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Robust Dynamic Admission Control for Unified
Cell and Call QoS in Statistical Multiplexers

Debasis Mitra,Member, IEEE,Martin I. Reiman, and Jie Wang

Abstract—The design of connection admission control (CAC)  First, why combine cell and call issues in CAC design?
for a simple Markovian model of a multiservice statistical multi-  Because, ultimately, the service provider will dimension facil-
plexer is considered. The paper begins by laying the foundation jiag 15 meet both cell and call level QoS requirements (where

through several fundamental analytic concepts, such as a semi- . . . -
Markov decision process formulation of the design problem the call level QoS requirement is that the blocking probability

and time scale decomposition, before progressively leading up Of €ach class be below some level), and ignoring call level
to real-world requirements, like robustness and simplicity of QoS in CAC design will lead to overengineered systems, as
design. Several numerical illustrations are given. The salient we now argue. Recall that the principa' goa| of connection
contributions of the paper are as follows. 1) A unified treatment admission control in a broadband system is to simultaneously
of multiclass cell and call QoS. 2) A CAC design which is robust, . d . .
fair, and efficient. 3) Simplicity in the CAC design, together with Maintain the QoS for several traffic streams with different
an evaluation of the tradeoff with performance. 4) An analytic Characteristics. There is a substantial literature in this area
technique for computing the feasibility region in the space of (see [13], [21], [11], [23] and references therein). With very
_?_?]" ?jr_rival ratesf wherel_som_cte CofnttLC" EXiStZ to S?titify fQOSBIS) few exceptions, such as [4] and [11], the published work has
e discovery of near linearity of the boundary of the feasible -
region, which);s then used to d){ecompose the de);ign problem. 6) Afocused on cell le.ve.l QoS, such as cell loss ratio, cell delay
unified treatment of aggressive and conservative forms of CAC, and cell delay variation. Most CAC schemes are based on the
the latter being conventional and the former yielding better call well-known concept of effective bandwidth, which has been
level performance. 7) An effectivg bandwidth definition based.on studied extensively (see [3], [6], [10], [14]). The formulation
the aggressive form of CAC, which influences the CAC design. of effective bandwidth in the literature is, in turn, mainly based

8) Demonstration of the beneficial impact on performance of cell on cell level QoS. The basic call admission principle is tacitl
level control. 9) An asymptotic theory of the joint behavior of cell : P p y

loss and call blocking. 10) A rigorous deveiopment of time scale complete sharingCs), i.e., a new call is admitted if by doing
decomposition. 11) A numerical evaluation of the accuracy of the so the previously agreed cell level QoS of this and other calls
notion of nearly completely decomposable Markov chains. already in progress will not be violated. However, in order
to take advantage of statistical multiplexing, it is necessary
to carry traffic with different statistical characteristics on
the same network and CS can cause a significant difference
T HIS paper considers the design of connection admissigiicall blocking probabilities between sources with different
control (CAC) for a simple Markovian model of a multi-handwidth requirements. Thus, in order to meet the call level
service statistical multiplexer. The dominant characteristic @os requirement for higher bandwidth calls under CS, the
the CAC considered here is that it addresses both cell and qgﬂi“ty size will be such that low bandwidth calls will see
Quality of Service (QoS) issues, which is different from thgg)| plocking probabilities substantially lower than required.
conventional focus on the cell level only. The paper begins Byence, in order to obtain efficient resource sharing, it is
dealing rigorously with several fundamental analytic concepigecessary to consider not only the cell level QoS but also the
such as time scale decomposition between the burst and ¢gli jevel QoS when designing the CAC. This leads naturally
level and a Semi-Markov Decision Process formulation @ ca|| admission control schemes that are not CS. In this paper
the call admission control problem. This is accompanied Rye propose two ways to take call level QoS into consideration
several numerical examples. The paper progressively leads s studying call admission control. First, we introduce a
to real world requirements, such as robustness and simpliGiy measure of bandwidth requirement for connections that
of the CAC design. These are meta-problems for which thegges into account both cell and call level QoS requirements.
are no simple problem statements, yet good designs are usug@éond' based on the new bandwidth requirement, which
easy to identify. For the analytically intractable design i:ssuqﬁe call (yet anothergffective bandwidthwe propose a new
in the latter part of the paper, we rely on a combination Qfethod for call admission control, which guarantees not only
sound fundamental bases, empiricism, and validation. cell level QoS, but also regulates traffic at the call level to
Manuscript received December 1997; revised February 1998. Parts of tmeet the.ca“ Ieve_I QoS requ”emems In a robust manner.
paper were presented at the 34th IEEE7 Conference on Decisioﬁ and Controsl‘:rhere is a particular notion of robustness employed here.
1995, and the 15th International Teletraffic Congress, Washington, DC, 19&0r each service or traffic class we have a corresponding
D. Mitra and M. I. Reiman are with Bell Laboratories, Lucent Technologie%ngineered load, with the complete set of such loads forming
M“;ri,‘vya';'g'"is'“jviﬁ‘}g#’ Egbs‘ Holmdel, NJ 07733 USA. part of the input to the CAC design problem. In reality, of
Publisher Item Identifier S 0733-8716(98)04150-X. course, the offered load for a class may be more or less than
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its engineered load, and we use the terms “overload” anfithe NCD approximation. Specifically, we give results and
“underload,” respectively, to distinguish the loading status dfisights from a numerical investigation on the solution of the
the class. Our notion of robustness and fairness requires 8/ dDP problem, with and without the NCD approximation.
underloaded classes to be protected, i.e., their received Qd® results indicate that the NCD approximation works well
is only marginally affected when the total load exceeds tlvehen the average number of on—off cycles during a call's
engineered level. This protective or isolating feature pulls thelding time is about 100 or larger.
design in the direction o€omplete partitioning which is at Section IV is a short, but important, bridge between the
the other end of the spectrum from complete sharing. Thiest half of the paper, which is dominated by the SMDP
CAC design we propose here is based on the resource-shadnd NCD concepts, and the second half, where the focus
technique ofirtual partitioning (VP) [18], [5]. This technique is on simple and robust CAC designs. In this section we
aims to achieve controlled sharing, which strikes a balanask if, given the statistical parameters of the burst and call
between unrestricted sharing and isolation. Instead of edekel behaviors of each of the two classes, and the cell
class of traffic having a fixed priority, as in traditional trunkand call QoS parameters, there exists a CAC such that the
reservation ([1], [15]), in virtual partitioning the prioritiesQoS constraints are satisfied? This is a feasibility question
depend on the state of the system. and, not surprisingly, it is determined by the feasibility
In the first part of the paper we examine several topicd a linear program (LP). The answer to the question is
that are important for providing the bases of our CAC desigaxhibited as a region, called the “feasibility region,” in
We begin in Section Il by introducing our model, which\-space, i.e., where the coordinates are the arrival rates,
consists of a single bufferless link with multiple call classes,;, of calls. An important discovery is that the boundary of
The call classes may have quite different peak rates ati feasible region exhibits near-linearity. Exploitation of this
burstiness properties, and each call behaves as an on-off fligidture allows multiple class problems to be treated in the next
source while in the system. We then consider the followirgection as multiple single class problems. Another feature of
optimization problem. Given some maximum tolerable cethe numerical results of this section is that the feasible region
loss, devise a call admission control procedure that providies the aggressive approach is significantly larger than for the
acceptable cell loss and maximizes the revenue due to carmedservative approach. With this as motivation, we consider
traffic. We consider the optimization problem both with andnly the aggressive approach in the remainder of the paper.
without constraints on the call blocking probabilities. The Starting with Section V we consider the realization of
optimization problem is formulated as a semi-Markov decisiagimple and robust CAC for feasible Section V considers a
process (SMDP) with constraints. single class system and proposes the new effective bandwidth.
For any system of realistic size, the optimization probleimportantly, the effective bandwidth as calculated here is less
of Section Il is so computationally intensive that, in effect, itonservative than traditionally calculated values which ignore
is numerically impractical. This leads us to seek some methodll dynamics. This is because in the latter the worst case
that would enable us to reduce the computational burdemall configuration dominates, while here the call distribution
There is a natural time scale decomposition in our system tliwtaken into account. An asymptotic analysis of the system is
arises due to the large disparity between the lifetime of a buggven in Section VI for the scaling in which the call arrival
and the lifetime of a call. This time scale decomposition allowsites and the link bandwidth are simultaneously made large.
us to apply the notion of nearly completely decomposabhdthough these asymptotics are not used for our CAC design,
(NCD) Markov chains ([2], [11], [9]) to our system. The NCDthey provide a valuable insight into the parameter scalings that
approximation reduces the dimension of the state, and thiése as a consequence of the qualitatively different scalings
reduced state optimization is again formulated as an SM#Pthe cell and call level QoS constraints. In Section VIl we
in Section lll. The reduced state optimization problem idiscuss the standard policies of complete sharing and trunk
numerically feasible for systems of realistic size. Two relatagservation. Virtual partitioning is introduced in Section VIII.
versions of the problem are considered: conservative almdSection IX we present our numerical results on the per-
aggressive. In the former approach we require that the cllfmances of various call admission control policies, with
loss constraints are satisfied for every state, i.e., the numkeenphasis on robustness. Our results clearly indicate that our
of calls of each class in progress. In the aggressive approgatgposed CAC is able to protect the underloaded class in the
we only require that the cell loss constraints be satisfied orpeesence of traffic that deviates from the engineered load, and
long run average basis. Next, also in Section Ill, we descriligat neither complete sharing nor trunk reservation provides
how cell level control, i.e., selective cell discarding basetthis protection. New directions are discussed in Section X.
on the cell class, can be used in a two-class problem toWe end this section by summarizing the salient contributions
reduce two loss constraints to one constraint. Accompanyiafjthis paper. 1) A unified treatment of multiclass cell and call
numerical results show that the gain in capacity from celoS in CAC design. 2) The concept of robust CAC design
level control is significant, especially if the required cell losbased on a balance of fairness and efficiency. 3) Simplicity
ratios are quite different. (Although the cell level controbf design. The tradeoff between simplicity and performance is
does not play an explicit role in the design of our simplbighlighted in the numerical work, where it is shown that a
CAC, in formulating the constraints on cell level behavior wemall portion of the feasibility region is traded for simplicity.
implicitly assume that an optimal cell level control is being) An analytic technique for computing the feasibility region.
used.) The final topic considered in Section Il is the accuradyhe technique handles small cell loss probabilities, such as
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Fig. 1. A Markov chain describing call and burst dynamic. NV = 5 1 1 J
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1072, which simulations cannot. 5) The discovery of nearso that
linearity of the boundary of the feasibility region. This is an
- e /3:(1 — 7q1) +o(1-(1- 7)q0
example of the empirical content of the paper. 6) A unified 1~ 34 J 34 (1)
treatment of conservative and aggressive forms of CAC. ;o i [1 _ (1 —qo)(l —ql.):| .
The conservative form has been conventionally accepted, yet I J J

the paper provides solid grounds based on performance {gfe fraction of time a clasg call spends in the “on” state is
favoring the latter. 7) An effective bandwidth definition based

on the aggressive form of CAC. 8) The concept of cell level o (1 —(1- rj)q?)
control and a quantification of the gain in performance. 9) pj = 5 NE (2)
The asymptotic theory of the joint behavior of cell loss and ;3 [1 -(1-¢9(- Qj):|

call blocking, where the scaling is for exponentially small h I d di he link

cell loss and critical loading at the call level. 10) A rigorous W en cells are .generate at a rate exceeding the n

development of time scale decomposition. 11) A numericgnsmission capacity, those cells that cannot be transmitted
r

evaluation of the accuracy of the NCD technique. e lost. _
Two types of QoS are of interest: the cell level QoS and the

call level QoS. At the cell level, we want the cell loss ratio to
be smaller thap$"'. A commonly used bound ig"" = 102,
The call level QoS is reflected in call blocking probability
bounded byp!!

i

Il. CALL ADMISSION CONTROL: A SEMI-MARKOV
DECISION PROCESSFORMULATION

A. The Model

We consider the call admission control problem for &8 The Semi-Markov Decision Process (SMDP)
statistical multiplexer system that consists of a single link withq Linear Programming

transmission raté& and no buffer. There aré classes of calls ) .

arriving according to independent Poisson processes, and clﬁésEt k; be the ”“m*?er of glas; ca‘!ls ,|’n progress, and,

j calls arrive at rate\;, j = 1,---,.J. After being admitted "€ number of clasg calls in the “on” state. Then for a
into the system, a clags(1 < j < J) call behaves according stationary admission control policy, the process is Ma_rkowan
to a two-state Markov process depicted in Fig. 1. The tf§'d (k.n) = (kl""’k:’;m".”’”"‘? IS a state descriptor.
states represent “on” (bursting) and “off.” The initial state jdvhen there are; class; _Ca|LS in the “on siatey =1,
“on” with probability r;, and “off’ with probability1 — ;. The N€ total cell loss rate ig5_, n;v; — K™, while the cell

mean holding times in the “on” and “off* states afie* and arrn;]al ;gte 'SE"j=1d V- I dor here is th
o, respectively. A call leaving the “on” (‘off") state has a The first call admission control we consider here is the

solution to the following optimization problem: maximize the

. L0 .
probability of g; (¢;) of departing from the system. When aIong run average revenue while satisfying the cell level QoS

classj call is in the “on” state, it generates cells as fluid at rate 7. .
J 9 equirement. We formulate this problem as an SMDP and use

. . . . I
;. When a clasg call is admitted, the system collects a fixeq; . . .
. ; inear Programming to solve it. We also consider the same
amount of revenuev;. Note that, in contrast with [8], where ; . :
s . . . roblem with the addition of call level QoS requirements.
a decision theoretic framework is used to deal with unknown 1) State Space and Action Setset I denote the state
parameters, we are assuming that the network has information P

o o . space, which is the union of two sets—the set of call arrival
on the statistical characteristics of the traffic at the burst anﬁ .
call levels. states, and the set of states corresponding to the rest of the

Based on the above model, we can calculate the averaevg nts. A call arrival state has the formgt,n,j) which

call holding time for classi, 1/41;, as a time to exit a two- fresponds to the arrival of a new clagscall that finds

state transient semi-Markov process. The statesOafeff), k calls in progress of which calls are in the “on” state.
. : The rest of the events correspond to either a call departure, a
and1 (on), and the transition matrix of the embedded Markov . o . e
N call being turned “on,” or a call being turned “off.” We use
chain is ) .
o (k,n) to denote a state corresponding to those events, which
pU) — < 0 1—q; ) indicates that there atecalls in progress of which calls are

1 . . .
1—gq; 0 in the “on” stateafter the event. In order to obtain a solution
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to the SMDP from linear programming, the state space must3) Transition Probabilities: Let p[(k,n, j),%, a] denote the
be finite. Let M be a fixed large positive integer. We thugransition probability from staték,n,j) to 4 if action « is

consider as our state spaéé\/), where chosen, where = 0, 1; andp[(k,n), ] denote the transition
probability from staték, n) to <. Recall that, for staték, =, j),
I(M) = {(k7n7j) cking € 2T g <k, there arek calls in progress of which calls are in the “on
statebeforethe arrival event; and for staig, n) there arek
J calls in progress of whicl calls are in the “on” statafter
1SiSJ;1SjSJ:andZ/€¢SM} the event.
i=1 Recall thatr, is the probability that an accepted clgseall
starts in “on” state first. Hence, we have for afy> n; > 0
U {(k, n) ki, € ZF,n; <k, the equations found at the bottom of the page.
y 4) Rewards: The reward can only be earned in state
1 <i< J:and Z]” < M} (k,n,a) when actiona = 1 is taken
=1
For each state in the first sék, n, j), the corresponding action 0 a—o0
set is A(k,n,j) = {0,1}, where0 denotes rejection antl r[(k,n,j);a] = { B
denotes acceptance. For states of the fGkom), there is no wj a=1.
action to be taken, and we sétk,n) = {0}. r[(k,n);0] = 0.

2) Mean Sojourn TimesLet 7[(k,n, j); a] denote the aver-
age time spent in statg, =, j) until the next decision epoch
if action a is taken; andr[(k,n);0] denote the average time 5) Cell Loss and Arrival RatesRecall the previously
spent in Stateék n) until the next decision epoch. In additionstated cell loss and arrival rates whenp class; calls are in
let S(k,n) = EJ 1A +EJ 1 750 +E 1 (kj—nj)a;. Then the “on” state. Letl,,[(k,n,);a] and g,.[(k,n, j); a] denote
1—r; -1 the expected amount of cells of classlost and arriving until
((kym,5);0) = {S(If%j:”%j) sk+e;.m) ’ the next decision epoch when in stafle n,j) and action

sikn)y a=0. a is taken;!,,[(k,n)] and g.[(k,n)] denote the expected
[(k,n); 0] = 1 . amount qf cells of clas$n. calls lost and arriying in sFatg
S(k,n) (k,n) until the next decision epoch. Then, with no priority
WAMC) i=(k+e,nte,l) 1<I1<J
% i=(k+e;.nl) 1<i<J
e mia i=(k+ejmte—a) 1sISJ
% i=(k+e,n—e) 1<I<J
%—?ﬁg};l i=(k+e —e,nt+e —e) 1<i<J
pl(k,m,5),4,1] = % =(k+e —e,n—¢) 1<i<J
—”étife)j(’;;:;))al i=(k+e,n+e;+e)
ey i (rene)
e = (k+ej—epnte;)
(1_7,3.)(12((%122){;-:1})az i=(k+e —e,n)
L otherwise.
( S(l)c\:],n) = (k,n,j)
() = (k=)
k. m,3),40] = ol m)i] = % kmemme)
W =(k,n+e,)
—“—q?;g,’;j;;ﬂ% i=(k—¢jn)

L0 otherwise.
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cell discarding 7) Both Call and Cell Level QoS Requiremenisfe
L[(K,m, 5):1)] now 'consider the. above optimization pr.oblem with”tliie
(Fym): 1] additional constraints that the call blocking probability for
s N class;j should not exceeg™, 1 < j < J. The treatment
J NnVm + Lim=j}Vm in [7] easily enables us to add these constraints to the linear
=" Z””‘” ty— R program. It is now possible, however, that the LP will be
=t Z niv; + v infeasible: there may be no admission control rule that can
; simultaneously satisfy all cell level and call level quality of
+ service requirements. (With = 2 and all parameters other
(1—ry lz n;v; — M than A; and X\, fixed, in Section IV we provide a related LP
i=1 Z s for the reduced state problem introduced in Section lll, and
v numerically determine the set A, A») for which the LP is
feasible.)
Ln[(k,m, 5); 0)] lm[(k n); 0] We define, for fixedM, the set of arrival states correspond-
7[(k,m,5);0] 7((k,n); 0] ing to classj calls as
" nml/m
[anl/z_ I;{(M):{(k7’n’7j)klan€Z+7nszzv
=1
Z nV; 5
ool DDl 1<i<J; ;kiSM}, 1<j<J.
k ’n,j 71 — 'm¥m m=j;" 3"y =
gm[[((k 'n,,j));()])] gm[(E,m); 0] ) Recall that, in the LP formulatiory(%,a)z;, corresponds to
7[(k,n, 5): 0] 7[(k,n); 0] e m.- the fraction of time spent in statewith actlona chosen. Thus,

. . . _ the constraint on clasg blocking probability is
6) Linear Programming FormulationLinear program-

ming is a classical technique for solving both Markov decision Z Zio — pja“)\j <0.

processes and semi-Markov decision processes, with and der (M)

without constraints (cf. [22]). With multiple constraints in

an SMDP setting, Feinberg [7] shows that it suffices to The full linear program with both cell and call QoS con-
consider randomized stationary policies for this problem, agfaints is thus

the optimal _solution subject to cl_as§$alls’ Iong_-run average maximize Z Z i a

cell loss ratio< pi°!! can be obtained from a linear program.

The variables in the LP arg; , ¢ € I(M), a € A(i), where

#;,7(1,a) corresponds to the fraction of time spent in statesubject to

1€I(M) acA()

with action a chosen. The LP is Z L Z Z (i.G,a)z =0 je (M)
.. . “Ja 2 e T
maximize Z Z (i, a)z, wenth) feron acat)
LCI(M)aCA(?) . cell i
. ; ;< <3<K.
subject to Z Z [¢;(i,a) — g;(3,a)] %, <0, 1<5<J

1CI(M) acA(t)

Z Z]a Z Z t,J,a =0, JGI(M) Z Zio_pjall)\j <0

a€A(F) 1EI(M) acA(L) ’

y A
TCIA (M)

£i(%,a Ceujza 2i, <0, 1<5<J )
Z Z[( )= P56, 0)] J Z ZT(z,a)ziazl

1ET(M) a€ A(E) i I(M) acA(T)
e acA(2

2 2 )y, =1 5,20, iel(M), ac Ad).
TET(M) acA?)
%z, 2 0, i € I(M), a € A(3). IIl. NEARLY COMPLETE DECOMPOSABILITY:

The above LP is feasible, becausg, = [7(0,0)]7' = IMPLICATIONS AND ACCURACY

¥; A;j, and z;, = 0 otherwise is a feasible solution (corre- The SMDP introduced in Section Il &J dimensional for

sponding to never allowing any calls to enter). gk, n,j) a J class system. FoJ > 1, this leads to computational

denote the probability that action 1 (accept) is chosen in st@idoblems of excessive size. The notion of NCD Markov

(k,n,j). Given an optimal solutionz, of the LP, we obtain chains can be used to reduce this to/-imensional prob-

an optimal randomized stationary policy as lem. (Although the discussion presented here is heuristic, the
$(k,m, j) = Zkm i problem reduction is rigorously justified by Theorem 11 of

B [2].) Intuitively, this limiting regime is a good approximation
) ] ) when the process describing the number of calls in the “on
i 2 kmi0 T Zkmna > 0 ande(k,n,j) = 0 otherwise.  giate reaches equilibrium between any change in the number

Zkn.o T Akm)it
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of calls in progress due to call arrival/departure. Hence, whéaolding time information. Such a policy might do well, but

making a call admission decision, the number of calls of eaghmight not.

class in progress is important, but the number of calls of eachAs ¢ — 0, the n component of the state becomes noise

class in the on state is not, because these quantities osciltatethe time scale where call arrival and departure rates are

too rapidly. O(1), and can be ignored for admission control purposes.
We handle the above idea mathematically as follows. Notdis part of the stateloes affect the loss rate, so it must

that the mean time between call events (call arrival armb “averaged” properly. For small, then process reaches

departure) of class is 1/(k;u; + A;). For this quantity to equilibrium between changes in thegrocess. The equilibrium

be large relative to the mean burst cycle time, as is requiredrresponds to fixed and is given by the binomial distribution

for the NCD limiting regime to hold, it is required that

J
vt . . . < g < | — i — i =Ty 3
(20 -n) fmw>n 1sisa @ ¥k n) [[1<n>p (1-p)
Now consider a family of system indexed by— 0, in which

a;(e) = O(1), B;(e) = O(1), andr;(e) = O(1). Assume that When the total cell arrival rate 5;n; v;, the cell loss rate is
L L o o [; n;v; — R]*. The average clagscell loss rate withk is thus
g (e) =eq; and g;(e) = eg;.
+

Then since the average call duration is (see Section II-B) Ky k. i
1 1 —riqi(e) bi(k) = Z Z p(k;n) Z”ﬂ/j —R #
= AN n=0  ny;=0 J Vi
pi(e) (@1 - (1 - g/ (9)(1-¢f(9)] J
1—(1—ri)g(e) (7)

+

)
Bi(e)[1 = (1=} () (1 - a¥(e))]

. This again reflects the fact that there is no priority—the cell
it follows that 4;(¢) = O(¢) and loss rate of a class is proportional to its input rate. It seems
a()Bi(e) 1 1 4 intuitively clear that the_ expon(_antial distribution for on and off
i) + Bile) ale) — < ) (4)  times plays no essermal role_m (7). Indeed, the rgsu_lts c_)f [2]
apply for on and off times having any phase type distributions.

Now let us further assume that

€

Ai(e) _ 0<1>' (5) A. Formulation of the Reduced Problem as an SMDP
pile) ¢ 1) States, Actions, and Transition Probabilitieé/e now
So that, from (4) and (5), formulate the limit control problem as an SMDP. As in the
original problem admission decisions are made upon call
<Lﬁz —M)/m — O<1> (6) arrival. The state spacé is again the union of two sets,
o + 3 ¢ corresponding to states associated with call arrivals and states

On comparing (3) and (6), we see that the NCD approximati&?soaated with call departures. To mgk(_a this a finite state
may apply even with a large number of calls in progress. Nop&oPlem, we may need to place anpriori bound on the
that QoS considerations typically prevent the number of calfsmPer of calls that can be accepted in the system. This is
in progress from being excessively large relative to capacizfen care of below. Arrival states take the fofkn j), with

as we shall see in our applications. However, whenever the = 0- and1 < j < J. The state(k, j) corresponds to an

NCD approximation is used, it is necessary to check that tﬁgival of classj call when there arg; class: calls in progress,

condition in (3) is satisfied. This is the case in the examplésS i < J. These are the only state§ in WhiCh .decisions need
treated in the paper. to be made. The set of actions availabledi&, j) = {0,1},

In the NCD limit, the holding time distribution of a call wil Where 0 denotes rejection and 1 denotes acceptance. The state

be exponential for any on and off time distribution, as long d5'S @ departure state where the departing call ledyesdass

the memoryless process contained in our model for terminatihg@!lS Pehind.1 < i < J. For states of the forrk where no

a call is used. Although it would be possible to incorporat% cision needs to be ma'd.e, we sik) = {0}.

nonexponential call holding times, this would not be entirely 10 complete the specification of the SMDP, we need to
straightforward. A SMDP formulation would require that Wé)rowde transition probablhtles_, mean sojourn times, rewards,
keep track of the elapsed holding time for each call in progre?ﬁd COStS_ for each_state—actpn pair. h‘éi’a_) _denote the_
(The current phase of each call would be sufficient for a phad€rage time spent in staiuntil the next decision epoch) if
type holding time distribution.) The optimal policy would@ctiona € A(#) is chosen. Then
typically depend in a nonmonotone manner on this elapsed

holding time information, making it difficult to implement. An J

alternative would be to implement a policy that only depends T(k,0) = <Z Ai 4+ Imw)
on the number of calls in progress, and ignores the elapsed i=1

-1
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TABLE | be accepted into the system. L&t be a fixed large positive
PARAMETERS integer. We consider a state spaé/) of the form

cell call

Class 1 | v; Ds
1 0.1]6.0]002 |107%] 102
2 1.0]1.5]0.100 | 1079 ] 1072

I(M):{(ka)kz€Z+7 L:177J7

J
1§j§J;andei§M}

and ‘
=1
J -1 J
<Z/\i+kiﬂi> : a=0 U{k:kieZJ’, i:l,---,JandeiSM}.
T((kvj)va) = i:JI 1 i=1
<Z N+ ki +uj> . a=1. For stategk, j) such that=? | k; = M, we let A((k,j)) =
=1 {0}

SinceM was chosen arbitrarily to make the problem finite,
we need to solve a series of problems with increasuit,
until the associated optimal policy and reward stop changing.

J - Then the optimal policy forl/ = oc will have been obtained.
ki Z i+ ki if = (k — Cl)
=1

Let p(i,7',a) denote the transition probability from state
to ¢ if action @ is chosen. Let

Let r(k, j,a) denote the reward earned in stéke j) when
action a is chosen. (The reward earned in states of the form

ﬁ(kv "’) = 7 -
)\1/ <Z X+ kiﬂi) if i = (k, 1) k is 0.) Then
1=1

r(k, j, a) = 0, a=0
and 0 otherwise. Then nJs wy, a=1.
p(k,i,0) = p(k,4) We also define “costs” which will play a role in the constraint
on loss probability.
and Let
E i) iq)— P9, a=0, 1(k) = be(k)r((k),0), £=1,---,J
p((k.5),5.0) = pk+ej,1), a=1. T T
) . We define
2) The Conservative Approach to the Cell Loss Constraint:
We formulate a conservative approach to the cell loss con- 1e((k),0) = (k)
straint as follows. Let
and
C={k:ti(k) < pMhipivi,  1<i<J). (8) | L), a=0
l((k,j),a) = {Zg(k—i-ej), a=1,j=1,---,J.

ThenC is the set ofk such that when there afe class: calls

in the systenforever 1 < ¢ < J, the long run average cell As defined abovel,(i, a) is the expected amount of clags

loss rate constraints are always satisfied. TheCseniquely traffic lost until the next decision epoch. Let

determines a state spadefor any j, (k,j) € I if and only

if ke C; andk e I if and only if there exists g such that 9c(k) = pckever((k),0)

k +e; € C. The action sets for the states on the boundary of g¢(k,0) = g,(k)

I require minor modification: givelk € C, if k+e; ¢ C,

then A((k, 7)) = {0}, 1 < j < J. In this manner(’ uniquely and

determines an SMDP. Note that giveff", 1 < j < .J, and b)) — 3R, a=0

R, the setC is always finite. The optimal policy obtained ~ 9¢{(E:7), ) = {yé(k+ej), a=1j=1,--,J.

by solving this SMDP is conservative in terms of cell loss ] ] .

constraints because it will never go into any state doy 1NeNge(%; a) is the expected amount of claétraffic to arrive

period of timewhere the cell loss constraints will be violated'Ntil the next decision epoch. _

if we stay therdorever This SMDP can be solved using either W& can again use the results of [7], which enable us to

value iteration or LP. We used LP. For the 2 class syste?tl?ta'n the optimal control from the following linear program:

whose parameters are given in Table | (with= 45), using " s .

CPLEX it took 88 sec on a Sparc Server 3000 to solve the LP. maximize Z Z r )z ©
3) An Aggressive Approach to the Cell Loss Constraint:

We now describe an “aggressive” approach to the cell losgbject to

constraint. In order to be able to apply standard numerical

solution procedures to find the optimal policy, we need to Z “ja Z Z p(i.3,0)%, =0, Jjel(M)

make the state space of the SMDP finite. We achieve this byec.4(j) LEI(M) acA(L)

placing ana priori bound on the number of calls that can (20)

2CI(M) aCA(%)
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Z Z |:lé(i7 a) - pzellgé(iv a):| %3a S 07 £= 17 T J 100.0 N T T
1€I(M) ac A(E) N
] e—e optimal cell control
(11) 800 - N . =——= 1o priority cell control ]
. 0 ‘ \.\
Z Z 7(4,0)7, =1 (12) 60.0 - u i
1CI(M) acA(l) ~ | AN
L -\\
. . 400 |- LN 1
%5, 20, tel(M), a€ A(%). (13) LN
I -
As was the case in Section II-B6, the above LP is clearly 5,4 L ‘\l ]
feasible, becausey o = [7(0,0)] ! = £/, A;, andz;, = T
0 otherwise is a feasible solution. Lef(k,j) denote the '\\7
probability that action 1 (accept) is chosen in stékey). 0000 50 100 * 50
Given an optimal solutionz, of the LP, we obtain an optimal
randomized stationary policy as K
ok, ) = “k.g),1 Fig. 2. Acceptance region@$®"! = pse!! = 10~7).

k.0 T 2k

if Zk o T 2k > 0 and ¢(k, j) = 0 otherwise. Again,
using the parameters in Table | (witR = 45) and using ,
CPLEX on a Sparc Server 3000, it took 402 sec to solve 100.0 o< optimal cell control

=——a no priority cell control

120.0 . ——-

the LP. I

4) Cell Level ControlBoth the aggressive and conservative 80.0 |- .
approaches involve cell level constraints, one for each class. -
In both cases, it is sometimes possible to transform the problem <" 600 - \
to one involving one constraint using cell level control, which
consists of deciding how many cells of each class are lost. 40.0 - 1

This transformation will result in improved performance of

the associated optimal control. Fér= 2, (7) presents the cell

loss rate under a “no priority” assumption. Not surprisingly, } ‘ , ‘

typically only one of the two cell level constraints is tight %0 5.0 10.0 15.0

in the solution. Thus, by giving priority to the class whose ‘

constraint is tight, it seems clear that we can improve the ‘

solution. Related results and discussion are contained in [3}ig. 3. Acceptance regiofps®!! = 10~?, pse!! = 1077).
Consider the conservative approach fbr= 2, for which

the “acceptance regiond”, is given by (8). Let

20.0 - -

ki o ke The aggressive case is a bit more complicated because the
k)= > > ¢(k,n)[nivy +nava — RIT. (14) constraints involve the stationary distribution over all states.
n1=0n2=0 Consider the constraint
There is a cell level control (it will depend ok, k2) that
can achieve Z Z [1(i.a) + c2(3. a)
. i€l aCA(z)
bi(k) < pSVkipivs, i=1,2 (15) el - wll -
— pi91(4, @) — p5g2(i, a)) 25, < 0. (18)
if
cell __ cell ;
b(kl,kQ) Sp;euklpll/l +p§e11k2p2]/2 (16a) For the CaS@)l = Ps . if we solve the LP (9), (10),
bk 0) < peelly 16b (12), (13), (18), we can find a cell level control such that
(ky,0) < pi™k1pain (16D)  the constraints (11) are satisfied. A related result holds with
and ptiell 7£ pgell.
b(0, ko) < pSMkaporss. (16c¢) An indication of the advantage of cell level control can be

) o seen by comparing the acceptance regions for the conservative
Furthermore, ifpf! = pﬁel_l’ then (16a) implies (16b) and scheme. Fig. 2 displays the acceptance regions associated with
(16¢), and the two constraints of (15) are replaced by the 0gge and two constraints, as given by (17) and (18), for the
constraint (16a). In this case, the acceptance region beco"}%ﬁameter values of the two classes given in Table | (with
— . cell R = 45)
=k ko) b(R) < p(kipuin + Raprel} - (A7) In Fig. 3, where we usg§!! = 1072 andpse!! = 1077, the
where pl! = psell = pell, advantage of cell level control is more dramatic.
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Number of calls
are ‘‘on’’: n

251
24| A: Accept
23| R: Reject
221 0: Random Decision
21|
201
191
18]
171
161
15]
14|
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021 A A
01} A A A
00l A A A A
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the number of calls in progress: k

Fig. 4. Policy for Case 1z = 500.0.

TABLE I comparing the results of NCD to various values. More
NuMmERICAL ResuLTs FORCLAsS 1 specifically, we fix\, p, p, r = 1. Set ql = ¢ and qo — 0.
& q | 8 a call blocking Then, given anz, we have from (1) and (2) that
10.0 | 0.009901 [ 404.0 | 10.2564 | 1.941 x1072
100.0 | 0.000999 | 4004.0 | 102.564 | 2.119 =10~
500.0 | 0.0002 | 20004.0 | 512.8205 | 2.198 x10 2 g=-L— pg=H 4= Ml=a)
oo 0 o0 0 2.136 x 1072 T+ p Pq 1-p

B. Numerical Comparison of Call Admission Control we _observe _the impact_ of on the admission poli_cies and
from SMDP with and Without NCD trafnc_ behavior. _I_n particular, we are interested in the call
blocking probability.

Our goal is to compare the results from the exact SMDP 1) Example: We present one example to illustrate the im-
to those obtained using NCD. For simplicity, we consider gact of using NCD on call blocking. The capacity of the system
single class system and omit the class index. is R = 45 and the value for cell loss ratio requirement is fixed

Consider a family of single class systems indexedby  at ! = 10—°. We obtain the optimal admission policy for
¢ — 0, with call arrival rateA(¢), departing probabilityy(¢), three differentz values,10.0, 100.0, and 500.0. The traffic
average rate of a call leaving “on” stai¢¢), and average rate considered is the first class in Table I.

of a call leaving “off” statef(¢). We assumei(¢) = O(1), Our numerical results, summarized in Table Il, indicate
g(e) = O(¢), afe) = O(1/¢), B(e) = O(1/¢). Hence, that the NCD approximation performs well when the average
ule) = O(1), p(e) = O(1). number of on/off cycles during a holding time is about 100

To make the comparison more meaningful, we use the larger. In addition, it appears that the NCD approximation
normalized indexe = (1/#), where # is the number of performs better with burstier sources. (Wjih fixed, smaller
“on"-"off” cycles per unit call holding time. We apply SMDP p is burstier.)
to a system with parameters set as follows: we keep theThe actual admission policy wheh = 500.0 is shown in
parameters describing call level characteristics fixed whéig. 4.
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IV. FEASIBILITY OF CALL ADMISSION CONTROLS 100.0 . - ; : . .

In this section we discuss the feasibility problem which _
focuses not only on cell level QoS but also on call level 80.0 P\ & ® aggrossive approach ]

s——=a conservative approach

QoS. Given parameter®, Ay, Az, p1, p2, P1, P2, Vi, Vo, LN
and QoS constraintg™!!, psel!, p$ p$!, does there exist a
CAC under which the QoS constraints are satisfied? The exa(g{
version of this problem was shown, in Section 11-B7, to reduce
to feasibility of an LP. Using the NCD results of Section llI, 400
we can also obtain an LP for the reduced problem. For the
aggressive approach, the development is very similar to that

60.0 -

in Section 11-B-7, so we can be brief. 200 1
We define the set of arrival states corresponding to ¢lass
calls as 0.0
0.0
! A
A - A - + ; .
Ij(M)—{(k,J).kieZ ,15L5J,ZkiSM}, !
1<j<J =1 Fig. 5. Feasible regiongsse!! = 1072, psa!l = 0.01, 7 = 1,2.
The resulting LP is V. THE SINGLE CLASS SYSTEM WITH CELL AND CALL QOS
Both cell and call level QoS are considered in the following
maximize Z Z r(i,a)7, study of a single class system. The insights gained from
TCI(M) aCA(E) this study provide the basis for the techniques for multiclass
systems.
subject to
A. The Model
Z- L > Z pi.J,0)%, =0, J € I(M) The system and traffic model considered here is that ob-
acA(J) tCI(M) acA(2) tained using NCD, with/ = 1. Recall that for the system, the

key parameters for the single class are denoted by, p, v;
the QoS parameters agee!! andp©!!; and the link rate isk.
Z Z [le(i,a) — pi"ge(i, @) 2, <0, £=1,---,J For the one-dimensional reduced Markov chain, given a
ICI(M) aCA(E) stationary call admission control policy, various steady-state
Z v peally < l<i<J perfo.rmance measures of the s_ystem can be easily cglculated.
. ‘o~ Py A = =J= In this and the following sections, we do not specify any
LT (M) rewards or costs to be optimized. Our goal here is feasibility
Z Z T(i,a)z, =1 and robustness, so we do not provide any cost function. If
' we received a reward for each accepted call, we would try
to admit as many calls as possible subject to the two QoS
requirements. Although theptimal admission control policy
in this context normally has a randomized threshold due to the

C;—ge adbovehI._F;] \t/)vmhb(; feaﬁ'bled'f ahnld or|1ly |fSthere 'S el and call level QoS constraints, nonrandomized threshold
under which both the cell and call level Qo Cor]Str"’“nE;olicies, which are simpler, are sufficiently accurate for our

are met. ForJ = 2, holding all parameters other than

and A. fixed, we solved for the set of;, A>) for which purpose here.

the LP is feasible. We call this set the feasible region. An ) .

example of the feasible region is illustrated in Fig. 5 for thE- Some Basic Relations

parameter values in Table I. (Other examples are contained-et ¢(x) be an admission control policy based on a thresh-

in [20].) Remarkably, the boundary of this region exhibitsld «, i.e., a new call is admitted if there are fewer thaoalls

near linearity. As a consequence of this (almost) linearity, tleprogress, otherwise it is rejected. Based on the above model,

feasible region can be (approximately) determined from itge can calculate the following performance measures under

corner points. These corner points can be obtained by solvipglicy ¢(x). The mean cell arrival rate witk calls perma-

two one-dimensional (single class) problems. nently in progress is(k) = kvp. The mean cell loss rate with
An LP for the conservative approach with call level Qo% calls permanently in progress #gk) = Z¥_, (ﬁ)p"(l -

constraints can also be formulated and solved. The feasip)}—"[nr — R|*. Let g(x) = X5_, (\/n)*/k!. The stationary

region for the conservative approach is also indicated in Fig. distribution for the number of calls in progressiék calls) =

Note that the feasible region for the aggressive approach[(&/u)*/k!/g(x), k = 0,1,---,x. The average cell arrival

substantially larger than for the conservative approach. Wate iss, = [(S5_; (\/)¥/kY)s(k)]/g(x). The average cell

thus focus on the aggressive approach in the rest of the papess rate ish, = [Z5_; (\/p)*/EDb(k)]/g(x). The average

2CI(M) aCA(%)
Zmn > 0, i€ I(M),a € A®%).
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cell loss ratio is 30.0 , :
K k
IR o—o®
b k! 250 F wowy e =y ]
® k=1
Sk (M) .
s(k) 200 | e

1 k! r///”—I—l—-ﬁ—;—?H»»»».“\_%%‘;:

The call blocking probability is given by the Erlang Ioss15_

0F ﬁ
formula B(\, x) = [(A/p)*/&!/g(r).
C. Feasibility of Call Arrival Rate 109 5 108 10 % ] 11e 120
Similarly to the treatment in Section 1V, we can define the A

feasibility of the call arrival rate for a single class system &gy 6. calculating effective bandwidth for class 1 sources.
follows: a call arrival rate\ is said to be feasible if there exists

an admission control policy from the class of threshold policies
that meets both QoS requirements. Thahiis feasible if there 4509
existsk such thatp(x) ensures both cell and call QoS. Recall
that our cell and call QoS requirements are, respectivel{#%-9

L\ K, R) < p and B(\, k) < p°®l For a given), let 1300 | o —© K,(;) i
— ) ‘

k1(A) = max {x : L(\, k) < p*!'}  and 120.0 ]
k2(A) = min {x : B(\, k) < p™!'}. 110.0 .
If k2(A) < k1(A), then there exists a threshold-type policy 090 ]

¢(k) with £2(N) < & < Kk1(N), such that undep(x) both cell  g0.0

and call QoS requirements are met, and we say feasible. . ,
Given peell, peall and the traffic parameters described in~ 80.0 900 A 100.0 110.0

Subsection A, there is a maximum feasible call arrival rate, A

Amaz, SUch that for anyA > Anaz, £2(A) > K1(A). It Fig. 7. calculating effective bandwidth for class 2 sources.

is not surprising that for most cases of practical interest,

k2(Amaz) = #1(Amas), Which is assumed throughout this

paper. Example 2: Now consider a system with the sarfie pe!,
_ _ pl as in Example 1, and sources corresponding to class 2,
D. An Effective Bandwidth see Table I, i.e = 1.0, v = 1.5, andp = 0.1. The relation

Let e = R/k1(Amaz). Thene is a measure of the resourcedetweensi(A), x2(A), and Anax are illustrated in Fig. 7.
a call requires to satisfpoth cell level and call level QoS #1(A) and x2()) intersect atlll when A = 94.0. Hence,

requirements. Note that is independent of the call arrival Amax = 94.0, ande = £ = 0.4054. NOW figtatic = 100,

rate A. and egatic = 0.45.
Note that a traditional effective bandwidth definition (see
[6], for instance) assumes that calls last in perpetuity and VI. ASYMPTOTIC ANALYSIS

addresses only cell level QoS An asymptotic analysis of a single class system provides
fundamental insights into the joint behavior of the cell loss
Estatic = PR where ratio and call blocking probability for purposes of sizing and
b(k) operations. The investigation is in the asymptotic framework
Kstatic — Max {k 1 —= < p‘*’“} of large systems, i.e., 49, x, R) — oo in a manner consistent
s(k) with practical QoS requirements. Specificajy<" is expected
to be in the ranga0—%-10~?, while p°*!! is expected to be in
the neighborhood of0—2. These numbers suggest the follow-
Note thate < egtatic. SinCeesiatic ignores call level dynamics, ing important dichotomy: cell loss ratios decay exponentially
it is more conservative. in the large parameter, say while call blocking probabilities
Example 1: Consider a system wittR = 45.0, and ho- decay polynomially, more specifically dgy/r. While both
mogeneous sources with parameters corresponding to clasdelnents are separately recognized in the literature (see, for
sources as listed in Table |, i.,,= 0.1, » = 6.0, p = 0.025, instance, [24]), we do not know of any prior analysis in which
pll = 1079, and p°*!! = 0.01. In Fig. 6, we illustrate the both elements are simultaneously present. The loadings at the
relation betweens; (), x2(A), and Ayax. ©1(A) and k2(A) cell and call levels are required to be such that the ultimate
intersect at 20 whenx = 1.125. Hence, Ao = 1.125, and cell and call performances are, respectively, exponential and

e= ‘2*—8 = 2.25. Note thatk;aiic = 14, henceegaiic = 3.21.  polynomial in«. We obtain such loading guidelines. We also
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obtain the coefficients associated with the exponential aadd also the bound is asymptotically exact@s— ~ and
polynomial behaviors. Thus the contributions here are both= O(1). After substituting (26) in (25), we show that

qualitative and quantitative. .

First, we write the expression for the cell loss ratio in (19) as Num ~ 1 Z I(Ap)“H!
L(\, x,C), whereC = R/v by definition. Also, we assume ol &~ Cl{xk —C =)
for convenience thaC' is an integer, and select the unit of 0
time to be such that = 1. Then X / e AL = p) +u]" ¢ du
0
: = _ ()‘p)c /oo /Oo —(utv)
L()\ k,C) = Num/Den (20) = Cln— 0! (k—C) A e
where x pvA(1 —p) +u+ pv]* L du dv}
. Ap)©p 01
Num =0 ifw<C . (22) = ma—p (27)
G ‘ kN —n
= > o > n-0) <n>p (1—p)* where
k=C+1 n=C+1 oo oo
if v>C I= / / e FINL = p) +u+ pv]"C du dv. (28)
0 0

This is an important integral representation.

and We obtain an asymptotic expression for the integrdbr
the scaling in (23) and (24):
" r—C
Den =p > kNV/KL. 22) 1o AL =—p)} T (29)
o (T—a)(I - po)
where
Note that we may assume that> C, as otherwise, = 0. aal- p/p. (30)
As mentioned above, we I¢h, x, C') — oo, while p andv 1-p
are held fixed. For loading at the cell level, we assume thpfe constanty arises sincdr — C)/{A\(1 — p)} ~ « from
the system is underloaded, i.e., the scaling. Note that < o < 1, where the positivity is due
tor > C.
b2 /\Ep <1 (23y  From (29)

ol aAa-p)}©
ap " (1= )1 - pa)*’
Substitution in (27) together with use of Stirling’s formula for

(31

and that critical loading holds at the call level, i.e.,

2 (1_"\/x=on1 oqy ¢! and (x — C)! gives the asymptotic expression for Num.
K ( )\>\/_ (1) (24) Turning to Den in (22), we find that
i.e., v is bounded. At the loss of some small generality, we Den = pA* ! (32)
will make the convenient assumption thais a fixed constant, (r=D!BAr—1)
which can be either positive or negative. Hences A=V, where B(\, x — 1) is the Erlang loss formula. Since the call
so that, to leading ordek /A ~ 1. level loading is critical, we know from prior results [12] that

Here we give an overview of the analysis, which includgg) |eading ordeB(\, k — 1)/B(A, k) ~ 1, and that
the salient elements, with the details provided in the Appendix.

1
We show that -~
BOr) VAWo(7) (33)
Nutm — g I(p)“t whereW;(~) is anO(1) constant which is obtained from the
B —~ (CH+Di(—-C-1) normal distribution and depends only gn In fact
oo . B Ol _"/2/2 _ z 1/2 i
></0 e "Ml —p)+] du (25) e Wo(vy) (2) erfc 7

where erfc is the complementary error function.

\rléher;ese:ltzt_?te'gial O'CS ‘iﬁta;”fld :%/ q ﬁikéﬂgo;?g tﬁ;;:rlﬁrs Finally, substituting the asymptotic expressions for Num
P om! = fo~ e u" du, inom "and Den, we obtain

Now

—OK
L5, C) ~ 26

(C+DI=CUC+1)--(C+1)=CIC"  (26) K2 (34)
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where rates of class 2 calls. However, the traditional trunk reservation
1 pox gives priority to a fixed class, and hence it cannot protect the
A=Alp,p,v) = V27 p(1— ) (1 — pa)? other class when the favored class has high arrival rate. Of
1 1 particular interest is the following trunk reservation policy
X y which we study numerically in Section IX: for single link
VA —=p/p)p/p Wo(v) y Y J

systems with two classes of calls, narrowband and wideband,
L p/p o/p if we admit a new c_:aII (regardless' of its class) only Whgn
5 = 8(p.p) = log [(1 —p/P) <}> ] (35) the spare capacity in the system is at least the bandwidth
1—-p P of wideband calls, then this special trunk reservation policy
) _ balances the call blocking probabilities of the two classes,
Itis easy to verify that for al{p, p) such thal < p <1and \yhich can be easily seen with PASTA [16]. Furthermore, this
0 <p <1, 8(p,p) > 0. Clearly, A(p,p,7) = O(1). These pqjicy is optimal among all the trunk reservation policies that
facts prove the important result that for the asymptotic scalifg}ance the call blocking probabilities in the sense that the call
in (23) and (24), the cell loss ratib(}, =, C) is exponentially pj5cking probabilities are the smallest. However, because this
small in the large parameter, with & the constant in the ygjicy balances the call blocking probabilities, if one class has
exponential. The asymptotic call blocking probability for oupigh call arrival rate, both classes will have high call blocking
scaling has already been obtained in (33), in Wh'Ch]IM probabilities. In other words, it is not robust, which is far
(and thereforel /\/r) behavior is exhibited, and/Wo(v) iS  from desirable in many situations.
the relevant constant. It is intuitively apparent that i A, \2) are small enough
(close to the origin), a complete sharing policy will be suffi-
VIl. CAC DESIGN cient. The interesting case is whéRy, \,) is not very close
We now return to the two-class pr0b|em_ We seek a CA the boundary of the feasible region and also not small.
that satisfies all QoS requirements. For feasible parametdfs this case, we believe a simple policy based on virtual
such a CAC can be obtained from the LP. We are seekirgtitioning with properly chosen parameters gives satisfactory
however, a simple and robust CAC. performance.
We consider all parameters except far and A to be
fixed, and consider a poirff\;, A2) inside the feasible region VIIl. V IRTUAL PARTITIONING
described in Section IV and depicted in Fig. 5. We consider
situations where class 1 is “burstier.”

and

We now describe a call admission policy based on the notion
The two-class system that we study has= 45 and other of VZ‘ Let (fll andc(;? be Ejhe bzndvr\]ndth requirements of class
arameters specified in Table I. We know that wiign, A2) L an 2 calls, an i1 an X be the partitioning parameters

P ) ! which are two positive integers such thidte; +Kseo > R. A

is on or very close to the boundary of the feasible r€9I9%, | admission policy based on VP is summarized as follows.

the call admission policies that meet all the QoS requiremen : : .
necessarily have complicated structures. For just this reason en a gal! of class 1.arr|ves and findsy, kz) calls in
the engineered operating points are designed not to be Porggress, it is accepted if
close to the boundary. Under the assumption that A,) are ki < K, and ek +esks < R—eq, oOF
not very close to the bouno_lary,_the guestion _of mtere_st in this > K, and eghy + exhy < R — tyes — ¢y
paper is whether we can findsmple connection admission
policy that meet®oth cell and call QoS requirement#/e want  \heret,e, is the bandwidth reserved for (underloaded) class
our policy to be robust in the sense that if the operating poitcals. Similarly, a class 2 call is accepted if
drifts away from the engineered loads due to the unexpected
high arrival rate of one class, the admission policy should be ky < Ko and erk; 4+ eoks < R—ey, oOF
able to protect the other class. ky > Ky and ciky + eoks < R—tiep — o

The most widely studied call admission policy type is CS.
Although it is easy to implement, it always favors calls rewheret;e; is the bandwidth reserved for (underloaded) class
quiring less bandwidth capacity, thus it can drive the blocking calls.
probability of calls with a larger bandwidth requirement up Note that the call admission is performed on a sétin k-)
when the arrival rates of the calls with smaller bandwidtepace defined bytie; + k2es < R. The motivation for
requirement are high. A very undesirable situation is wheselecting this set is derived from the linearity implicit in the
the class 1 blocking probability exceeds the QoS constraingtion of effective bandwidths. Admittedly there is no sound
while the blocking probability for class 2 calls is much lowetheoretical basis for the linearity at this time. In the absence of
than its constraint. With CS, regardless which class exceedssiteh a theory, we take the precautionary step of verifying in
engineered load, class 1 will suffer in terms of call blockingur numerical investigations that cell level QoS requirements
probability. are satisfied by our admission control policies.

Trunk reservation (TR) policies have been known to be ableBy choosing parameterg(; and K>, we partition the
to provide protection to wideband calls. With properly chosdmandwidth between the two classes. The trunk reservation pa-
trunk reservation parameters, class 1 calls will not have urameterst; and#, allow us to block calls from the overloaded
acceptably high call blocking probabilities due to high arrivadlass so as to reserve bandwidth for the underloaded class. The
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TABLE 111 TABLE IV
NUMERICAL RESULTS FORCASE 1 NUMERICAL RESULTS FOR CASE 2
Call arrival rates Call blocking Probabilities (. 53) Call arrival rates Call blocking Probabilities (By, Bs)

(A1, Aa) CS TR ] VP (A1, A2) CS ] TR [ VP
(0.60, 35.0) (0.0064, 0.0008) | (0.0031, 0.0031) | (0.0049. 0.0033) (0.20, 70.0) (0.0150, 0.0018) | (0.0048, 0.0048) | (0.0004, 0.0059)
(0.72, 35.0) (0.0184, 0.0026) | (0.0096, 0.0096) | (0.0153. 0.0076) (0.24, 70.0) (0.0241. 0.0031) | (0.0079, 0.0079) | (0.0010, 0.0096)
(0.60, 45.0) (0.0232, 0.0032) | (0.0106, 0.0106) | (0.0083. 0.0202) (0.20, 84.0) (0.1049. 0.0153) | (0.0327, 0.0327) | (0.0018, 0.0386)
(0.66, 38.5) (0.0174, 0.0024) | (0.0085, 0.0085) | (0.0110. 0.0110} (0.22, 77.0) (0.0536, 0.0073) | (0.0171, 0.0171) | (0.0013, 0.0205)
(0.55, 33.0) (0.0026, 0.0003) | (0.0013, 0.0013) | (0.0021. 0.0012) (0.18, 63.0) (0.0026, 0.0003) | (0.0009, 0.0009) | (0.0001, 0.0011)

TABLE V

nature of the policy is to give the underloaded class higher NUMERICAL RESULTS FOR CASE 3

priority, and the consequence is that the underloaded class_is

protected. Call arrival rates Call blocking Probabilities}(Bl . B3)
We expect, andt, to be small nonnegative integers. When—ox22 cs | R ' i
pecty 2 9 gers. Wher—o5-00) (0.0038, 0.0005) | (0.0030, 0.0030) | {0.0038. 0.0005)
t1 = t; = 0, the policy becomes a complete sharing policy 758 15.0) [ (0:0156, 0.0022) | (0.0128, 0.0128) | (0.0156. 0.0022)
over the whole admissible region (regardles#&@fand K»). If (0.90, 15.0) (0.0073, 0.0010) | (0.0052, 0.0052) | (0.0072. 0.0017)
in this case the call blocking probabilities fboth classes are (099, 11.0) (0.0093, 0.0013) | (0.0073, 0.0073) | (0.0093. 0.0014)
still greater than the allowed limits (say, 1%), then the arrival_(0:81, 9.0) (0.0013, 0.0002) | (0.0010, 0.0010) | (0.0013. 0.0002)

rates are too high for there to exist any feasible policy. When
t; andt, are not both zero, the policy is complete sharing o . .
the set{(ki,ks) : kv < Ki, ks < K>}, and dynamically ‘PR, in general, gives better performance than CS. However,

prioritized outside the set. With complete sharing, the le$4'€" (A1, A2) = (0.6,45.0), TR gives balanced call blocking
bursty traffic enjoys lower call blocking, and consequentl robabilities _Of 0.0106._Hence, class 1 sqffers because cla_ss
when the set in which complete sharing applies is bigger, fe as an arrival rate higher than the engineered load. _VP is
calls of the less bursty traffic are blocked. able _to protect the_ underloaded class. Because th(_a engm(_eered
load is near the middle of the boundary of the feasible region,
we need to protect each class when the other class exceeds
IX. NUMERICAL RESULTS FORVP its engineered load. Since on the complete sharing set class 2

In our numerical study, we attempt to show that we can utefavored, by choosing the set large enough for VP we can
VP to design simple call admission policies such that whdiotect class 2. Protection for class 1 in VP is achieved by
the system is subject to load at or below the engineered cefiioosing the complete sharing set not too large and selecting
arrival rates(\$, \$), the admission policy will meet all the proper trunk reservation parameter which is set to 2 in this
cell and call QoS requirements; and when the system is subje@ge.
to load above the engineered loads due to a high arrival rate
from one class, the other class is protected. More specifically, cage 2
we observe the call blocking probabilities of the two classes, ] )
denoted by(B,, B»), under CS, TR, and VP to illustrate the The second set of numerical results are for th_e_ engi-
robustness of VP. The following load scenarios are studigdfered 10adAf, A5) = (0.2,70.0). The bandwidth partition-
both classes are below the engineered load; both classes af@harameters used a(e;, K») = (7,60), and the trunk
the engineered load; one of the two classes is at the enginedfgrvation parameters used drg,t) = (1,0). Table IV
load while the other is at least 20% higher; both classes st@mmarizes the call blocking probabilities corresponding to
10% higher than the engineered loads. the five scenarios. _

The system and traffic sources are the ones specified ifNOW the engineered load is near the upper-left comer of

Section VII. From the analysis of the two single class problentid® feasible region. Again, &, A2) = (0.20,84.0), class 1
in Section V-D, we have; = 2.25 and e, = 0.4054, which suffers under CS and TR when class 2 exceeds the engineered

load, while VP is able to protect it. When the class 1 arrival
rate exceeds the engineered load by 20%, the impact on class
2 is very small. On the other hand, increasing the arrival rate
A. Case 1 o :

of class 2 has more dramatic impact on class 1 traffic, hence

The first set of numerical results are for the engineered logglseems now the focus should be on protecting class 1 against
(X%, AS) = (0.6,35.0). The bandwidth partitioning parametersjass 2.

used are(Ki,K>) = (9,42), and the trunk reservation
parameters used ar@;,t;) = (2,0). The call blocking
probabilities for several different loads are listed in Table 11IC- €ase 3

When the load is below or at the engineered load, all The third set of results are for the engineered load
three policies give satisfactory call blocking probabilitie A, AS) = (0.9,10.0). The bandwidth partitioning parameters
However, when one of the two classes has load higher thased are(K;,K>) = (10,25), and the trunk reservation
the engineered load, class 1 always suffers under CS and plheameters used afe,, ;) = (3,0). Table V summarizes the
blocking probabilities are driven above the allowed limit 1%call blocking probabilities for the five scenarios.

are used for all the cases in this section.
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This is a case where traffic is light so that VP is almost To prove (27), we make use of (26) in (A3) to obtain

identical to CS. At(A, A2) =

X. NEw DIRECTIONS

Although our results have been presented for a two-class

(1.08,10.0), class 2 suffers
under TR, while both CS and VP are able to protect class 2nym ~ 1

1 w=C l()\p)C'H

Cl & Cl(s— C =)

X /OOO e “IA(1

_p) + u]nfcfl du

system, we believe that they would apply for more than two Ap)C o C I — k= C—1
classes. The key to our approach is the near linearity of the = ( g? / e‘“[ E rl ((/«a pé—i_ 1;])' ] du
. 0 - - .

feasible region depicted in Fig. 5. If the feasible region is
linear for the multiclass system, then thié€> 2) class system
can be analyzed using single class systems, so that the CAC
introduced here can be used fér> 2 as well. Further work

on this topic is necessary.

=0
(A4)

Euler’'s representation af

In this paper we considered two versions of the cell loS$um

constraint: conservative and aggressive. One might argue
that the conservative approach is too conservative, and the
aggressive approach is too aggressive, so that it would be nice

()

to have something in between the two. An approach based on x (pv) A1 —p) + 4" dv du

expected cell loss during the lifetime of a call in the system
is considered in [19]. It is shown there that in the single-class=
system, the threshold based on this new approach indeed lies

between the other two.

APPENDIX

Here we give some details of the asymptotic analysis in=
Section VI. We do three things in this Appendix. First, we
prove (25); second, we make use of (26) to prove (27); and

finally, we establish (29).

)
Cl(r — O)!

C) / / W) py
o Jo

xr—C o —
X Z( 11 )(Pv)l_l[)\(l—p)-i-u]”_c_ldvdu]

O'((*) [ // (o)

A1 —p) +u+pu]" " dy du} . (A5)

To prove (25) fors > C, we note that from the expressmn-l-he expression in outer brackets is observed todBéop,

in (21)

Num = Z ()\5 Z {)\
n=C+1 :

Now, we may use Euler’s representatlon fdrto obtain
”z_f A1 -p)}*
k!
k=0
TR Y O]
/0 ¢ Z B (i—n—kp"

ot e

(A1)

){)\ (1 —p) % du

:ﬁ/{) T~ p) + ] du. (A2)
Substituting (A2) in (Al),
o~ Gpr (-0
Num = n:zc:—l—l n! (k—n)!
T el — ren g
< [ )+
= [Ap)“H!
T (O D -C D)
x /oo e N1 —p) +u]" " du  (A3)
0

which is (25).

wherel is defined in (28). Hence (27) is proven.
To prove (29), note that from the definition éfin (28)

I={\N1-p)}"* C/ / e~ W) Hy, v; k) du dv
(A6)
where we lets be the surrogate for the large parameters
(A&, C), and
H(u,v;r)
2 ex [m—c 1o~{1+ T H A7
Pl st sa g taa - g A7
Now

{50 )

Jrro(ttery|

Hence, noting thatx — C)/{\(1 — p)} ~ « from the scaling

/ / e~ H(u, v k) du dv
0o Jo
oo oo 2
= / / e~ (utv) gautpav [1 + 0 <7(u + pv) )} du dv
o Jo ke
(A9)

1 1 1
= . 1+0(-1}].
1—a 1—pa[ " <m)}

The above together with (A6) gives (29).

(A8)

Where the definition o in (23) has been used. Now introduce
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