BcB0

2 ]. It was shown by Yamada (1986) that for K � 2 a
process fitting an appropriately completed version of the
above description (including boundary behavior) exists and
is unique in distribution. (It was also remarked there that
the extension to K � 2 is straightforward.) Yamada (1986)
also proves a heavy traffic limit theorem for tandem net-
works with state-dependent service rate that gives some
backing to our assumption here of convergence (especially
in light of the discussion in CPR II linking their result to
an earlier result of Yamada 1984).

Although the existence of our process is covered by
Yamada (1986), there are no results that characterize the
stationary distribution of the process. We conjecture that
the stationary distribution has a product form, with the
first marginal a gamma distribution (obtained as the sta-
tionary distribution of a one-dimensional Bessel process),
and the other marginals exponential. In particular, we con-
jecture that

�� x 1 , . . . , x K 	 �

��c	 K��cx 1 	 
 �
i�1

K

e ��cxi

��
 � 1	
,

x i � 0, 1 � i � K , (39)

where 
 � ��A�Bs. A brief discussion of the basis for these
conjectures is in order. Note that it is clear that the mar-
ginal distribution for the first station is a gamma distribu-
tion. This follows because the first station is not affected by
downstream stations, and the stationary distribution of the
Bessel process (when c � 0) is gamma. If we could find a
sequence of product-form networks whose (conjectured)
heavy traffic limit diffusion is the same as the above diffu-
sion, it seems reasonable that the steady-state distribution
of the diffusion would be the limit of the steady-state dis-
tributions of the product-form networks (this constitutes
an “invariance principle”). Consider a network with K � 1
stations, labeled 0, 1, . . . , K, and two customer types.
Type 1 is open, with a Poisson arrival process and expo-
nential service times at each station. These customers ar-
rive at station 1 and proceed sequentially to stations
2, . . . , K, and then exit. Type 2 is closed, with N � 1 such
customers in the system. These customers alternate be-
tween station 0, where there are N servers with rate �, and
station 1, where they are served in a FCFS manner along
with type 1 and have the same service rate. This is a
product-form network. We can write down the stationary
distribution and take a limit as the network is driven into
heavy traffic with N held fixed. The limit that emerges has
the form (39). Because this network only makes sense for
integer N, we cannot actually match �1(x) for all possible
values of �A�Bs, only a finite number of such values. None-
theless we conjecture that (39) holds for all values of
�A�Bs.

The current theory of multidimensional diffusion pro-
cesses does not provide a means of verifying the above
conjecture. One way to lend it plausibility is to derive
(without proof) a “Basic Adjoint Relationship” (BAR) for
this process, analogous to the one proven to hold for re-
flected Brownian motion in an orthant by Harrison and
Williams (1987), and show that our proposed solution sat-
isfies the BAR. Rather than taking this lengthy detour, we
merely point out that this program has been carried out,
and it works.

We have restricted our attention to setup times at the
first station. With setup times at other stations the state-
dependent drift is extremely complicated because the kth
component of the drift depends on the cycle time at sta-
tion k, which depends on the workload at station k relative
to station k � 1. For example, with K � 2, we have
�2(x) � s/4x1 for x2 � 2x1; �2(x) � s/12x1 for 2x1 � x2 �
4x1; �2(x) � s/20x1 for 4x1 � x2 � 6x1; and so on, with the
wedges continuing forever, getting progressively smaller.

6. CONCLUDING REMARKS

From the viewpoint of manufacturing systems applications,
perhaps the biggest shortcoming in multiclass queueing
network theory is the failure to incorporate non-FCFS
queueing disciplines that are driven by large setup times
and/or setup costs when a server changes class. In this
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paper we make a first attempt at addressing this shortcom-
ing by analyzing the performance of a set of perfectly bal-
anced polling systems in tandem. Because even this
idealized network is unlikely to yield to an exact analysis,
we resort to heavy traffic approximations. With strong sup-
port from existing limit theorems (Coffman et al. 1995,
1998), we conjecture that a time scale decomposition holds
in the heavy traffic limit, and derive sojourn time estimates
for both the transient and steady-state cases. The simple
form of Theorem 1 allows us to gain some understanding
of the behavior of this complex system. In particular, as
one moves from upstream stations to downstream stations,
the batch sizes tend to get larger, the imbalance between
customer types becomes less pronounced and the variabil-
ity of sojourn times is reduced. Simulation results in Sec-
tion 4 confirm that these three qualitative features occur in
the actual queueing network.

Many manufacturing facilities evaluate their employees
using performance metrics that encourage large batch sizes
(Goldratt and Cox 1984). The exhaustive queueing disci-
pline considered in this paper represents a situation where
each workstation is trying to maximize its batch sizes sub-
ject to avoiding unnecessary idleness. The first of our three
qualitative observations has important implications for
these evaluation mechanisms: In a balanced tandem sys-
tem, downstream stations are inherently better able to take
advantage of the economies of scale than upstream stations.

In Reiman and Wein (1999 §5), we investigate four gen-
eralizations of the model: service rates that differ by cus-
tomer type at each station, closed networks, networks with
three customer types, and the incorporation of FCFS
nodes. In §5 of the present paper we construct a product-
form steady-state distribution (gamma marginal at station
1 and exponential marginals at the downstream stations)
for the case where setup times are incurred only at station
1, even though the original Markovian version of the
model does not possess a product-form solution. However,
these calculations suggest that transient results for the gen-
eral multitype, multistation tandem network and steady-
state results for networks with setup times at downstream
stations will not come easily.

ONLINE COMPANION

An online companion to this paper, where we study four
natural generalizations of our basic model, can be found in
the Online Collection:
http://grace.wharton.upenn.edu/�harker/opsresearch.html
at the Operations Research Home Page.

ACKNOWLEDGMENT

The second author was supported by a grant from the
Leaders for Manufacturing Program at MIT, NSF grant

DDM-9057297, and EPSRC grant GR/J71786. He thanks
the Statistical Laboratory at the University of Cambridge
for its hospitality while some of this work was carried out.
The authors are grateful to Chalee Asavathiratham and
Beril Toktay for performing the numerical computations
reported in Section 4, and to the referees for their helpful
comments.

REFERENCES

Boxma, O. J., H. Takagi. (Eds.) 1992. Special Issue on Polling
Systems. Queueing Systems 11 (1, 2).

Coffman, E. G., Jr., A. A. Puhalskii, M. I. Reiman. 1995.
Polling systems with zero switchover times: a heavy-traffic
averaging principle. Ann. Appl. Probab. 5 681–719.

——, ——, ——. 1998. Polling systems in heavy-traffic: a
Bessel process limit. Math. Oper. Res. 23 257–304.

Dai, J. G., J. M. Harrison. 1992. Reflected Brownian motion
in an orthant: numerical methods for steady-state analy-
sis. Ann. Appl. Probab. 2 65–86.

Foschini, G. J. 1980. Personal communication.
Goldratt, E. M., J. Cox. 1984. The Goal. North River Press,

Inc., Croton-on-Hudson, NY.
Harrison, J. M. 1985. Brownian Motion and Stochastic Flow

Systems. John Wiley, New York.
——, R. J. Williams. 1986. Multidimensional reflected Brown-

ian motions having exponential stationary densities. Ann.
Probab. 15 115–137.

——, ——. 1987. Brownian models of open queueing net-
works with homogeneous customer populations. Stochas-
tics 22 77–115.

Hofri, M., K. W. Ross. 1987. On the optimal control of two
queues with server set-up times and its analysis. SIAM
J. Comput. 16 399–420.

Karmarkar, U. S., S. Kekre, S. Kekre. 1985. Lotsizing in multi-
item multi-machine job shops. IIE Trans. 17 290–298.

Peterson, W. P. 1991. A heavy traffic limit theorem for net-
works of queues with multiple customer types. Math.
Oper. Res. 16 90–118.

Reiman, M. I. 1984. Open queueing networks in heavy traffic.
Math. Oper. Res. 9 441–458.

——, ——. 1999. Heavy traffic analysis of polling systems in
tandem. Online version of present paper: http://grace.
wharton.upenn.edu/�harker/opsresearch.html.

Takagi, H. 1986. Analysis of Polling Systems. MIT Press, Cam-
bridge, MA.

Wein, L. M. 1991. Due-date setting and priority sequencing
in a multiclass M/G/1 queue. Management Sci. 37
834 – 850.

Yamada, K. 1984. Diffusion approximations for storage pro-
cesses with general release rules. Math. Oper. Res. 9
459–470.

——. 1986. Multi-dimensional Bessel processes as heavy traf-
fic limits of certain tandem queues. Stochastic Processes
and Their Appl. 23 35–56.

534 / REIMAN AND WEIN


