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Robust Dynamic Admission Control for Unified
Cell and Call QoS in Statistical Multiplexers

Debasis Mitra,Member, IEEE,Martin I. Reiman, and Jie Wang

Abstract—The design of connection admission control (CAC)
for a simple Markovian model of a multiservice statistical multi-
plexer is considered. The paper begins by laying the foundation
through several fundamental analytic concepts, such as a semi-
Markov decision process formulation of the design problem
and time scale decomposition, before progressively leading up
to real-world requirements, like robustness and simplicity of
design. Several numerical illustrations are given. The salient
contributions of the paper are as follows. 1) A unified treatment
of multiclass cell and call QoS. 2) A CAC design which is robust,
fair, and efficient. 3) Simplicity in the CAC design, together with
an evaluation of the tradeoff with performance. 4) An analytic
technique for computing the feasibility region in the space of
call arrival rates where some control exists to satisfy QoS. 5)
The discovery of near linearity of the boundary of the feasible
region, which is then used to decompose the design problem. 6) A
unified treatment of aggressive and conservative forms of CAC,
the latter being conventional and the former yielding better call
level performance. 7) An effective bandwidth definition based on
the aggressive form of CAC, which influences the CAC design.
8) Demonstration of the beneficial impact on performance of cell
level control. 9) An asymptotic theory of the joint behavior of cell
loss and call blocking. 10) A rigorous development of time scale
decomposition. 11) A numerical evaluation of the accuracy of the
notion of nearly completely decomposable Markov chains.

I. INTRODUCTION

T HIS paper considers the design of connection admission
control (CAC) for a simple Markovian model of a multi-

service statistical multiplexer. The dominant characteristic of
the CAC considered here is that it addresses both cell and call
Quality of Service (QoS) issues, which is different from the
conventional focus on the cell level only. The paper begins by
dealing rigorously with several fundamental analytic concepts,
such as time scale decomposition between the burst and call
level and a Semi-Markov Decision Process formulation of
the call admission control problem. This is accompanied by
several numerical examples. The paper progressively leads up
to real world requirements, such as robustness and simplicity
of the CAC design. These are meta-problems for which there
are no simple problem statements, yet good designs are usually
easy to identify. For the analytically intractable design issues,
in the latter part of the paper, we rely on a combination of
sound fundamental bases, empiricism, and validation.
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First, why combine cell and call issues in CAC design?
Because, ultimately, the service provider will dimension facil-
ities to meet both cell and call level QoS requirements (where
the call level QoS requirement is that the blocking probability
of each class be below some level), and ignoring call level
QoS in CAC design will lead to overengineered systems, as
we now argue. Recall that the principal goal of connection
admission control in a broadband system is to simultaneously
maintain the QoS for several traffic streams with different
characteristics. There is a substantial literature in this area
(see [13], [21], [11], [23] and references therein). With very
few exceptions, such as [4] and [11], the published work has
focused on cell level QoS, such as cell loss ratio, cell delay
and cell delay variation. Most CAC schemes are based on the
well-known concept of effective bandwidth, which has been
studied extensively (see [3], [6], [10], [14]). The formulation
of effective bandwidth in the literature is, in turn, mainly based
on cell level QoS. The basic call admission principle is tacitly
complete sharing(CS), i.e., a new call is admitted if by doing
so the previously agreed cell level QoS of this and other calls
already in progress will not be violated. However, in order
to take advantage of statistical multiplexing, it is necessary
to carry traffic with different statistical characteristics on
the same network and CS can cause a significant difference
in call blocking probabilities between sources with different
bandwidth requirements. Thus, in order to meet the call level
QoS requirement for higher bandwidth calls under CS, the
facility size will be such that low bandwidth calls will see
call blocking probabilities substantially lower than required.
Hence, in order to obtain efficient resource sharing, it is
necessary to consider not only the cell level QoS but also the
call level QoS when designing the CAC. This leads naturally
to call admission control schemes that are not CS. In this paper
we propose two ways to take call level QoS into consideration
when studying call admission control. First, we introduce a
new measure of bandwidth requirement for connections that
takes into account both cell and call level QoS requirements.
Second, based on the new bandwidth requirement, which
we call (yet another)effective bandwidth, we propose a new
method for call admission control, which guarantees not only
cell level QoS, but also regulates traffic at the call level to
meet the call level QoS requirements in a robust manner.

There is a particular notion of robustness employed here.
For each service or traffic class we have a corresponding
engineered load, with the complete set of such loads forming
part of the input to the CAC design problem. In reality, of
course, the offered load for a class may be more or less than
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its engineered load, and we use the terms “overload” and
“underload,” respectively, to distinguish the loading status of
the class. Our notion of robustness and fairness requires the
underloaded classes to be protected, i.e., their received QoS
is only marginally affected when the total load exceeds the
engineered level. This protective or isolating feature pulls the
design in the direction ofcomplete partitioning, which is at
the other end of the spectrum from complete sharing. The
CAC design we propose here is based on the resource-sharing
technique ofvirtual partitioning (VP) [18], [5]. This technique
aims to achieve controlled sharing, which strikes a balance
between unrestricted sharing and isolation. Instead of each
class of traffic having a fixed priority, as in traditional trunk
reservation ([1], [15]), in virtual partitioning the priorities
depend on the state of the system.

In the first part of the paper we examine several topics
that are important for providing the bases of our CAC design.
We begin in Section II by introducing our model, which
consists of a single bufferless link with multiple call classes.
The call classes may have quite different peak rates and
burstiness properties, and each call behaves as an on-off fluid
source while in the system. We then consider the following
optimization problem. Given some maximum tolerable cell
loss, devise a call admission control procedure that provides
acceptable cell loss and maximizes the revenue due to carried
traffic. We consider the optimization problem both with and
without constraints on the call blocking probabilities. The
optimization problem is formulated as a semi-Markov decision
process (SMDP) with constraints.

For any system of realistic size, the optimization problem
of Section II is so computationally intensive that, in effect, it
is numerically impractical. This leads us to seek some method
that would enable us to reduce the computational burden.
There is a natural time scale decomposition in our system that
arises due to the large disparity between the lifetime of a burst
and the lifetime of a call. This time scale decomposition allows
us to apply the notion of nearly completely decomposable
(NCD) Markov chains ([2], [11], [9]) to our system. The NCD
approximation reduces the dimension of the state, and the
reduced state optimization is again formulated as an SMDP
in Section III. The reduced state optimization problem is
numerically feasible for systems of realistic size. Two related
versions of the problem are considered: conservative and
aggressive. In the former approach we require that the cell
loss constraints are satisfied for every state, i.e., the number
of calls of each class in progress. In the aggressive approach,
we only require that the cell loss constraints be satisfied on a
long run average basis. Next, also in Section III, we describe
how cell level control, i.e., selective cell discarding based
on the cell class, can be used in a two-class problem to
reduce two loss constraints to one constraint. Accompanying
numerical results show that the gain in capacity from cell
level control is significant, especially if the required cell loss
ratios are quite different. (Although the cell level control
does not play an explicit role in the design of our simple
CAC, in formulating the constraints on cell level behavior we
implicitly assume that an optimal cell level control is being
used.) The final topic considered in Section III is the accuracy

of the NCD approximation. Specifically, we give results and
insights from a numerical investigation on the solution of the
SMDP problem, with and without the NCD approximation.
The results indicate that the NCD approximation works well
when the average number of on–off cycles during a call’s
holding time is about 100 or larger.

Section IV is a short, but important, bridge between the
first half of the paper, which is dominated by the SMDP
and NCD concepts, and the second half, where the focus
is on simple and robust CAC designs. In this section we
ask if, given the statistical parameters of the burst and call
level behaviors of each of the two classes, and the cell
and call QoS parameters, there exists a CAC such that the
QoS constraints are satisfied? This is a feasibility question
and, not surprisingly, it is determined by the feasibility
of a linear program (LP). The answer to the question is
exhibited as a region, called the “feasibility region,” in

-space, i.e., where the coordinates are the arrival rates,
, of calls. An important discovery is that the boundary of

the feasible region exhibits near-linearity. Exploitation of this
feature allows multiple class problems to be treated in the next
section as multiple single class problems. Another feature of
the numerical results of this section is that the feasible region
for the aggressive approach is significantly larger than for the
conservative approach. With this as motivation, we consider
only the aggressive approach in the remainder of the paper.

Starting with Section V we consider the realization of
simple and robust CAC for feasible. Section V considers a
single class system and proposes the new effective bandwidth.
Importantly, the effective bandwidth as calculated here is less
conservative than traditionally calculated values which ignore
call dynamics. This is because in the latter the worst case
call configuration dominates, while here the call distribution
is taken into account. An asymptotic analysis of the system is
given in Section VI for the scaling in which the call arrival
rates and the link bandwidth are simultaneously made large.
Although these asymptotics are not used for our CAC design,
they provide a valuable insight into the parameter scalings that
arise as a consequence of the qualitatively different scalings
in the cell and call level QoS constraints. In Section VII we
discuss the standard policies of complete sharing and trunk
reservation. Virtual partitioning is introduced in Section VIII.
In Section IX we present our numerical results on the per-
formances of various call admission control policies, with
emphasis on robustness. Our results clearly indicate that our
proposed CAC is able to protect the underloaded class in the
presence of traffic that deviates from the engineered load, and
that neither complete sharing nor trunk reservation provides
this protection. New directions are discussed in Section X.

We end this section by summarizing the salient contributions
of this paper. 1) A unified treatment of multiclass cell and call
QoS in CAC design. 2) The concept of robust CAC design
based on a balance of fairness and efficiency. 3) Simplicity
of design. The tradeoff between simplicity and performance is
highlighted in the numerical work, where it is shown that a
small portion of the feasibility region is traded for simplicity.
4) An analytic technique for computing the feasibility region.
The technique handles small cell loss probabilities, such as
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Fig. 1. A Markov chain describing call and burst dynamic.

10 , which simulations cannot. 5) The discovery of near-
linearity of the boundary of the feasibility region. This is an
example of the empirical content of the paper. 6) A unified
treatment of conservative and aggressive forms of CAC.
The conservative form has been conventionally accepted, yet
the paper provides solid grounds based on performance for
favoring the latter. 7) An effective bandwidth definition based
on the aggressive form of CAC. 8) The concept of cell level
control and a quantification of the gain in performance. 9)
The asymptotic theory of the joint behavior of cell loss and
call blocking, where the scaling is for exponentially small
cell loss and critical loading at the call level. 10) A rigorous
development of time scale decomposition. 11) A numerical
evaluation of the accuracy of the NCD technique.

II. CALL ADMISSION CONTROL: A SEMI-MARKOV

DECISION PROCESSFORMULATION

A. The Model

We consider the call admission control problem for a
statistical multiplexer system that consists of a single link with
transmission rate and no buffer. There are classes of calls
arriving according to independent Poisson processes, and class

calls arrive at rate . After being admitted
into the system, a class call behaves according
to a two-state Markov process depicted in Fig. 1. The two
states represent “on” (bursting) and “off.” The initial state is
“on” with probability , and “off” with probability . The
mean holding times in the “on” and “off” states are and

respectively. A call leaving the “on” (“off”) state has a
probability of of departing from the system. When a
class call is in the “on” state, it generates cells as fluid at rate

. When a class call is admitted, the system collects a fixed
amount of revenue . Note that, in contrast with [8], where
a decision theoretic framework is used to deal with unknown
parameters, we are assuming that the network has information
on the statistical characteristics of the traffic at the burst and
call levels.

Based on the above model, we can calculate the average
call holding time for class , as a time to exit a two-
state transient semi-Markov process. The states are(off),
and (on), and the transition matrix of the embedded Markov
chain is

The mean residence time in stateis , and the mean
residence time in state is . Let .
Then

A straightforward calculation shows that

so that

(1)

The fraction of time a class call spends in the “on” state is

(2)

When cells are generated at a rate exceeding the link
transmission capacity, those cells that cannot be transmitted
are lost.

Two types of QoS are of interest: the cell level QoS and the
call level QoS. At the cell level, we want the cell loss ratio to
be smaller than . A commonly used bound is .
The call level QoS is reflected in call blocking probability
bounded by .

B. The Semi-Markov Decision Process (SMDP)
and Linear Programming

Let be the number of class calls in progress, and
the number of class calls in the “on” state. Then for a
stationary admission control policy, the process is Markovian
and is a state descriptor.
When there are class calls in the “on” state, ,
the total cell loss rate is , while the cell
arrival rate is .

The first call admission control we consider here is the
solution to the following optimization problem: maximize the
long run average revenue while satisfying the cell level QoS
requirement. We formulate this problem as an SMDP and use
Linear Programming to solve it. We also consider the same
problem with the addition of call level QoS requirements.

1) State Space and Action Sets:Let denote the state
space, which is the union of two sets—the set of call arrival
states, and the set of states corresponding to the rest of the
events. A call arrival state has the format which
corresponds to the arrival of a new classcall that finds

calls in progress of which calls are in the “on” state.
The rest of the events correspond to either a call departure, a
call being turned “on,” or a call being turned “off.” We use

to denote a state corresponding to those events, which
indicates that there arecalls in progress of which calls are
in the “on” stateafter the event. In order to obtain a solution
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to the SMDP from linear programming, the state space must
be finite. Let be a fixed large positive integer. We thus
consider as our state space , where

; and

; and

For each state in the first set, , the corresponding action
set is , where denotes rejection and
denotes acceptance. For states of the form , there is no
action to be taken, and we set .

2) Mean Sojourn Times:Let denote the aver-
age time spent in state until the next decision epoch
if action is taken; and denote the average time
spent in state until the next decision epoch. In addition,
let Then

3) Transition Probabilities: Let denote the
transition probability from state to if action is
chosen, where ; and denote the transition
probability from state to . Recall that, for state ,
there are calls in progress of which calls are in the “on”
statebefore the arrival event; and for state there are
calls in progress of which calls are in the “on” stateafter
the event.

Recall that is the probability that an accepted classcall
starts in “on” state first. Hence, we have for any
the equations found at the bottom of the page.

4) Rewards: The reward can only be earned in state
when action is taken

5) Cell Loss and Arrival Rates:Recall the previously
stated cell loss and arrival rates when class calls are in
the “on” state. Let and denote
the expected amount of cells of classlost and arriving until
the next decision epoch when in state and action

is taken; and denote the expected
amount of cells of class calls lost and arriving in state

until the next decision epoch. Then, with no priority

otherwise.

otherwise.
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cell discarding

6) Linear Programming Formulation:Linear program-
ming is a classical technique for solving both Markov decision
processes and semi-Markov decision processes, with and
without constraints (cf. [22]). With multiple constraints in
an SMDP setting, Feinberg [7] shows that it suffices to
consider randomized stationary policies for this problem, and
the optimal solution subject to classcalls’ long-run average
cell loss ratio can be obtained from a linear program.
The variables in the LP are , where

corresponds to the fraction of time spent in state
with action chosen. The LP is

maximize

subject to

The above LP is feasible, because
, and otherwise is a feasible solution (corre-

sponding to never allowing any calls to enter). Let
denote the probability that action 1 (accept) is chosen in state

. Given an optimal solution, , of the LP, we obtain
an optimal randomized stationary policy as

if , and otherwise.

7) Both Call and Cell Level QoS Requirements:We
now consider the above optimization problem with the
additional constraints that the call blocking probability for
class should not exceed . The treatment
in [7] easily enables us to add these constraints to the linear
program. It is now possible, however, that the LP will be
infeasible: there may be no admission control rule that can
simultaneously satisfy all cell level and call level quality of
service requirements. (With and all parameters other
than and fixed, in Section IV we provide a related LP
for the reduced state problem introduced in Section III, and
numerically determine the set of for which the LP is
feasible.)

We define, for fixed , the set of arrival states correspond-
ing to class calls as

Recall that, in the LP formulation, corresponds to
the fraction of time spent in statewith action chosen. Thus,
the constraint on class blocking probability is

The full linear program with both cell and call QoS con-
straints is thus

maximize

subject to

III. N EARLY COMPLETE DECOMPOSABILITY:
IMPLICATIONS AND ACCURACY

The SMDP introduced in Section II is dimensional for
a class system. For , this leads to computational
problems of excessive size. The notion of NCD Markov
chains can be used to reduce this to a-dimensional prob-
lem. (Although the discussion presented here is heuristic, the
problem reduction is rigorously justified by Theorem 11 of
[2].) Intuitively, this limiting regime is a good approximation
when the process describing the number of calls in the “on”
state reaches equilibrium between any change in the number
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of calls in progress due to call arrival/departure. Hence, when
making a call admission decision, the number of calls of each
class in progress is important, but the number of calls of each
class in the on state is not, because these quantities oscillate
too rapidly.

We handle the above idea mathematically as follows. Note
that the mean time between call events (call arrival and
departure) of class is . For this quantity to
be large relative to the mean burst cycle time, as is required
for the NCD limiting regime to hold, it is required that

(3)

Now consider a family of system indexed by , in which
and . Assume that

and

Then since the average call duration is (see Section II-B)

it follows that and

(4)

Now let us further assume that

(5)

So that, from (4) and (5),

(6)

On comparing (3) and (6), we see that the NCD approximation
may apply even with a large number of calls in progress. Note
that QoS considerations typically prevent the number of calls
in progress from being excessively large relative to capacity,
as we shall see in our applications. However, whenever the
NCD approximation is used, it is necessary to check that the
condition in (3) is satisfied. This is the case in the examples
treated in the paper.

In the NCD limit, the holding time distribution of a call will
be exponential for any on and off time distribution, as long as
the memoryless process contained in our model for terminating
a call is used. Although it would be possible to incorporate
nonexponential call holding times, this would not be entirely
straightforward. A SMDP formulation would require that we
keep track of the elapsed holding time for each call in progress.
(The current phase of each call would be sufficient for a phase-
type holding time distribution.) The optimal policy would
typically depend in a nonmonotone manner on this elapsed
holding time information, making it difficult to implement. An
alternative would be to implement a policy that only depends
on the number of calls in progress, and ignores the elapsed

holding time information. Such a policy might do well, but
it might not.

As , the component of the state becomes noise
on the time scale where call arrival and departure rates are

, and can be ignored for admission control purposes.
This part of the statedoes affect the loss rate, so it must
be “averaged” properly. For small, the process reaches
equilibrium between changes in theprocess. The equilibrium
corresponds to fixed and is given by the binomial distribution

When the total cell arrival rate is , the cell loss rate is
. The average classcell loss rate with is thus

(7)

This again reflects the fact that there is no priority—the cell
loss rate of a class is proportional to its input rate. It seems
intuitively clear that the exponential distribution for on and off
times plays no essential role in (7). Indeed, the results of [2]
apply for on and off times having any phase type distributions.

A. Formulation of the Reduced Problem as an SMDP

1) States, Actions, and Transition Probabilities:We now
formulate the limit control problem as an SMDP. As in the
original problem admission decisions are made upon call
arrival. The state space is again the union of two sets,
corresponding to states associated with call arrivals and states
associated with call departures. To make this a finite state
problem, we may need to place ana priori bound on the
number of calls that can be accepted in the system. This is
taken care of below. Arrival states take the form , with

, and . The state corresponds to an
arrival of class call when there are class calls in progress,

. These are the only states in which decisions need
to be made. The set of actions available is ,
where 0 denotes rejection and 1 denotes acceptance. The state

is a departure state where the departing call leavesclass
calls behind, . For states of the form where no

decision needs to be made, we set .
To complete the specification of the SMDP, we need to

provide transition probabilities, mean sojourn times, rewards,
and costs for each state–action pair. Let denote the
average time spent in state(until the next decision epoch) if
action is chosen. Then
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TABLE I
PARAMETERS

and

Let denote the transition probability from state
to if action is chosen. Let

if

if

and otherwise. Then

and

2) The Conservative Approach to the Cell Loss Constraint:
We formulate a conservative approach to the cell loss con-
straint as follows. Let

(8)

Then is the set of such that when there are class calls
in the systemforever, , the long run average cell
loss rate constraints are always satisfied. The setuniquely
determines a state space: for any if and only
if ; and if and only if there exists a such that

. The action sets for the states on the boundary of
require minor modification: given , if ,

then . In this manner, uniquely
determines an SMDP. Note that given , and

, the set is always finite. The optimal policy obtained
by solving this SMDP is conservative in terms of cell loss
constraints because it will never go into any state forany
period of timewhere the cell loss constraints will be violated
if we stay thereforever. This SMDP can be solved using either
value iteration or LP. We used LP. For the 2 class system
whose parameters are given in Table I (with ), using
CPLEX it took 88 sec on a Sparc Server 3000 to solve the LP.

3) An Aggressive Approach to the Cell Loss Constraint:
We now describe an “aggressive” approach to the cell loss
constraint. In order to be able to apply standard numerical
solution procedures to find the optimal policy, we need to
make the state space of the SMDP finite. We achieve this by
placing ana priori bound on the number of calls that can

be accepted into the system. Let be a fixed large positive
integer. We consider a state space of the form

; and

and

For states such that , we let
.

Since was chosen arbitrarily to make the problem finite,
we need to solve a series of problems with increasing’s,
until the associated optimal policy and reward stop changing.
Then the optimal policy for will have been obtained.

Let denote the reward earned in state when
action is chosen. (The reward earned in states of the form

is 0.) Then

We also define “costs” which will play a role in the constraint
on loss probability.

Let

We define

and

As defined above, is the expected amount of class
traffic lost until the next decision epoch. Let

and

Then is the expected amount of classtraffic to arrive
until the next decision epoch.

We can again use the results of [7], which enable us to
obtain the optimal control from the following linear program:

maximize (9)

subject to

(10)
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(11)

(12)

(13)

As was the case in Section II-B6, the above LP is clearly
feasible, because , and

otherwise is a feasible solution. Let denote the
probability that action 1 (accept) is chosen in state .
Given an optimal solution,, of the LP, we obtain an optimal
randomized stationary policy as

if , and otherwise. Again,
using the parameters in Table I (with ) and using
CPLEX on a Sparc Server 3000, it took 402 sec to solve
the LP.

4) Cell Level Control:Both the aggressive and conservative
approaches involve cell level constraints, one for each class.
In both cases, it is sometimes possible to transform the problem
to one involving one constraint using cell level control, which
consists of deciding how many cells of each class are lost.
This transformation will result in improved performance of
the associated optimal control. For , (7) presents the cell
loss rate under a “no priority” assumption. Not surprisingly,
typically only one of the two cell level constraints is tight
in the solution. Thus, by giving priority to the class whose
constraint is tight, it seems clear that we can improve the
solution. Related results and discussion are contained in [3].

Consider the conservative approach for , for which
the “acceptance region,” , is given by (8). Let

(14)

There is a cell level control (it will depend on ) that
can achieve

(15)

if

(16a)

(16b)

and

(16c)

Furthermore, if , then (16a) implies (16b) and
(16c), and the two constraints of (15) are replaced by the one
constraint (16a). In this case, the acceptance region becomes

(17)

where .

Fig. 2. Acceptance regions(pcell
1

= p
cell
2

= 10�9).

Fig. 3. Acceptance region(pcell
1

= 10�9
; p

cell
2

= 10�7).

The aggressive case is a bit more complicated because the
constraints involve the stationary distribution over all states.
Consider the constraint

(18)

For the case , if we solve the LP (9), (10),
(12), (13), (18), we can find a cell level control such that
the constraints (11) are satisfied. A related result holds with

.
An indication of the advantage of cell level control can be

seen by comparing the acceptance regions for the conservative
scheme. Fig. 2 displays the acceptance regions associated with
one and two constraints, as given by (17) and (18), for the
parameter values of the two classes given in Table I (with

).
In Fig. 3, where we use and , the

advantage of cell level control is more dramatic.



700 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 5, JUNE 1998

Fig. 4. Policy for Case 1:̂x = 500:0.

TABLE II
NUMERICAL RESULTS FOR CLASS 1

B. Numerical Comparison of Call Admission Control
from SMDP with and Without NCD

Our goal is to compare the results from the exact SMDP
to those obtained using NCD. For simplicity, we consider a
single class system and omit the class index.

Consider a family of single class systems indexed by
with call arrival rate , departing probability ,

average rate of a call leaving “on” state and average rate
of a call leaving “off” state . We assume

Hence,

To make the comparison more meaningful, we use the
normalized index , where is the number of
“on”–“off” cycles per unit call holding time. We apply SMDP
to a system with parameters set as follows: we keep the
parameters describing call level characteristics fixed when

comparing the results of NCD to various values. More
specifically, we fix . Set and .
Then, given an , we have from (1) and (2) that

We observe the impact of on the admission policies and
traffic behavior. In particular, we are interested in the call
blocking probability.

1) Example: We present one example to illustrate the im-
pact of using NCD on call blocking. The capacity of the system
is and the value for cell loss ratio requirement is fixed
at . We obtain the optimal admission policy for
three different values, and . The traffic
considered is the first class in Table I.

Our numerical results, summarized in Table II, indicate
that the NCD approximation performs well when the average
number of on/off cycles during a holding time is about 100
or larger. In addition, it appears that the NCD approximation
performs better with burstier sources. (With fixed, smaller

is burstier.)
The actual admission policy when is shown in

Fig. 4.
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IV. FEASIBILITY OF CALL ADMISSION CONTROLS

In this section we discuss the feasibility problem which
focuses not only on cell level QoS but also on call level
QoS. Given parameters ,
and QoS constraints , does there exist a
CAC under which the QoS constraints are satisfied? The exact
version of this problem was shown, in Section II-B7, to reduce
to feasibility of an LP. Using the NCD results of Section III,
we can also obtain an LP for the reduced problem. For the
aggressive approach, the development is very similar to that
in Section II-B-7, so we can be brief.

We define the set of arrival states corresponding to class
calls as

The resulting LP is

maximize

subject to

The above LP will be feasible if and only if there is a
CAC under which both the cell and call level QoS constraints
are met. For , holding all parameters other than
and fixed, we solved for the set of for which
the LP is feasible. We call this set the feasible region. An
example of the feasible region is illustrated in Fig. 5 for the
parameter values in Table I. (Other examples are contained
in [20].) Remarkably, the boundary of this region exhibits
near linearity. As a consequence of this (almost) linearity, the
feasible region can be (approximately) determined from its
corner points. These corner points can be obtained by solving
two one-dimensional (single class) problems.

An LP for the conservative approach with call level QoS
constraints can also be formulated and solved. The feasible
region for the conservative approach is also indicated in Fig. 5.
Note that the feasible region for the aggressive approach is
substantially larger than for the conservative approach. We
thus focus on the aggressive approach in the rest of the paper.

Fig. 5. Feasible regions:pcell
i

= 10
�9; pcall

i
= 0:01; i = 1; 2.

V. THE SINGLE CLASS SYSTEM WITH CELL AND CALL QOS

Both cell and call level QoS are considered in the following
study of a single class system. The insights gained from
this study provide the basis for the techniques for multiclass
systems.

A. The Model

The system and traffic model considered here is that ob-
tained using NCD, with . Recall that for the system, the
key parameters for the single class are denoted by ;
the QoS parameters are and ; and the link rate is .

For the one-dimensional reduced Markov chain, given a
stationary call admission control policy, various steady-state
performance measures of the system can be easily calculated.
In this and the following sections, we do not specify any
rewards or costs to be optimized. Our goal here is feasibility
and robustness, so we do not provide any cost function. If
we received a reward for each accepted call, we would try
to admit as many calls as possible subject to the two QoS
requirements. Although theoptimal admission control policy
in this context normally has a randomized threshold due to the
cell and call level QoS constraints, nonrandomized threshold
policies, which are simpler, are sufficiently accurate for our
purpose here.

B. Some Basic Relations

Let be an admission control policy based on a thresh-
old , i.e., a new call is admitted if there are fewer thancalls
in progress, otherwise it is rejected. Based on the above model,
we can calculate the following performance measures under
policy . The mean cell arrival rate with calls perma-
nently in progress is . The mean cell loss rate with

calls permanently in progress is
. Let . The stationary

distribution for the number of calls in progress is calls
. The average cell arrival

rate is . The average cell
loss rate is . The average
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cell loss ratio is

(19)

The call blocking probability is given by the Erlang loss
formula .

C. Feasibility of Call Arrival Rate

Similarly to the treatment in Section IV, we can define the
feasibility of the call arrival rate for a single class system as
follows: a call arrival rate is said to be feasible if there exists
an admission control policy from the class of threshold policies
that meets both QoS requirements. That is,is feasible if there
exists such that ensures both cell and call QoS. Recall
that our cell and call QoS requirements are, respectively:

, and . For a given , let

and

If , then there exists a threshold-type policy
with , such that under both cell

and call QoS requirements are met, and we sayis feasible.
Given and the traffic parameters described in

Subsection A, there is a maximum feasible call arrival rate,
, such that for any . It

is not surprising that for most cases of practical interest,
, which is assumed throughout this

paper.

D. An Effective Bandwidth

Let . Then is a measure of the resources
a call requires to satisfyboth cell level and call level QoS
requirements. Note that is independent of the call arrival
rate .

Note that a traditional effective bandwidth definition (see
[6], for instance) assumes that calls last in perpetuity and
addresses only cell level QoS

where

Note that . Since ignores call level dynamics,
it is more conservative.

Example 1: Consider a system with , and ho-
mogeneous sources with parameters corresponding to class 1
sources as listed in Table I, i.e.,

and . In Fig. 6, we illustrate the
relation between and . and
intersect at 20 when . Hence, , and

. Note that , hence .

Fig. 6. Calculating effective bandwidth for class 1 sources.

Fig. 7. Calculating effective bandwidth for class 2 sources.

Example 2: Now consider a system with the same
as in Example 1, and sources corresponding to class 2,

see Table I, i.e., and . The relation
between and are illustrated in Fig. 7.

and intersect at when . Hence,
, and . Now ,

and .

VI. A SYMPTOTIC ANALYSIS

An asymptotic analysis of a single class system provides
fundamental insights into the joint behavior of the cell loss
ratio and call blocking probability for purposes of sizing and
operations. The investigation is in the asymptotic framework
of large systems, i.e., as in a manner consistent
with practical QoS requirements. Specifically, is expected
to be in the range – , while is expected to be in
the neighborhood of . These numbers suggest the follow-
ing important dichotomy: cell loss ratios decay exponentially
in the large parameter, say, while call blocking probabilities
decay polynomially, more specifically as . While both
elements are separately recognized in the literature (see, for
instance, [24]), we do not know of any prior analysis in which
both elements are simultaneously present. The loadings at the
cell and call levels are required to be such that the ultimate
cell and call performances are, respectively, exponential and
polynomial in . We obtain such loading guidelines. We also
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obtain the coefficients associated with the exponential and
polynomial behaviors. Thus the contributions here are both
qualitative and quantitative.

First, we write the expression for the cell loss ratio in (19) as
, where by definition. Also, we assume

for convenience that is an integer, and select the unit of
time to be such that . Then

(20)

where

if (21)

if

and

(22)

Note that we may assume that , as otherwise .
As mentioned above, we let , while and

are held fixed. For loading at the cell level, we assume that
the system is underloaded, i.e.,

(23)

and that critical loading holds at the call level, i.e.,

(24)

i.e., is bounded. At the loss of some small generality, we
will make the convenient assumption thatis a fixed constant,
which can be either positive or negative. Hence,
so that, to leading order, .

Here we give an overview of the analysis, which includes
the salient elements, with the details provided in the Appendix.
We show that

(25)

where the integral is obtained by making use of Euler’s
representation, and the binomial theorem.
Now

(26)

and also the bound is asymptotically exact as and
. After substituting (26) in (25), we show that

(27)

where

(28)

This is an important integral representation.
We obtain an asymptotic expression for the integralfor

the scaling in (23) and (24):

(29)

where

(30)

The constant arises since from
the scaling. Note that , where the positivity is due
to .

From (29)

(31)

Substitution in (27) together with use of Stirling’s formula for
and gives the asymptotic expression for Num.

Turning to Den in (22), we find that

(32)

where is the Erlang loss formula. Since the call
level loading is critical, we know from prior results [12] that
to leading order , and that

(33)

where is an constant which is obtained from the
normal distribution and depends only on. In fact

where erfc is the complementary error function.
Finally, substituting the asymptotic expressions for Num

and Den, we obtain

(34)
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where

and

(35)

It is easy to verify that for all such that and
. Clearly, . These

facts prove the important result that for the asymptotic scaling
in (23) and (24), the cell loss ratio is exponentially
small in the large parameter, with the constant in the
exponential. The asymptotic call blocking probability for our
scaling has already been obtained in (33), in which the
(and therefore ) behavior is exhibited, and is
the relevant constant.

VII. CAC DESIGN

We now return to the two-class problem. We seek a CAC
that satisfies all QoS requirements. For feasible parameters,
such a CAC can be obtained from the LP. We are seeking,
however, a simple and robust CAC.

We consider all parameters except for and to be
fixed, and consider a point inside the feasible region
described in Section IV and depicted in Fig. 5. We consider
situations where class 1 is “burstier.”

The two-class system that we study has and other
parameters specified in Table I. We know that when
is on or very close to the boundary of the feasible region,
the call admission policies that meet all the QoS requirements
necessarily have complicated structures. For just this reason,
the engineered operating points are designed not to be too
close to the boundary. Under the assumption that are
not very close to the boundary, the question of interest in this
paper is whether we can find asimpleconnection admission
policy that meetsboth cell and call QoS requirements. We want
our policy to be robust in the sense that if the operating point
drifts away from the engineered loads due to the unexpected
high arrival rate of one class, the admission policy should be
able to protect the other class.

The most widely studied call admission policy type is CS.
Although it is easy to implement, it always favors calls re-
quiring less bandwidth capacity, thus it can drive the blocking
probability of calls with a larger bandwidth requirement up
when the arrival rates of the calls with smaller bandwidth
requirement are high. A very undesirable situation is when
the class 1 blocking probability exceeds the QoS constraint,
while the blocking probability for class 2 calls is much lower
than its constraint. With CS, regardless which class exceeds its
engineered load, class 1 will suffer in terms of call blocking
probability.

Trunk reservation (TR) policies have been known to be able
to provide protection to wideband calls. With properly chosen
trunk reservation parameters, class 1 calls will not have un-
acceptably high call blocking probabilities due to high arrival

rates of class 2 calls. However, the traditional trunk reservation
gives priority to a fixed class, and hence it cannot protect the
other class when the favored class has high arrival rate. Of
particular interest is the following trunk reservation policy
which we study numerically in Section IX: for single link
systems with two classes of calls, narrowband and wideband,
if we admit a new call (regardless of its class) only when
the spare capacity in the system is at least the bandwidth
of wideband calls, then this special trunk reservation policy
balances the call blocking probabilities of the two classes,
which can be easily seen with PASTA [16]. Furthermore, this
policy is optimal among all the trunk reservation policies that
balance the call blocking probabilities in the sense that the call
blocking probabilities are the smallest. However, because this
policy balances the call blocking probabilities, if one class has
high call arrival rate, both classes will have high call blocking
probabilities. In other words, it is not robust, which is far
from desirable in many situations.

It is intuitively apparent that if are small enough
(close to the origin), a complete sharing policy will be suffi-
cient. The interesting case is when is not very close
to the boundary of the feasible region and also not small.
In this case, we believe a simple policy based on virtual
partitioning with properly chosen parameters gives satisfactory
performance.

VIII. V IRTUAL PARTITIONING

We now describe a call admission policy based on the notion
of VP. Let and be the bandwidth requirements of class
1 and 2 calls, and and be the partitioning parameters
which are two positive integers such that . A
call admission policy based on VP is summarized as follows.
When a call of class 1 arrives and finds calls in
progress, it is accepted if

and or

and

where is the bandwidth reserved for (underloaded) class
2 calls. Similarly, a class 2 call is accepted if

and or

and

where is the bandwidth reserved for (underloaded) class
1 calls.

Note that the call admission is performed on a set in
space defined by . The motivation for
selecting this set is derived from the linearity implicit in the
notion of effective bandwidths. Admittedly there is no sound
theoretical basis for the linearity at this time. In the absence of
such a theory, we take the precautionary step of verifying in
our numerical investigations that cell level QoS requirements
are satisfied by our admission control policies.

By choosing parameters and , we partition the
bandwidth between the two classes. The trunk reservation pa-
rameters and allow us to block calls from the overloaded
class so as to reserve bandwidth for the underloaded class. The
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TABLE III
NUMERICAL RESULTS FOR CASE 1

nature of the policy is to give the underloaded class higher
priority, and the consequence is that the underloaded class is
protected.

We expect and to be small nonnegative integers. When
, the policy becomes a complete sharing policy

over the whole admissible region (regardless ofand ). If
in this case the call blocking probabilities forboth classes are
still greater than the allowed limits (say, 1%), then the arrival
rates are too high for there to exist any feasible policy. When

and are not both zero, the policy is complete sharing on
the set , and dynamically
prioritized outside the set. With complete sharing, the less
bursty traffic enjoys lower call blocking, and consequently
when the set in which complete sharing applies is bigger, fewer
calls of the less bursty traffic are blocked.

IX. NUMERICAL RESULTS FORVP

In our numerical study, we attempt to show that we can use
VP to design simple call admission policies such that when
the system is subject to load at or below the engineered call
arrival rates the admission policy will meet all the
cell and call QoS requirements; and when the system is subject
to load above the engineered loads due to a high arrival rate
from one class, the other class is protected. More specifically,
we observe the call blocking probabilities of the two classes,
denoted by , under CS, TR, and VP to illustrate the
robustness of VP. The following load scenarios are studied:
both classes are below the engineered load; both classes are at
the engineered load; one of the two classes is at the engineered
load while the other is at least 20% higher; both classes are
10% higher than the engineered loads.

The system and traffic sources are the ones specified in
Section VII. From the analysis of the two single class problems
in Section V-D, we have and , which
are used for all the cases in this section.

A. Case 1

The first set of numerical results are for the engineered load:
. The bandwidth partitioning parameters

used are and the trunk reservation
parameters used are . The call blocking
probabilities for several different loads are listed in Table III.

When the load is below or at the engineered load, all
three policies give satisfactory call blocking probabilities.
However, when one of the two classes has load higher than
the engineered load, class 1 always suffers under CS and the
blocking probabilities are driven above the allowed limit 1%.

TABLE IV
NUMERICAL RESULTS FOR CASE 2

TABLE V
NUMERICAL RESULTS FOR CASE 3

TR, in general, gives better performance than CS. However,
when , TR gives balanced call blocking
probabilities of 0.0106. Hence, class 1 suffers because class
2 has an arrival rate higher than the engineered load. VP is
able to protect the underloaded class. Because the engineered
load is near the middle of the boundary of the feasible region,
we need to protect each class when the other class exceeds
its engineered load. Since on the complete sharing set class 2
is favored, by choosing the set large enough for VP we can
protect class 2. Protection for class 1 in VP is achieved by
choosing the complete sharing set not too large and selecting
proper trunk reservation parameter, which is set to 2 in this
case.

B. Case 2

The second set of numerical results are for the engi-
neered load . The bandwidth partition-
ing parameters used are and the trunk
reservation parameters used are . Table IV
summarizes the call blocking probabilities corresponding to
the five scenarios.

Now the engineered load is near the upper-left corner of
the feasible region. Again, at , class 1
suffers under CS and TR when class 2 exceeds the engineered
load, while VP is able to protect it. When the class 1 arrival
rate exceeds the engineered load by 20%, the impact on class
2 is very small. On the other hand, increasing the arrival rate
of class 2 has more dramatic impact on class 1 traffic, hence
it seems now the focus should be on protecting class 1 against
class 2.

C. Case 3

The third set of results are for the engineered load
. The bandwidth partitioning parameters

used are and the trunk reservation
parameters used are . Table V summarizes the
call blocking probabilities for the five scenarios.
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This is a case where traffic is light so that VP is almost
identical to CS. At , class 2 suffers
under TR, while both CS and VP are able to protect class 2.

X. NEW DIRECTIONS

Although our results have been presented for a two-class
system, we believe that they would apply for more than two
classes. The key to our approach is the near linearity of the
feasible region depicted in Fig. 5. If the feasible region is
linear for the multiclass system, then the class system
can be analyzed using single class systems, so that the CAC
introduced here can be used for as well. Further work
on this topic is necessary.

In this paper we considered two versions of the cell loss
constraint: conservative and aggressive. One might argue
that the conservative approach is too conservative, and the
aggressive approach is too aggressive, so that it would be nice
to have something in between the two. An approach based on
expected cell loss during the lifetime of a call in the system
is considered in [19]. It is shown there that in the single-class
system, the threshold based on this new approach indeed lies
between the other two.

APPENDIX

Here we give some details of the asymptotic analysis in
Section VI. We do three things in this Appendix. First, we
prove (25); second, we make use of (26) to prove (27); and
finally, we establish (29).

To prove (25) for we note that from the expression
in (21)

(A1)

Now, we may use Euler’s representation forto obtain

(A2)

Substituting (A2) in (A1),

(A3)

which is (25).

To prove (27), we make use of (26) in (A3) to obtain

(A4)

where the definition of in (23) has been used. Now introduce
Euler’s representation of

(A5)

The expression in outer brackets is observed to be ,
where is defined in (28). Hence (27) is proven.

To prove (29), note that from the definition ofin (28)

(A6)

where we let be the surrogate for the large parameters
, and

(A7)

Now

(A8)

Hence, noting that from the scaling

(A9)

The above together with (A6) gives (29).
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