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Abstract

Abstract We study the evolution of the energy (mode-power) distribution for
a class of randomly perturbed Hamiltonian partial differential equations and derive
master equations for the dynamics of the expected power in the discrete modes. In
the case where the unperturbed dynamics has only discrete frequencies (finitely or
infinitely many) the mode-power distribution is governed by an equation of discrete
diffusion type for times of order O(¢72). Here & denotes the size of the random
perturbation. If the unperturbed system has discrete and continuous spectrum the
mode-power distribution is governed by an equation of discrete diffusion-damping
type for times of order O(¢72). The methods involve an extension of the authors’
work on deterministic periodic and almost periodic perturbations, and yield new
results which complement results of others, derived by probabilistic methods.

Contents
1 Introduction
2 Short lived perturbation of a system with discrete frequencies

3 Diffusion of power in discrete frequency (nonradiative) systems
3.1 Power diffusion after a fixed (large) number of defects . . . . . . ... ...
3.2 Power diffusion after a fixed (large) time interval and a random number of
defects . . . . . . .

4 Diffusion of power in systems with discrete and continuous spectrum

*Department of Mathematics, University of Chicago
tMathematical Sciences Research, Bell Laboratories - Lucent Technologies, Murray Hill, NJ

11
13

18

22



5 Comparison to stochastic approach 37

6 Appendix: Properties of the power transmission matrix 43

1 Introduction

The evolution of an arbitrary initial condition of linear autonomous Hamiltonian partial

differential equation (Schrédinger equation),

Zat¢ = HOQSa (1)

where Hj is self-adjoint operator, can be studied by decomposing the initial state in terms of
the eigenstates (bound modes) and generalized eigenstates (radiation or continuum modes)
of Hy. The mode amplitudes evolve independently according to a system of decoupled
ordinary differential equations and the energy or power in each mode, the square of the

mode amplitude, is independent of time. If the system (1) is perturbed
09 = (Ho + W ()9, (2)

where W (t) respects the Hamiltonian structure (WW* = W), then the system of ordinary
differential equations typically becomes an infinite coupled system of equations, so-called
coupled mode equations. If W(t) has general time-dependence (periodic, almost periodic,
random,...), the solutions of the coupled mode equations can exhibit very complex behavior.
Of fundamental importance is the question how the mode-powers evolve with ¢. Kinetic
equations, which govern their evolution are called master equations [25], [5] and go back to
the work of Pauli [20]. A general approach to stochastic systems is presented in [17, 19, 18,
13]; see also [1, 7, 8]. Master equations have been derived in many contexts in statistical
mechanics, ocean acoustics and optical wave-propagation in waveguides.

We present a theory of power evolution for (2), for a class of perturbations, W (t), which
are random in ¢. Our theory handles the case where Hy has spectrum consisting of bound
states (finitely or infinitely many discrete eigenvalues) and radiation modes (continuous
spectrum). It is a natural extension of the analysis in our work on deterministic periodic,
almost periodic and nonlinear systems; see, for example, [9, 11, 10, 24]. Our approach is
complementary to the probablistic approach of [7, 8, 19, 18, 13]. The model we consider is
well-suited to the study of the effects of an “engineered” perturbation of the system, e.g. a
prescribed train of light pulses incident on an atomic system, or prescribed distribution of

defects encountered by waves propagating along a waveguide; see below. We also give very
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detailed information on the energy transfer between the subsystems governed by discrete
“oscillators” and continuum “radiation field”.

In particular, we study the problem

0 = (Ho + €g9(t)B) ¢, (3)

where ¢ is small, and Hy and ( are self-adjoint operator on the Hilbert space H. Hj is
assumed to support finitely or infinitely many bound states. For example, Hy = —A+V (),
where V' is smooth and sufficiently rapidly decaying as |z| — oo. (3 is assumed to be
bounded. g(t) is a real valued function of the form of a sequence of short-lived perturbations
or “defects”; see figure 1. Our methods can treat the case of more general perturbations,
e.g. Wi(t,z) = p(t,z), but to simplify the presentation we consider the separable case
W (t) = g(t)B(z).

Models of the above type arise natural in many contexts. Among them are the interac-
tion between an atom and a train of light pulses [22, and references therein] , a field of great
current interest in the control of quantum systems. Such trains of localized perturbations
also model sequences of localized defects along waveguides, see [15], [16], introduced by
accident or design.

We construct g(t) as follows. Start with go(¢), a fixed real-valued function with support

contained in the interval [0,7"] and let {d,;};>o be a nonnegative sequence. Define

g(t) = Z go(t — t,), where (4)

n=0

o = do
th = (do+T)+(h+T)+...+(donr + 1)+ dp,n>1 (5)

denotes the onset of the n'* defect.

Note that, if the sequence {d;};>o is periodic then g(t) is periodic. In this case, the
system (3) has already been analyzed by time-independent methods [26] or, more recently
and under less restrictive hypothesis, in [9, 11]. For {d,};>¢ quasiperiodic or almost periodic
(see [2, 4] for a definition) the situation is more delicate. In [11] we treat a general class of

almost periodic perturbations of the form:

W(t) = > cos(ut)B;, (6)
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g(t)

go(t —do) go(t — T —do —d1) go(t—(n—1)T—do—---—dn

to t1 tn

dg T dy T : H T

Figure 1: Train of short lived perturbations or “defects”. The onset time for the n* defect,
tn, is given by (5).

with appropriate “small denominator” hypotheses on the frequencies {y;}. We leave it
for a future paper [10] to consider the case of almost periodic {d;},>o and to explore the
connection with the results in [11]. We note that a particular case has already been treated
in [12, Appendix EJ.

Note that in [1] and [17] the numbers dg, dy, ..., are equal to a fixed constant and go(t)
is random while in our model dg, dy, ..., are random and go(¢) is fixed. This is another
sense, in which our results complement those in the existing literature.

The paper is divided in two parts. The first part treats stochastic perturbations of
Hamiltonian systems with discrete frequencies and then second part extends these results
to the case where the unperturbed system has discrete and continuous frequencies. The
stochastic perturbation is of order € and then the vector P(r) € ¢', whose components
are the expected values of the squared discrete mode amplitudes (mode-powers), satisfies
on time scales t = O(¢~?2) or equivalently 7 = O(1), the master equations of diffusion or
diffusion-damping type. Specifically, if Hy has only discrete spectrum (finite or infinite)
then

0.P(r)=—-BP(r), B>0 (7)

which has the character of a discrete diffusion equation, i.e.
d
P = P.(0), —P-P=—-(P,BP) <0. 8
SR = S RO, ¢ (P,BP) < ®
If Hy has both discrete and continuous spectra, then
8.P(r) = (B —~T)P(r), B >0, T = diag() >0 (9)

for which

Y P(r) < e B(0), (10)
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where 7 = ming .

In sections 2 and 3 we study (3) under the hypothesis that Hy, has no continuous
spectrum (i.e. no radiation modes) and in section 4 we generalize to the case where H
has discrete and continuous spectrum. In section 2 we present the main hypotheses on H
and go(t) and study the effect of a single short lived perturbation. In section 3 we present
our hypotheses on dy, ds, ..., and analyze the effect of a train of perturbations (3-4). We
show that if dy, d;, ..., are independent random variables with certain distributions, see
Hypothesis (H4) and Examples 1 and 2, diffusion occurs in the expected value for the
powers of the modes. Specifically, if we start with energy in one mode, then, on a time
scale of order 1/¢?, one can expect the energy to be distributed among all the modes.
In section 4 we analyze equation (3) under the hypothesis that Hy has both discrete and
continuous spectrum (i.e. supports both bound modes and radiation modes). We prove a
result similar to the nonradiative case but now bound state- wave resonances lead to loss
of power. The effect of our randomly distributed deterministic perturbation is very similar
to the one induced by purely stochastic perturbations, see [1, 13, 19], but quite different
from the effects of time almost periodic perturbations, see [9, 11]. Section 5 is dedicated
to such comparisons.

Notation
1) (z) = V1+2a?

2) Fourier Transform:

99 = [ " ettty (1) dt (11)

o0

3) We write ¢ + c.c. to mean ¢ + (, where ( denotes the complex conjugate of (.
4) w' denotes the transpose of w.

5) |¢] denotes the integer part of g.

Acknowledgement: We would like to thank G. C. Papanicolaou and J. L. Lebowitz for
helpful discussions concerning this work. E.K. was supported in part by the ASCI Flash
Center at the University of Chicago.

2 Short lived perturbation of a system with discrete
frequencies

In this section we consider the perturbed dynamical system
i0,6(t) = Hoo(t) + g0(t) B0 (¢, ), (12)
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where Hj has only discrete spectrum and go(t) is a short-lived (compactly supported)
function. We study the effect of this perturbation on the distribution of energy among the
modes of Hy. Here and in section 4 we are extending the results in [23] to multiple bound
states but under an additional “incoherence” assumption; see (18).

Hypotheses on Hy, 3 and gy(t)

(H1) H, is a self adjoint operator on a Hilbert space . It has a pure point spectrum
formed by the eigenvalues : {\;};>1 with a complete set of orthonormal eigenvectors:
{titis1:

Hypj = Ajby 5 (i) = 03 (13)

(H2) § is a bounded self adjoint operator on # and satisfies ||3|| = 1.

(H3) go(t) € L*(R) is real valued, has compact support contained in [0,7] on the
positive real line and its L!'-norm, denoted by ||go||; is 1. Thus its Fourier transform has
L*°-norm bounded by 1.

Note that one can always take ||3|| = 1 and ||go||; = 1 by setting € = ||go||1 - || ]|, thus
incorporating the size of go3 in €. Therefore, under assumptions (H2-H3), € in (12) measures
the actual size of the perturbation in the L'(R,H) norm. Our results are perturbative in
¢ and are valid for ¢ sufficiently small.

By the standard contraction method one can show that (12) has an unique solution
o(t) € H for all t € R. Moreover, because both Hy and go(t)5 are self adjoint operators,
we have for allt € R:

o)l = [lo(0)]l- (14)

We can write ¢(t) as a sum of projections onto the complete set of orthonormal eigenvectors
of H() :

= > 4;(1),() (15)

By Parseval’s relation

> la;OF = @)1 = 16(0)|1” (16)
J
Now (12) can be rewritten as

i0yay(t) = Mpar(t) + ego(t Za, (r, B;), ke {1,2..} (17)

where (-, -) denotes the scalar product in H.
Hence the equation (12) is equivalent to a weakly coupled linear system in the ampli-
tudes: aq,as, ..., (17).



Since the perturbation size is ¢ we expect, in general, that the change in energy in
the £™ mode, |a(t)|? — |ax(0)|%, to be of order €. However with a suitable random initial
condition we can prove more subtle behavior.

Suppose that there exists an averaging procedure applicable to the amplitudes: ay, as, . ..
of the solutions of (12), denoted by

a(t) = E(a(t)) € C.

We now state a fundamental result, applied throughout this paper, for a single defect

which is compactly supported in time:

Theorem 2.1. Assume the conditions (H1)-(H3) hold and the initial values for (12) are
such that
E (aj(O)ak(0)> =0 whenever j # k. (18)

Then for all t > sup{s € R | go(s) # 0} and k € {1,2,...} we have
Pi(t) = Pi(0) = € ) las *[do(—Aks) [P(P;(0) — P4(0)) + O(€?), (19)
J
where

Py(t) = E (lax (1))

denotes the average power in the k™ -mode at time t, ag; = (¢, 8;), do denotes the Fourier

transform of go and Ag; = A\ — Aj.
Note that (19) can be written in the form:
Py(t) = T. P.(0) + O(&?), (20)

where
T.=1-¢&B; B>0 (21)
I is the identity operator (matrix) and B is given by

b = { — o [*1Go(—Axj) for j # k,
! Zl,l;ﬁk | [*|go(—Aw)|?, for j =k

In section 3 we will discuss and use the properties of B and 7.

B = (bkj)1§lc,j’ (22)

Proof of Theorem 2.1. In the amplitude system, (17), we remove the fast oscillations by

letting
ag(t) = "M AL(t), (23)
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Note that by (16)
Z 14;(8)” = l6(0)]1” (24)

Now (17) becomes

10 AL (t) = ego(t Zozk e’A’WtA (25)

where
Akj = )\k_/\ja (26)
g = (U, Bj) = Wi (27)

The above system leads to the following one in product of amplitudes, Ag(t)4,(t):
O (Ax(DAD) = dego(t) D et Ag(t)A;(t)
J

— iego(t) Y ange WA (1) Al (2), (28)

J
In the particular case kK = | we have the power equation for each mode:
O A (D7 = izgo(t) 3 e AL A1) + coc. (29)
J
Note that the sum in (29) commutes with time integral and expected value operators. This

is due to (24) and the dominant convergence theorem, see for example [6]. Indeed consider
t) = ae A () A;(t)go(t).
7j=1

From (15) we have for all t € R

lim frn(t) = (p(t), Br)ar(t)go(t).

m—00

From (24) and the Cauchy-Schwarz inequality |{(a,b)| < ||a|| ||b]|, we have for all t € R

[fmn ()] < 116(0)117] 0 (t)]- (30)

The right hand side of (30) is integrable and the dominant convergence theorem applies.
A similar argument is valid for expected values. Therefore, from now on, we are going to

commute both time integrals and expected values with summations like the one in (29).



We integrate (29) from 0 to ¢ > sup{s € R | go(s) # 0} and integrate by parts the right
hand side. The result is:

A0 — AP = ieZaﬂc/o 9o()6"%° Ay (5) 4 (5) + c.c.

The boundary terms are

—zez%k/ 9o(T)e" M T dr Ay (s) 4 (s) |§§6 + c.c.
= sta]kgo Ajr)Ag(0)4;(0) + c.c., (32)

where go denotes the Fourier Transform of go; see (11). Note that upon taking the average,
using (18) and the fact that go(o) is real, these boundary terms vanish.
Into the last term in (31) we substitute (28):

wzagk / / %7 dro, (Ag4;) (s)ds =
= 4l ojran / / 9o(T)e™85+dr g (s)e 5 A, (5) A; (5)ds

Jp

— Y ey / / AT G go(5) 1% Ay (5) A, (5)ds. (33)

J4

We again integrate by parts both terms in (33):
t 00
iSZajk/ / 90(1)e27dr 0, (ARA;) (s)ds =
S [ 016 [ )iy ) 1

Jp

TP Y oy / o(s)etbee / go(r) e drds Ay (w) () |12

Ja

+ el Za]kakp/ / / e 247 drgo(s)e v dsd, (ApA;) (u)du

7P

- |5|2Zajk0‘qj/ / / go(T)e2+Tdr gy (s5)e'4i®dsd, (Ap4y) (u)du. (34)
i 0 u s



Note that the boundary terms calculated at “u = ¢” are zero since t > sup{s €
R | go(s) # 0}. Upon taking the expected value and using (18) the only boundary terms

contributing are the ones for which © = 0 and j = p in the second row of (34):

Z |041cj‘2/ / 9o(T)e 24 dr gy (s)e 4% dsE (| A;(0)]?) + c.c.
- 0
j
Z|%;\2E (1450 2§R/ / Go(T)e™ kT dr gy (5)e % ds (35)

J

and the ones for which v = 0 and ¢ = k in the third row of (34):
Z \Oékj|2/ / 90(T) e 7 dr gy (s)e*+i°dsE (| A (0)[?) + c.c.
; 0 s
= LlwlE(40P) 2 | [ mnesarmesas (@

To compute (35-36) we use the lemma:

Lemma 2.1. If go(t),t € R is square integrable with compact support included in the
positive real line then for all A € R the following identity holds

2§R/ / go(T)ei)‘TdTgo(s)e_Msds = \Qo(—/\)|2.
0 s

Proof. For any A € R we have:

/ / gO Z)\TdTg ( ) —i)\sds

= 1 i(A+ie) Td fz'/\sd
51\15/ / go(T Tgo(s)e s

— %ll\ll% 90(3) z)\sds/oo go(,u)/s ei(A+u+i5)Td7_d,u

. o ol
= " lim go(s)e_“‘sds/ Lﬂ).eis(“’”‘“f)d#
271'6\,0 0 —OO/“L+)\+Z‘€
: o L
= " lim / 90(#)go(—1)
o

d
oren0) o ptAtie W

1 . i 00 g 2
= Jlao(-NP + P, / (W, (37)

2 o M+ A
The last relation in (37) is the Plemelj-Sohotsky’s formula for (temperate) distributions:

1 1 1
lim—— =P.V.- —ind(z) & —.
eNO0 T + 1€ T z +10

10



Note that go(r) € C*(R) N L?(R). Since (37) is already decomposed in its real and imagi-
nary part the lemma follows. ]

Into the triple integral terms of (34) we again substitute (28). Then one can show that
the 1-norm of this correction vector is dominated by [e[® ||gol|2 ||3]]® ||#(0)]|?. Hence, it is
of order O(|¢|?).

Thus, after applying Lemma 2.1 to (35-36) and using (31) we arrive at the conclusion

of Theorem 2.1. ]

3 Diffusion of power in discrete frequency (nonradia-
tive) systems

In the previous section we calculated the effect of a single defect on the the mode-power
distribution. In this section we show how to apply this result to prove diffusion of power
for the perturbed Hamiltonian system, (2), where ¢(t) is a random function of the form (4),
defined in terms of a random sequence {d;};>o. In particular, the sequence {d;},>o will be
taken to be generated by independent, identically distributed random variables. This will
be result in a mizring the phases of the complex mode amplitudes, after each defect.

We assume that (H1-H3) are satisfied. The following hypothesis ensures that (18)
holds before each defect, thus enabling repeated application of Theorem 2.1.

(H4) dy,d;,. .. are independent identically distributed random variables taking only
nonnegative values and such that for any [ € {0,1,...} and j # k € {1,2...} we have

E (ei()‘j_)\k)dl) =0

where E(-) denotes the expected value.

Clearly (H4) requires the eigenvalues to be distinct but aside from these we claim that
for any finitely many, distinct eigenvalues Aq, Ao, ..., A, there exist a random variable
satisfying (H4).

Example 1 (finitely many bound states) Given \j, \g,..., )\, distinct choose the
random variables d;, [ =0, 1,... to be identically distributed with distribution d :

d= Y dy

1<j<k<m

where d;;, are independent random variables such that the distribution of d;j is uniform on
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the interval [0,27/|\; — Ax|]. In this case, for any j' # k' € {1,2,...}

E (ei()\j/—)\k/)d) — E ( H ei(}\j/—/\kl)djk)

1<j<k

— H E (ei()‘j’_)‘k’)djk)
1<j<k
= 0

since E (e —w)din) = 0.
Another choice is to consider discrete d;;’s. Namely, take d;j to be the discrete random
variable taking each of the values 0 and 7/|\; — Ag¢| with probability 1/2. A concrete

example is, in the case we have three eigenvalues A\; < Ay < A3, to choose d to be the

random variable taking each of the eight values:

™ ™ ™
A=A A3 = AT A=A

1,1 1o, 11 )
T i
[\ VS WL Vs W AL 5 VS WL W W LR (5 VR VLS VA W

(R S
[\ VS VLI VA WL W

0

with probability 1/8.
(H4) does not restrict us to system with finitely many bound states:
Example 2 (infinitely many bound states) Let the quantum harmonic oscillator in

one dimension: .
Hy = —385 + w?z?, z € R,

be the unperturbed Hamiltonian. Then
An = hw(n +1/2), n=20,1,2,...,

see for example [14]. Note that (H4) holds provided that we choose d;, { = 0,1,... to be
identically and uniformly distributed on the interval [0, 27 /(fw)].

Note on degenerate eigenvalues: As discussed above (H4) cannot be satisfied in the case

H, admits degenerate eigenvalues. However, at least in some cases, our theory can be
applied. In general the degeneracy is a consequence of the symmetries of Hy, i.e. the
existence of a self-adjoint operator, say L, commuting with Hy, [L, Ho] = 0. To recover our
results it is sufficient to assume that 3, the “space-like” part of the perturbation, respects

the symmetry, i.e. commutes with L. One can now factor out L, i.e. work on the invariant
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subspaces of L where Hj is nondegenerate. Along the lines of Example 2 one can consider
the quantum harmonic oscillator in three dimensions which has a spherically symmetric
Hamiltonian and degenerate eigenvalues, see for example [14]. If § is spherically symmetric
then it only couples bound states with the same angular momentum. Hence the problem
reduces to subsystems consisting of bound states with the same angular momentum but
different energy, therefore nondegenerate. The choice we made in Example 2 will satisfy

(H4) in each of the subsystems.

3.1 Power diffusion after a fixed (large) number of defects

Theorem 3.1. Consider equation (12) with g of the form (4). Assume (H1-H4) hold.
Then the expected value of the power vector after passing a fired number of perturbations
“n” satisfies

P™ = T"P(0) + O(ne?), (38)

where T, is given in (21)

PM =E(jax(t)?), k=1,2,... (39)
tn—1+ 71 <t<t,, (t ranging between the nt* and (n+ 1)“ defects

Proof. We will prove the theorem by induction on n > 0, the number of defects traversed.

For n = 0 the assertion is obvious. Suppose now that for n > 0 we have
P™ = T"P(0) + O(ne?). (40)

We will show
PO = TPHP(0) + O ((n + 1)) (41)

by applying Theorem 2.1 to (40). In order to apply Theorem 2.1 we need to verify that
(18) is satisfied before the n+ 1% defect. Specifically, we must verify that for any pair k # j

E (s (bn)ay (b)) = E(ax (07 + X500 @ (0T + S070d)) = 0. (42)
Using the fact that d,;, is independent of dy + dy + ...+ d,,, and (H4) we have:

E (axa; (nT + Y1 0dy)) = E(axa; (0T + 30 ody) €O 00dni)
= E (aka] (’I’LT —|— ZZ:Odk)) E (ei(’\j_)‘k)dn-l-l) — 0.
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Thus (42) holds and all the hypothesis of Theorem 2.1 are now satisfied. By applying it

and using (40) we have

P — T P 4 O(&?)
= T. (T?P(0) + O(ne®)) + O(e?)
= T"P(0) + O((n +1)&%).

Hence (40) implies (41). This concludes the induction step and the proof of Theorem 3.1
is now complete. ]

In the next two Corollaries we describe the asymptotic behavior of the vector of expected
powers when the number of defects n tends to infinity. Note that after a possible reordering

of the eigenvectors vy, s, ..., of Hy, the operator B given by (22) might look like!:

B = diag By, Bs, ..., By, .. ], (43)
where By, Bo, ..., By, ... are square matrices (linear operators) of dimensions my, mo, ..., my, ...,
1<my<o0, ¢g=1,2,....In linear algebra terms this means that B is reducible. In terms

of the dynamical system (38) generated by T, = I — 2B it means that, after a possible
reordering, the first m; bound states of Hy are isolated from the rest. The same is valid
for the next my bound states, etc. To understand the evolution of the full system it is
sufficient to analyze each of the isolated subsystems separately. They all evolve according
to (38) with 7. = I — 2B, and B, given by (22) but the indices span only a subset of the
eigenvectors 9,1, ... of Hy. The main difference is that now B, is irreducible. In what

follows we are focusing on one such subsystem and drop the index gq.

Corollary 3.1. If the subsystem has a finite number of bound states, say m, then

P(0), if n < e™?
lim P™ ={ e 57P(0) if n =72, (44)
e E(1,1,...,1), ife?<n<e|™?

where E = P;(0) + P2(0) + ...+ P,,(0) is the expected total power in the subsystem and it

18 conserved.
Proof. We use the following properties of the irreducible matrix B:

(B1) B is self adjoint and B > 0;

IFor such a decomposition to occur it is sufficient that Hy and B have common invariant subspaces
Hi1 CH,Hs C'H,...,'Hq CH,...

14



(B2) 0 is a simple eigenvalue for B with corresponding normalized eigenvector

1,...,1)". (45)

These properties are proved in the Appendix.
Let By = 0,01,08s,...,0m_1 be the eigenvalues of B counting multiplicity, and let
T0,T1,---,Tm_1 be the corresponding orthonormalized eigenvectors. By (B1) and (B2)

B, Ba, - .., Bm—1 are strictly positive. Let
R = [’f‘(),?"l, .. .,Tm_l]

be the matrix whose columns are orthonormalized eigenvectors of B and let R’ be its

transpose. Then

R'BR = diag|[f, 51, Pa- - -, Bm-1]
RR = 1 = RR'.

It follows that

T = (I-¢’B)"=R|[R (I-’B)R|"R'
= Rdiag [(1 —&”6p)", (1 —°61)" ..., (1 — 52,3m71)n] R.

We now study lim,,_, ., 7 for the three asymptotic regimes of (44). Note that for 0 < £ <

m — 1 we have:

lim (1-&%8)" = 1
n—00,2n—0
: 2 n _ —BrT
n—>c>l<Jl,IEIan—T(1 ¢ ﬂk) - e
lim (1—-&6,)" = 0, 3 >0
n—00,62n—00
lim  (1-&26)" = 1, B =0 (46)
n—00,e2n—00
Consequently,
Rdiag[1,1,...,1]R' =1 if n < &?
lim T = ¢ Rdiag[e 7 e /7 . e Pn1T| = =BT ifn=7e"%2 , (47)
n—oQ

Rdiagl[1,0,0,...,0]R' = projection onto ry if 72 < n < |g|3

where 7 is defined in (45).
Substitution of (47) into (38) completes the proof of Corollary 3.1. ]
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Corollary 3.2. If the subsystem has an infinite number of bound states, then

. P(0) if n <<« e?
P(n) _ )
71L1—>0 { e’BTP(O) ifn=7e2" (48)

For n > &2 the limit in £? is 0, while the limit in ¢* does not exist. More precisely,

although the total power in the subsystem is conserved,
Y =E  v¥n>0, (49)
k=1

{P™} does not converge in £* due to an energy transfer to the high modes. In particular,
for any fited N > 1:

: ) _
m ) B = B
k=N
N
lim Y PM = 0. (50)
n—oo
k=1

We note that similar results have been obtained in [1] but for different types of random
perturbation.
Corollaries 3.1 and 3.2 show that, on time scales of order 1/¢%, the dynamical system
is equivalent with
0.P(t) = —BP(r). (51)

Moreover the definition of —B in (22) together with —B < 0 and e ? unitary on ¢! implies
that the flow (51) is very much like that of a discrete heat or diffusion equation.

In conclusion the number of defects encountered should be comparable with 1/&2 to
have a significant effect. Once they are numerous enough, the defects diffuse the power in
the system. If the number of defects is much larger than 1/&? the power becomes uniformly

distributed among the bound states.

Remark 3.1. Hyptothesis (H4) is important. If we do not assume (H4) then the cor-
rection term for each defect is of size e, since the boundary terms (32) no longer vanish.
Consequently the correction term in the main result (38) is O(ne) which on the “diffusion

2

time scale” n ~ 7% is very large.

Proof of Corollary 3.2 In the case of an infinite number of bound states B has the following

properties, see the Appendix:
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(Bly) B is a nonnegative, bounded self adjoint operator on ¢? with spectral radius less or

equal to 2;
(B24) 0 is not an eigenvalue for B;
(B3«) B is a bounded operator on ¢! with norm ||B||; < 2;

(B4y) For |e| < 1 the operator T, = (I — &2B) transforms positive vectors (i.e. all compo-

nents positive) into positive vectors and conserves their /! norm.

We are going to focus first on #2 results. Based on the spectral representation theorem,

see [21], we have for any Borel measurable real function f :

/(B) = / £(5)du(s). (52)

Here du(s) is the spectral measure induced by B. Note that B2, implies the continuity of

w(s) at zero.

Now )
T = (I-¢°B)" = / (1—¢€%s)" du(s)
0
and ) )
. no__ 1 __2\7 . . 2.\
JLHJOTE = ll_I)I(l) i (1—¢e%s)" du(s) —/0 ll_I)I(l] (1—¢%s)" du(s). (53)

For the last equality we used the dominant convergence theorem with |1 — &?s|® < 1 for
0<s<2 [¢g]<1and f02 1du(s) = I. Using (46), with s replacing (i, we have that (53)
becomes
f02 ldu(s) =1 if n < e?
Jim T2 = § [ e mdp(s) = e~ ifn=re (54)
p(0+) —p(0) =0 ife?<gn<le™®
where we used (52) and the continuity of p(s) at zero .
Plugging (54) in (38) gives the required results in 2.

For the results in ¢! we use series expansions:
(I-£’B)" =1+ ( 1 )82(—3) + ( ) ) e (=B’ + ...+ ( . ) en(—B)"  (55)

Since ||B]|; < 2, (see property B3.), the finite series above is dominated in ¢' operator

norm by:
1+ 2¢? ( 711 ) + (2¢%)? ( g ) + ..+ (28D ( Z ) = (142" < 2", (56)
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As n — oo the series in (56) becomes infinite. However, as long asn < 7/¢2, 7 > 0 fixed,
the sum in (56) is finite and hence that in (55) is convergent. Now for each £ = 1,2,...
the (k + 1)* term in the series (55) has the property:

n 0 ifn<e™
li 2k —-B k _
nroo < k ) e (=B) Tk—’:(—B)k if n =772
Hence by the Weierstrass criterion for absolutely convergent series we have:

I-04+0—...=1 if n et

]I—TB—i-@—(TgL!)a—f—...:e_TB if n=r1e72

(57)

n—00 n—00

lim 77" = lim (I-¢°B)" = {

It remains to prove that as n — 00,e2n — oo, {P™} does not converge in £!. Let

PO € ' N £2 denote a vector with positive components, and consider the sequence:
P™ =T1npPO ¢ gt g2, (58)

By the third part of (54), ||P{™|], — 0. Assume now that there exists P € ¢ such that
|P™ —P||; = 0. Since both ¢ and 2 convergence imply convergence of each component, we
deduce that P = 0. On the other hand, by P = T,P(~1), n=1,2,... and property
B4,,, we deduce that P™ is a positive vector for which ||[P™||; = ||[P©||, “E > 0forall
n > 0. Consequently P is a nonnegative vector with ||P||; = E > 0, a contradiction. The

proof of the Corollary is now complete.  [].

3.2 Power diffusion after a fixed (large) time interval and a ran-
dom number of defects

As pointed out in its statement, Theorem 3.1 is valid when one measures the power vector
after a fixed number of defects “n” regardless of the realizations of the random variables.
That is after each realization of dy,d;,... the power vector is measured in between the
n't and the (n + 1) defect. Averaging the measurements over all the realizations of
dy, dy, do, . .. gives the result of Theorem 3.1. What happens if one chooses to measure the
power vector at a fixed time “t” (i.e. a fixed distance along the fiber)? The answer is given

by the next theorem:

Theorem 3.2. Consider equation (12) with g of the form (4). Assume that (H1-H4)
are satisfied and that all random variables dy, dq, ..., have finite mean, variance and third
momentum. Fiz a time t, 0 <t < 1/|¢]>. Then the expected value of the power vector at
a fized time P(t) satisfies

P(t) = T"P(0) + O(max{te?, £*/°}), (59)
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where n = |t/(T + M)| denotes the integer part of t/(T + M), T is the common time span
of the defects and M is the mean of the identically distributed random variables dy,d, . . ..

Corollary 3.3. In this setting, the conclusions of Corollaries 3.1, 3.2 hold with n replaced
by t.

Proof of Theorem 3.2. As before, let P%*) be the expected power vector after exactly “k”

defects. Denote by N the random variable counting the number of “defects” up until time
t, i.e.

and let 0(g) denote the integer, which grows as ¢ decreases:

2/5 2
Y —6/5 _ 9 —2 o -2
max{1.39 (02(T+M)) A nlog (& )+<T~|—M> log (& )}

§ = |6]+1, (61)

S
I

where M, 0?2, respectively p are the mean, variance and the centered third momentum, of
the identically distributed variables dy, dy,ds, ..., and n is the integer part of t/(T + M).
Note that for ¢ ~ &7 or smaller § < 2. The choice of §(¢) is explained below.

The proof consists of three stages:
1. P(t) = P™9) 4 O(e) + O(6¢?)
9. Pln+d) — i) 4 O(522)

3. P™ =T"P(0) + O(ne®)

where n = |t/(T + M)|. The last stage is simply Theorem 3.1.

For the second stage one applies again the previous theorem to get:
P00 — 73 pM) L O(5e3).

Now T, = I — O(£?) and since § < 72 stage two follows.
The first stage is the trickiest. Without loss of generality we can assume that ¢/(7+ M)
is an integer. Indeed, for n = [t/(T + M)| we have

P(t)— P(n(T+d)) =0 ((T+ M)) =0(¢e),
an error which is already accounted for in this stage.
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Suppose first n—d < N < n+94, i.e. we condition the expected values to the realization
of [N — §| < 0. Then the difference between the conditional expected values of the power
vector at time ¢ and after n + § defects is of order O(g) + O(de?). This follows from the
fact that the condition n — 6 < N < n + 6 restricts only the realizations of dy, d;,...dy
leaving the realizations of dy.1,...d, s arbitrary; see (60). Hence, as in stage two, the

conditional expected values satisfy:
P(n+(5) — P(N+1) + 0(582)

In addition
PN = P(t) + O(e),

since there are at most 2 defects of size ¢ from “4” up until after the (N + 1) defect.

Let p(t) denote the power vector

p(t) = (las (), Jax ()], ) -

Recall that by definition P(t) = E(p(¢)) and the total power in the system (12) is conserved,
1.€.
def
()l = Z\ak = |p0)|,, teR

Moreover,

P(t) = E(pt) : [N —n| <8)+E(pt) : [N—n|>0)
= PO 1 0(5e2) + O(e) + O (|[p(0) || Prob(|N — n| > 4)) (62)

We claim that for ¢ given by (61)
Prob(|N — n| > 6) = O(g) + O(6?). (63)

Indeed, since t = n(T + M)

n+d n—ao
Prob(I[N —n| >48) = Prob Z(T-l—dk)gt)—i—Prob (Z(T+dk)>t>
— Prob ”*"(T+dk) (n+(5)(T—|—_M) < _ T+ M)
B ovn+46 - ovn+6
"NT +dy) — (n—0)(T+ M) _ §(T+ M)
+ Prob - >J\/m>. (64)
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We are going to show how the choice (61) implies

2
Prob "o(T +dy) — (n—0)(T + M) - (T + M) §£+5i (65)
ovn—19¢ ovn—19 2 2
The other half of (64):
"(T + dy) — (n+0)(T + M) §(T + M) e 0e?
Prob <———F— | <4 — 66
o ( ovn+9 ovn+d0 |~ 2 2 (66)
is analogous.
Depending on the size of n one has either:
0.8p de?
N ST (67)
or: 0.8 52
.8p €
N > (68)

If (67) holds, which corresponds to large n, we use the central limit theorem with Van Beek

rate of convergence, see [6]:

T T+ M T M 2 .
Prob (T +di) = (n = 0)(T + M) > o7 + / e /2dx+&.
ovn—90 ovn — \/ s 5(T+M) o3v/n — 0

This together with (67), the inequality

0 —a?/2
e~ 2y < €

7

and the fact that § > T nloge=2 implies (T/ﬂ) > 2Ine !, proves (65) for the case

(67). If (68) holds then we apply Chebyshev inequality:

"OT 4+ dy) — (n— )T+ M) _ §(T + M) o*(n—68) _ 66
Prob( T >0m>§52(T+M)2S7’

where the latter inequality follows from (68) and
s<1ao (L )" o
= (02(T+M)> S
From (64), (65) and (66) we get relation (63). The latter plugged into (62) proves the
first stage.
Finally, the three stages imply Theorem 3.2 provided that both ¢ and d¢? are dominated
by C max{ne®, £}, for an appropriate constant C' > 0. This follows directly from ¢ < 1

and (61). The proof is now complete. ]
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4 Diffusion of power in systems with discrete and con-
tinuous spectrum

Thusfar we have considered with systems with Hamiltonian, Hy, having only discrete spec-
trum. We now extend our analysis to the case where Hy has both discrete and continuous
spectrum. Continuous spectrum is associated with radiative behavior and this is manifested
in a dissipative correction to the operator (21), entering at O(¢?). Therefore, the dynamics

on time scales n ~ g2

is characterized by diffusion of energy among the discrete modes
and radiative damping due to coupling of bound modes to the “heat bath” of radiation
modes.

The hypotheses on the unperturbed Hamiltonian Hy are similar to those in [11]. There
is one exception though, the singular local decay estimates are replaced by a condition
appropriate for perturbations with continuous spectral components, see Hypothesis (H7?)
below. For convenience we list here and label all the hypotheses we use:

(H1’) H, is self-adjoint on the Hilbert space H. The norm, respectively scalar product,
on H are denoted by || - ||, respectively (-, -).

(H2’) The spectrum of Hy is assumed to consist of an absolutely continuous part,
ocont (Hp), with associated spectral projection, P, spectral measure dm(£) and a discrete
part formed by isolated eigenvalues A1, Ao, . . ., Ay, (counting multiplicity) with an orthonor-

malized set of eigenvectors 1, ¥s, ..., Yy, ie. fork, j=1,...,m

Hoy = M, (Y, 05) = Ok,

where d;; is the Kronecker-delta symbol.

(H3’) Local decay estimates on e *0!: There exist self-adjoint ”weights”, w_, w,,

number r; > 1 and a constant C such that
(i) wy is defined on a dense subspace of H and on which wy > ¢, ¢ >0
(ii) w_ is bounded, i.e. w_ € L(H), such that Range(w_) C Domain(w, )
(iii) wy w- P, = P.and P. = P, w_ w, on the domain of w,

and for all f € H satisfying wy f € H we have

lw_e ™ Pefl| <C () wifll, tER

The hypotheses on the perturbation are similar to the ones used in the previous sections

for discrete systems, namely:
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(H4’) g is a bounded self adjoint operator on H and satisfies ||3|| = 1. In addition
we suppose that 3 is “localized”, i.e. w, /3 and w, Bw, are bounded on H, respectively on
Domain(w,).

(H5’) go(t) € L*(R) is real valued, has compact support contained in [0,7] on the
positive real line and its L'-norm, denoted by ||go||; is 1. Therefore its Fourier transform,
go is smooth and ||go]|ee < 1.

(H6”) dy,ds, - .. are independent identically distributed random variables taking only
nonnegative values, with finite mean, M, and such that for any / € {0,1,...} and j #k €
{1,2...,m} we have

E (ei()‘j—/\k)dl) =0

where E(-) denotes the expected value.
Define the common characteristic (moment generating) function for the random vari-
ablesdy +T,dy +T,...

p(&) = E (e—if(do+T)) —F (6—i§(d1+T)) —— (69)
Note that p is a continuous function on R bounded by 1. Then (H6’) is equivalent to
p(Ax = Aj) =0

forall j #k e {1,2,...,m}.

We require an additional local decay estimate:

(H7?) There exists the number 75 > 2 such that for all f € H satisfying w, f € H and
all A\p, Aj, k,7=1,...,m we have:

Cligoll?

{t)r

Here gy denotes the Fourier Transform, see (11), and the operators p(Hy — A\)Pe, go(A —

Jw—e ™ p(Ho — M) do(Ho — M) Go(Aj — Ho)Pef|| < lwifll, t€R

H,)P, are defined via the spectral theorem:

p(Hy— NP. = / o PLE= V(@)

efi(Hof)\)TE (e*i(Hof/\)dl) , l = ]_, 2, ceay (70)
W= HPe = [ o= €)am(e)
Ucont(HO)
T .
B / go(t)e O HIP iy, (71)
0

where dm(&) is the absolutely continuous part of the spectral measure of Hy.
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Remark 4.1. Conditions implying (H7?) If Hy = —A+V () is a Schrdidinger operator
with potential, V (x), which decays sufficiently rapidly as x tends to infinity, then either

E(e?%) =0, 1=0,1,...and j=1,2...,m (72)

or
QO()\j)z(), j=1,...,m (73)
imply (H7?), provided the mean and variance of the random variables dy, dy, . . ., are finite.

Note that (72) is equivalent to adding the threshold, Ao = 0, of the continuous spectrum to
the set of eigenvalues {\, : k=1,2,...,m} for which (H6”) must hold. Hypothesis (73)
means that the perturbation should not induce a resonant coupling between the bound states

and the threshold generalized eigenfunction associated with Ay = 0.

In analogy with the case of discrete spectrum, we write the solution of (2) in the form

m

$(t,x) = a;(t);(z) + Peo(t, 7).

=1

Recall that the expected power vector P(t) is defined as the column vector
P(t) = (E(@1a41(t)), E(@2a2(t)), - . ., E(@mnam(t))) -

We denote by
P™ = P(t), th1 +T <t <t,

the expected power vector after n > 1 defects (note that P(t) is constant on the above
intervals).
We will show that the change in the power vector induced by each defect can be ex-

pressed in terms of a power transmission matrix

7; = Tdisc,s - 52 diag[%, IREE a’)/m]
= I — ‘EQB - 62 diagh/la Y2 - .- a7m] (74)

Recall that Tyisce =T, =1 —&2B, displayed in (21-22), is the power transmission matrix for
systems governed by discrete spectrum. Each damping coefficient v, > 0, £k =1,2,...,m
results from the interaction between the corresponding bound state and the radiation field.
In contrast to the results in [11], there are no contributions from bound state - bound state
interactions mediated by the continuous spectrum; these terms cancel out by stochastic

averaging.
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Remark 4.2. For sufficiently small £ we have:

||T€||1 =1- 52 min{r)/la Y2, - 77771} <1 (75)

The damping coefficients are given by:

e = lim | do(Fo — M) v/T= p(Ho = N — ) (L= p(Ho — Xe — in)) " Pel vl >0,
(76)
for all K = 1,2,..., m. Here the operators which are functions of H, are defined via the
spectral theorem and I is the identity on .
The following theorem is a generalization of our previous result on the effect of a single
defect on the mode-power distribution, adapted to the case where the Hamiltonian has

both discrete and continuous spectrum:

Theorem 4.1. Consider the Schrodinger equation

i0p = Hod + g(t)B¢, (77)

where g(t) is a random function, defined in terms of go(t), given by (4). Assume that
hypotheses (H1°-HT7’) hold. Consider initial conditions for (2) such that wiP.¢py € H.

Then there exists an €9 > 0 such that whenever |e| < g the solution of (2) satisfy:

(n+1) _ 7 p(n) 3 € —
P T.P +0(€)+0((nT}’“)’ n=0,1,2..., (78)

where the matriz T, is given in (74) and r = min{r{, 7o — 1} > 1.

By applying this theorem successively we get the change over n > 1 defects:

n—1

P™ = 7p0) + S T <0(g3) +0 (ﬁ)) . (79)
Using ||7%||; < 1 and
Z(nT)_T < 00

we can conclude that the last correction term in (79) is of order O(e).2 As for the other
correction term we have two ways in computing its size. The first is based on ||7*||; < 1,

and gives
-1

3

TFO(?) = O(ne?).
k=0
20ne can actually show that 3"R= T#O (m) =0 <min {e, @}) . However, as n — oo the

£

other correction term dominates and the result of Theorem 4.2 cannot be improved.
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The second is based on

7
L

1
ITE L < Q= 1Tl) ™ < —

27
9
0 Y

B
I

where v = min{vyy,%, ..., Ym}, and gives

-1
TEO(E’) = O(er™).
k=0

3

We have proved the following theorem:

Theorem 4.2. Under the assumptions of Theorem 4.1, the expected power vector after n
defects, n = 1,2,..., satisfies:

P™ =T"P(0)+ O (min(ey ™", ne®)) + O(e).
Here, T is the diffusion/damping power transmission matriz given in (74).
Moreover, the argument we used in the proof of Theorem 3.2 now gives

Theorem 4.3. Under the assumptions of Theorem 4.1, the expected power vector at a fixed
time t,0 <t < oo satisfies:
P(t) = T"P(0) + O("). (80)

Here, n is the integer part of t/(T + M), T is the common time span of the defects and M

s the mean of the identically distributed random wvariables dy,dy, . . ..

The nicer form of the correction term in (80) compared to (59) is due to the fact that
min(te®,e/7) is now dominated by O(e*/%).
In analogy with Corollary 3.1 we have, in the present context, the following limiting

behavior:

Corollary 4.1. Under the assumption of theorem 4.1 the following holds:

P(0), if t <72
lim P(t) = § ¢ (P07 P(0) if t=7e2 , (81)
o 0, if t>e2 =0

where B is displayed in (22) and

' =diag[y1,72y -+, Ym] >0
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Proof Since 7. =1 —&?(B +T) and B + T is self adjoint with

B+4+T >min{y : k=1,2,...m} >0

we have
I, if n < e™?
lim 7™ = { e (B+D)7 ifn=r1e? . (82)
e 0 if n>e2e—0

This follows from writing 7, in the basis which diagonalizes B + I and using the fact that
all eigenvalues of B + I' are strictly positive, see the proof of Corollary 3.1.
Clearly, (82) and Theorem 4.3 imply the conclusion of the corollary. ]

Note that on time scales of order 1/&? the dynamical system is now equivalent to:
0, P(r) = (=B = T)P(),

where —B is a diffusion operator, see the discussion after relation (51), while —T" is a
damping operator.
It remains to prove Theorem 4.1.

Proof of Theorem 4.1. Consider one realization of the random variables dy, dy, . . .. For this

realization the system (2) is linear, Hamiltonian and deterministic. It is well known that
such systems have an unique solution, ¢(t), defined for all ¢ > 0 and continuously differen-

tiable with respect to t. Moreover

o)l = lioll (83)

We decompose the solution in its projections onto the bound states and continuous spec-

trum of the unperturbed Hamiltonian:
ot @) = Y a;(t)e; + Ped(t) = 6u(t) + da(t), (84)
7j=1
where ¢, and ¢4 are, respectively, the bound and dispersive parts of ¢:

op(t) = Zaj(t)wj,
da(t) = Peo(t) (85)

and

(@n(1), 0a(t)) = 0. (86)
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Note that (83) and (86) imply

eIl < llgoll;  l@a®)]l < loll; (87)

for all ¢ > 0. Consequently,
|ak ()] < (|9l (88)
for all ¢t > 0.

By inserting (84) into (2) and projecting the later onto the bound states and continuous

spectrum we get the coupled system:

i0pa(t) = Mpax(t) +eg(t) (U, Bos(t)) +e9(t) (Ui, Ba(t)) (89)
i00a(t) = Hopa(t) + eg(t)PcBda(t) + eg(t)PecBs(t), (90)

where £ = 1,2,...,m. Duhamel’s principle applied to (90) yields

6ult) = = 44(0) — iz [ g(6) TP Bou(s)ds —ic [ gls)em oD i)
0 0 1)
In a manner analogous to the one in [3] we are going to isolate ¢4 in (91). Consider the
following two operators acting on C(R*, Domain(w,)) respectively C(R*,H), the space

of continuous functions on positive real numbers with values in Domain(w..) respectively

H:
t
KT[f1(t) = / g(s)w-eMU=IP S, f(s)ds (92)
0
t
KIA® = [ alshu-e ™ IPess(s)as. (99)
0
Then, by applying the w_ operator on both sides of (91) we get:
w_dg(t) = w_e Holpy(0) — ie KT [w_¢g)(t) — ic K[gp)(t). (94)
On C(R*,#) we introduce the family of norms depending on oo > 0 :
1flla = sup{®)*[If @) (95)
£>0
and define the operator norm:
[Alla = sup [[Af]|a. (96)
£l <1
The local decay hypothesis (H3”) together with (H4’) and (H5’) imply:

28



Lemma 4.1. If0 < a < rq then there exists a constant C, such that

1K e < Ca
[Klla < Ca

Proof of Lemma 4.1. Fix @, 0 < a < 7y and f € C(R,, Domain(w,)) such that || f]lo < 1.

Then

@OETABN = @)° /0 g(s)w_eUIPfuw, f(s)ds

t
< 0" [l e R | ]

< @echvapuil [ 2l

N1 (s)llds

where we used (H3’). Furthermore, from ||f||, <1 and ||w, fw,|| bounded, we have

OUEAON < ot [ 0 el

< cwelflla / %d

. min T g ()
cor 3 [T ) (s

{g:ty<t} =

IA

By the mean value theorem

min(t,t; +T") ~ g
/ UA@ = (t—=1;) " (&) *llgoll1,
t

j £ sy ()

for some

Hence

We claim that

ds.

(97)

(98)

(99)

for some constant D, independent of t. This is a consequence of the fact that we are

computing the convolution of two power-like sequences. For a more detailed proof we
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decompose the sum into two, first running for fj < t/2 and the second for ¢/2 < fj < t. For

the former we have :

doo-t)y Ty < <%>_T1 > )

{5:t;<t/2} {5:t;<t/2}

< <§> STy (100)

{5:4T<t/2}

£\ ¢ max(0,1—a)
< (=) D,(- < D, (),
<) 2y =mo

since 7, > max(1,a) and ; > t; > (j — 1)T, see (H3’), the hypotheses of this lemma,

respectively (97) and (5). The remaining part of the sum is treated similarly:

Y. =iy )T < <%>_a oo -t

{j:t/2<t; <t} {j:t/2<t;<t/2}

< <§> S Ty (101)

{k:kT<t/2}
< <§> D < Dy(t)~°,

since r; > 1 and t — {; > kT where k is such that t;,; = max{t, : ¢, < t}, see (97) and
(5).

Now (100) and (101) imply (99) which replaced in (98) proves the required estimate for
the KT operator. For the K operator the argument is completely analogous. ]

We are going to use Lemma 4.1 for « = 0 and a = ;. For Cj and C,, defined in the

Lemma, let

Cx = max{Cy, C,, }
Then, for & such that Cxe < 1, the inverse operator (I —icK*)™! exists and it is bounded
in the norms (96) for @ = 0 and o = r;. Then (94) implies:
w_ga(t) = (I—ieK*) " [w_e ™Ml¢,(0)] (t) —ie (I —ieK ™)~ Klps)(t)
= O (O lwsga(0)l) —icK[de] + O (* K eu]ll) - (102)
Thus we have expressed the dispersive part, ¢4(t) as a functional of the bound state part,
¢p(t). Substitution of (102) into (89) gives, for £ =1,2,...:

m

Quak(t) = —iday(t) —ieg(t) Y a;(t) (i, By)

=1
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— €%g(t) (w+ Biow, K] (1)) (103)
+ e9(t) (O(lwiaO) 1)) + O (E*IK[A]ll)) k=1,2,...,m.

In particular (103) implies
n—1
By (tn) = e (t) + £ MDD (dy dy, ..., dy), (104)
p=l
for all k= 0,1,...m,n > 2 and [ < n. Here each constant D, depends on the realization
of dy,dy,...d, and does not depend on the realization of any other random variable. In
addition all D, are uniformly bounded by a constant depending only on Ck above and the

initial condition ¢(0). Hence
ag(ty) = e” Mg, (1) + O(e|n — 1)) (105)

foralln,l=0,1,2,...,and k =1,2,...,m.
We multiply both sides of (103) with @, then add the resulting equation to its complex

conjugate. Then we integrate from ¢, to ¢, + 7 and obtain for k =1,2,...,m
akak(tn +T) — apa(tn) = Ri+ Ry + Rs, (106)
where
m tn+T
R = —iey (. B5) / o ()@ (t)a; () dt + c.c. (107)
i=1 tn
tn+T
Ry = —c(w, B, / o (D) ar (D) K 6] (1)dt) + c.c. (108)
tn
Ry = O(elta)™)+0(%). (109)

If we neglect the Ry and R3 in (106) we are left with Ry, which is precisely the expres-
sion associated with the power transfer in systems with discrete spectrum; see Section 2.

Moreover R3 has norm asserted in (78). So, it remains to show of R, that

E (e, " a0 + cc.)

tn

= WP+ O((nT)™") + O(e), (110)

where 7y is given by (76) and r = min{ry,ro — 1} > 1.
We use integration by parts. Let

t

Klo,](t) = / g(s)e MO RG] (s)ds, by <t <ty +T. (111)

tn+T
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and note that K[¢y|(t, +T) = 0. Lemma 4.1 together with

g(s) = gO(s - tn)a t, <s<t, +T,

imply the existence of a constant C' with the property:

IK[os) )]l < Cllgoll? = C
uniformly in ¢, <t <t, + T. Define
Ap(t) = ag(t)eslt=tn),

for k =1,2,...,m. Note that
Ak (tn) = ak(tn)

From (103) we have
0.4k (s)] < C' [ [go(s — tn)|

for some constant C' independent of s and ¢, < s <t, +7T. Now

/ " e O Kl Od: = / " Ao kle 1)t

— () Ko (t) — / ORI

= m(tn)/tn g(O)eM K gy (t)dt + O(e).

To further rewrite (117) we note that for ¢, <t <t,+T

K(p](2) Z / a;(s e~ =P Bepids

n 1 m t+T
E :/ ,G_ZHOt s
t

Pfi;ds

An integration by parts similar to the one above and use of (112) leads to:

t1+T )
/ a;j(s)g(s)w_e "HU=IP Bopids =

t

t+T ) .
= a; (tl)/ g(s)efz)\j(sftl)w_eszo(tfs)Pcﬂq/}jds +0

17

= G,j(tl)w,f]o()\j — H())eiZHO (= tl cﬂ'lﬁj + 0 (
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(112)

(113)

(114)

(115)

(116)

(117)

(118)
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and

¢
/a]-(s)g(s)w_e_ZHO(t_s)Pcﬂwjds
tn

= a;(tn) /tg(s)e_i’\j(s_t")w_e_mo =P Brp;ds + O(e). (120)
By plugging (119-120) in (llg) we get
K] (t) = iaj(tn) / tg(S)e_iA" =ty _e="oU=IP By ds
+ Z a;(t))w_go(A; — Hy)e U=P Sy + O(e), (121)
j=1 1=0

where to estimate the error we used the fact that the series Y ,(t —t, —T)~"" is convergent
and uniformly bounded in ¢.
We now substitute (121) into the right hand side of (117) and obtain

/t " a ) Kl (0)dt = O(e)

m tn+T ' ¢ . .
+ Zak(tn)aj(tn)/ g(t)e”‘k(ttn)/ g(s)e PGty o =P 3)dsdt
tn tn

+ Y (ta)aj(t)w_go(Ho — M) do(Nj — Ho)e Holn=P fuj;. (122)

Based on (104

~—

we can replace ag(t,)a;(t;) in (122) with

ar(tn)a;(t) = =g (t)a;(t;) + error(l, ) (123)
n—1
error(l,j) = £» e Dow_go(Hy — \e)do(Aj — Ho)e ol P Brj;.
p=l

Taking into account that ¢, —¢,_1 = d,, + T and the fact that t,_1 —¢;, D,, [ <p<n-—1
do not depend on d,,, the expected value of the error can be rewritten as
E(error(l,j)) =
n—1
— £ ZE (w_ei(/\k—Ho)(tn—tn_l)ei/\k(tn_l—tp)ngo(HO _ )\k)f]o()\j _ Ho)e—iHo(tn—l—tz)Pcﬂwj)

p=l
n—1

= &Y w_p(Hy — A)E (e 7%) Dy go(Hy — i) do(Nj — Ho)e Holtn1 =P Bo), )

p=l
n—1

= &Y E(eMt =) Dow_p(Hy — Ap)go(Ho — Ai)go(Aj — Ho)e Holn1=00P By, ) (124)

p=l
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By applying the H norm to (124), commuting the norm with both summation and expected
value and using (H7’) we get:

C(n—1)
<tn—1 — tl>1ﬂ2

Since 75 > 2 the summation over [ and j of all the errors will have an O(g) size. By this
argument (122) becomes:

B ((wim, /t:"”g(t)ak KT ) +cc.) = S (@i (t)as(t))

=1

tn+T ) t )
<w+5¢k; / g(t)ez)\k(t—tn) / g(s)e—z)\j(s—tn)w e~ Ho(t—s) cﬂ1ﬁ]d8dt> +coe.
tn tn

n

[Eerror(l, )| < el < C lel{(n—nT) ™. (125)

|
—

n
NE

E(ak(t)a;(t))

E (<w+5¢k,w do(Ho — Ak)go(Aj — Ho)e!w Holn"1P g )) + c.c.
O(e). (126)

.
Il
—
Il
)

But (H6”) and the technique used to prove (42) imply

_ P for k= j,
E(a(t)a;(t)) = { Ok Forr k #jj

Moreover, an argument similar to the one we used in (123-125) allows us to replace P(!) by
P™ in (126) and incur an O(g) total error. Then, (126) becomes

B (v [ somKalo) +ec) =
= P (wy B w0 — Mo — Ho P
+ P <w+ﬂ¢k,w do(Ho — M) oM — Ho)E (Ze i—Ho)(ta~t) p ) ﬂ¢k> +eec.
+ Ofe). (127)
We claim that
7w Bn, w_go(Ho — Me)go(Mx — Ho)Pefity)
+ <w+ﬁwk,w§0(H0 Ae)do( Ak — Ho)E (Ze A= Ho)(t ~t) p ) ﬂ¢k> +ec.c.
= %+ O0(nT)' ") (128)
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where 7, is given in (76). (128) replaced in (127) gives (110) which finishes the proof of
this Theorem.

To prove (128) we first find a simpler expression for the expected value operator involved.
Since {d, } j>o are independent, identically distributed with common characteristic function,
p(€), using the definition of t,,, n > 0, see (5) and the spectral resolution of the operator
Hy, see (70), we have:

E (¢Os-H)t-t)p ) = / E(e! 8 =1)) dm(€)
ocont (Ho)

_ / o —6 75 (4 i)Y dm(€)
Ucont(HO

_ / B0 -0@T)) i (£)
Ocont (HO

/ - HE—= M) dm(€) = p" T (Hy — M) Pe. (129)

Hence
w_go(Ho — Ak)Go(Ax — Ho)E (Ze Ak —Ho)(tn—t1) P ) 3

= w_go(Hy — M) go(\ — Ho) Z P (Hy — \p)PeB. (130)

7j=1
But each operator term in (130) has its #—norm dominated by:
llw-go(Ho = M)go(Ae — Ho)p! (Ho — M) Pef| =
= llw-p(Ho = M)go(Ho = Ax)do(Ax — Ho)E(e™ o=l p )|

sl < (G - 07y

Now r5 > 2 implies that the sequence 1/(j7)" is summable, and, by the dominant conver-

<

gence theorem, there exists:

Y = (w4 Bk, w_go(Ho — M) go (A — Ho)PcSBry)
+ > {we Bk, w_go(Ho — Ae)do(Ae — Ho)p! (Ho — M)Pefiy) + c.c.
j=1

= lim ;.
n—o0
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Moreover

e =el = > (wi Bk, w_go(Ho — M) do(Ae — Ho)p! (Ho — MPcBiy) + c.c.
j=n+1
< 20) (jT)™™ < D{(nT)'"". (131)
j=n

Consider now, for n > 0,
Y = (wyBYe,w-go(Ho — Me)go(Me — Ho)Pefvr)

+ > (wi Bk, w_go(Ho — Me)go (M — Ho)p? (Ho — M — in)PeBy) + c.c. (132)
j=1
On one hand

P (Hy — N — in)Pe = E(e—n(tj —to) o= i(Ho—Ax)(t; —to)Pc) (133)

and, by the dominant convergence theorem, for all 7 > 1
7171{‘%,;7'(}10 — X —in)Pe = p/ (Hy — \,)P

On the other hand the series (132) is dominated uniformly in 1 by a summable series,

because:

llw_go Ho )\k )Go(Me — Ho)p? (Ho — A — in)PJ||

dudsgo s+ u)go(u)E (e—n(tj _to)w_e_i(HO_/\k)(tj_tO_S)Pcﬂ) H

< (t; — to _ T) llgoll1llws Bl < (G — D)T)™

Here we used (H3), ||gol|1 = 1 and ||w, B|| bounded. Therefore, by the Weierstrass crite-
rion:
limof = (134
In addition (133) implies
lo(Ho = A = in)Pel| < B (e [eHm2h=op, )

e < 1.

VAN

This makes (I — p(Ho — Ax — i) )P, invertible and given by the Neumann series:
(L= p(Ho — M —in)"Pe = o’ (Ho — N — i)Pe. (135)
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Plugging (135) in (132) we have

Yo = Bk, Go(Ho — M) Go(Ax — Ho)Pcfty)
+  {Bx, Go(Ho — M) do(Ak — Ho)p(Ho — A, — in) (I — p(Ho — A — in)) ™ Py ) + c.c.

A simple inner product manipulation shows that:

V= HQO(HO — Me)VI—[p(Hy — X\ — in) |2 (L= p(Ho — A — i)™ Pc[&/}k]HZ-

Hence
~ — 1. n — 1
Vi = lim g = e, (136)

see also (134) and (76).
Finally, (136) and (131) give the claim (128). The theorem is now completely proven.

5 Comparison to stochastic approach

In this section we want to compare our results with the stochastic approachin [17,19,18,13].
We view the results of this paper and those discussed in this section as complementary.
The results of this paper apply to the situation when a known localized “defect”, gq, is
randomly distributed in a manner which achieves averaged diffusive effect. The results of
Papanicolaou et. al. apply to a random medium, which is unknown and with assumptions
about their distribution. One of the key technical assumptions in this latter work is that
the expected value of the randomness, at any time, is zero, i.e. in our notation E(g(¢)) = 0.
In the results of this paper, we allow for E(g(t)) to vary with ¢. Indeed, for our train of
pulses (see (4) and figure 1) E(g(¢)) = 0 and implies go(t) = 0, so unless we have the
go = 0, E(g(t)) is generally different from zero and time-dependent. On the other hand,
our hypothesis (H4) has no corresponding restriction in Papanicolaou et. al.’s theory.
Another important difference is that our result applies on time scales even larger than
1/€2, where ¢ is the size of the randomness while the other results apply only on time scales
up to 1/¢?. However, it appears that there is a striking similarity between the two results
on 1/e% time scales. The train of pulses we analyzed is closest to the stochastic process
described in [17, Section 2] where both its values in the epochs [0,dy + T, [do + T, dy +
T+d;+T]..., and the epochs are now dependent on the realizations of the same random
variables, dg, d1, . ... However, if we assume that the radiation modes are not present, the

dynamical system we investigate, (89-90), is the one in [17, Section 4], see also [19]. These
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prevents us to use the formulas in the above papers. Nevertheless, we are going construct
another stochastic perturbation, in the spirit of the one in [17, Section 4], for which we can
compute the expected power evolution using both theories. We find that the two results
coincide but keep in mind that while the example satisfies all our hypothesis it does not
satisfy one of theirs, see below.

In addition to (H1)-(H4), suppose the random variables dy, d1, ds, . .., can only take
values in the interval [0, d] (this is clearly satisfied by the random variables constructed in
the previous section for finitely many modes) and denote by p(t) the measure induced by
their distribution. Consider the positive real axis partitioned into “epochs”: [0,7 +d], [T +
d,2(T +d)],... of length T+ d. In each epoch a defect is placed at a distance d; from the
starting point of the j*® epoch. Specifically, the first defect is placed at a distance dy from
t = 0, the second at a distance d; from ¢t =T + d, .... Here dy, dy, ds, ... are realizations
of the random variables dy, dq, ds, . ... That is, we will now consider equation (12) with the

perturbation given by:

g(t) = go(t —do) + go(t = (T +d) —dy) + go(t = 2(T +d) —dy) +.... (137)
see figure 2.
g(t)
go(t — do) go(t — (T +d) —dy) go(t —2(T +d) — d2)
0 T+d 2(T + d) 3(_T_-f-d_)>
4o T 0 T dz v

Figure 2: Another train of short lived perturbations

Our result, Theorem 3.1 applies without any modifications since before each perturba-

tion we have:
E (axa;(I(T + d) + dy)) = E (axa;(I(T + d))) E (e7"2#%) = 0,

if £k # 7. As for Theorem 3.2 its proof is much simplified and the error estimate improved
because we now know how many complete defects are going to appear up until the chosen
time “¢”, namely n = |t/(T +d)]|. The expected power at time ¢ can differ from the one at
time n(T + d) by no more than the size of the perturbation, ¢, since after each experiment
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only a part or a single full defect can occur in between this time slots. Hence:
P(t) = P'n) + O(e) = T"P(0) + O(ne®) + O(e), (138)

where the integer n is such that n(T+d) <t < (n+1)(T+d). To get closer to Papanicolaou
et. al.’s results, suppose
t=r1/e% T > 0 is fixed

and pass to the limit € \, 0. We get

. ol i (T — 2B ] — B
ll\I‘%P(t)—}:l{‘%Tg P(0) l_l\I‘I(l)(I[ e“B)lL+a2 1 P(0) = "7 P(0) (139)

where B is given in (22) and
1
(T +d)

Let us now apply Papanicolaou et. al. result to the above example. Note that the

B=-

B. (140)

manner in which the perturbation is constructed makes the example very close to that in
[17, Section 4]. But since the stochastic process is not piecewise constant, one has to rely
on more general form of their results such as [18, Remark 2 in Section 2|. The ODE system
for the amplitude vector, a(t) = (a1(t), as(t),...), is:

owa(t) = Aa(t) —icg(t)aal(t), (141)
a(0) = a(0),
where
A = —idiag[)\l,)\Q,...],

a = (<wkaﬂ¢j))1§k,j;
see also (17). This is a special case of system (2.27) in [18] with
M = —ig(t)a.

Note that hypothesis (2.28) in [18] translates into

0=E(g(t)) = /Od go(t' — 8)du(s), forallt>0 (142)

where
=t—(T+d)|=——
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which generally implies the trivial case go = 0. Hence for nontrivial examples Papanicolaou
et. al.’s theory is not rigorously applicable. We are going to replace (142) with a milder
one:

t

1
Jim 2 | Elo(®)dt =0, (143)

i.e. the time average of the expected value of the perturbation is zero, under which we
can formally derive closed coupled power equations. While the results of the stochastic
approach do not apply to this example because E(g(t)) # 0, our results do apply and it is
reasonable to conjecture that there is an extension of the stochastic approach to this case.
In the special case, where g is given in (137), the condition (143) reduces to go(0) = 0,
Let us compute their equation for the evolution of the powers, i.e. we prove that their

system of equations for the product of amplitudes:
0,E(a ®a) = VE(a ® a),

where

t
T=€—2isﬁxedass\0.

gives a closed equation in powers, i.e.

Voawe =0, ifq#q (144)
and consequently for the powers P(7) = diagE(a ® a(7)) we have
9. P(t) =VP(r), (145)
with
Voo = Voaoa: (146)

The main point is that V coincides with B in our result (139); see also (140)and (22). Thus
the two results agree on time scales of order 1/&.
For the formula of V' we only have to replace M in [18, equation (2.35)] by its complex

conjugate M whenever it applies on the right part of the tensor product, i.e.

t+to .
vV = tl}m / M(o) ® I+ M(s) ® M(0)) dods
t+to o o
+ tl}m / M(s)+1® M(s)M (o)) dods, (147)
My, = _iempqtg(t)apqa
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see also [18, relation (2.32)]. It will be clear from the argument below that the limit in
(147) does not depend on %y (note that this in in fact a requirement for the validity of the
theory) so we are going to work with ¢y = 0. Although the computation of V' has been
done in [19] (denoted there by V') and then summarized in [13, Section 3] we are not able
to use them because they relied on the stationarity of the process, see [19, relation (2.2)]

which is not satisfied by our example. Nevertheless we have component wise:
1 t K] A A
Voapy = —Opg XT: QprQlrg tl}lglo 1 /0 /0 e"rrie'2rE(g(s)g(0))dods

t s
+ oy lim — //eiAWseiAfI’P"]E(g(s)g(a))dads
0 Jo

t/ oo t

t s
+ aquaqptl}(m ;/ / Bty  (g(5)g(0))dods (148)
~ by 3 Oy Jim / | e elgs)g(oods,

where we have used @; = ;i due to the self-adjointness of 3 in ax; = (Yx, 51;) and the

fact that g(t) is real valued. Thus it is sufficient to compute

/ / ¢'84° B g (5)g () dods.

Let us fix ¢ and suppose for the moment that ¢ = n(7T + d). Then
t s )
/ / e Bris iRt (g(s)g(0))dods =
0

n* (m+1)(T+4d) )
/ / 8453619 E (g ()9 (o)) dords
0

m(T+d)

n— (m+1)(T-+d) . .
= / ePriseiRit R (g(s)g(o))dods (149)
m(T+d)
(m+1)(T+d) . m(T+d)
+ 24 (g(5)) / 27 R o)) dods,
0

m(T+d)

where we have used the fact that the random variable g(s) and g(o) are independent unless

s and o are in between the same epochs. Now

m(T+d) m (r+1)(T+d)
/ ¢17E(g(o))do = / ¢ go (0 — (T +d) = dy41))do
0 r=0 T(T+d)
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m—1 T+d d

= e [T s [T~ s)du(s)do
r=0 0 0
m—1

d T+d—s
= ) ) / et / 2% go (o) dodp(s)
0 -5

r=0

m—1 d T

= Yt [Cesiedus) [ et (o)do
r=0 0 0
-1

— Z eiAle(T-l-d)lE(eiAjldr+1)go(_Ajl) = 0’

r=0
where we used supp go C [0,7], E(e!®itd+1) = 0 if j # I, see (H4), and the fact that
G0(0) = 0.
The only nonzero terms left in (149) are of the form:

(m1)(T+d) s ' ,
/ / ePkis R (g(s)g (o) )dods
m(T+d) m(T+d)

T+d s
_ eiAklm(T+d) / / 6iAkjseiAle]E(g0 (S _ dm)go(g — dm))dO'dS
0 0
. T+d (T+d , d
_ ezAklm(T—}—d)/ / e'LAkjseZAjla/ go(s — &) go(o — &)du(&)dsdo
0 o 0

. d . ) T+d—¢& )
_ eZAklm(T+d)/ ezAsz/_§T+d—§emjlago(g)/ ek go (s)dsdodpu(€).
0 a

Now, the upper limit of the integrals with respect to s and o can be replaced by oo without
modifying their values since supp go C [0,7] and £ € [0,d]. Hence they do not depend on
¢ and by computing the integral with respect to the measure du(§) first we get:

d
/ 6iAkz§d'u(£) - E(eiAkzdm) = Oy
0

Knowing that £ = [ in order to get a non zero result, we can now compute the integrals
with respect to s and o using (37) without the complex conjugate part. In conclusion we

have
t s
//emkisemﬂ“]E(g(s)g(a))dads=
0o Jo

t | 0. i > lg(W)l?
— | = —Ag)P+ =P.V. d o1
ra) 5 (mawp+ tev. [T 0 4 1 oq)
where the correction is needed for ¢ # n(T + d). Consequently

t s
lim / / e"Bkis R (g (s)g(0))dods
0 Jo

t oo
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O X 2 0 /°° lg(1))?
= — Ay —-P.V. —_— . 1

Replacing (150) in the formula (148) it is easy to see that Vj,,y = 0 unless ¢ = ¢’ and
in the later case the first and the fourth terms in (148) are complex conjugate which is true

for the second and third terms also. Simple arithmetic leads to

Vg = Vogpqg = Bpg

where B is given by (140) and (22).

In conclusion, on time scales of order 1/¢? our results for the example in this section
coincides with the one obtained by Papanicolaou et. al. in the series of papers [17, 19,
18, 13]. As mentioned earlier, although our result applies directly, the stochastic approach
requires the E(g(¢)) = 0 for all .

6 Appendix: Properties of the power transmission
matrix

In this section we prove the properties of the matrix (linear operator) B we used in Corol-
laries 3.1 and 3.2. Recall that B is given by (22) and is irreducible, see the discussion
before Corollary 3.2. We note that (22) implies in particular that:

1. all the components of B are real;

2. by;>0foralli=1,2,...;

3. bjj <0foralli, j, i# j;

4. Zj b;j = 0 or equivalently b; = — Zj,#i bjjforalli=1,2,....

Lemma 6.1. If the dimension of B is finite, say m, then B is a nonnegative, self adjoint

matriz having 0 as a stmple eigenvalue with corresponding normalized eigenvector:

Proof. Since all components of B are real, self adjointness is equivalent to
bjk = bgj, vy, k, J #k.

From (27) we have

2 = 2 2
i |” = [as|” = ol

43



where @ denotes the complex conjugate of the complex number .

Now because gy is the Fourier transform of a real valued function, see (11) and (H3),

and because Ay; = —Ajyi, see (26), we have

. 2 . > = _ - 2

30(=250)1" = 30(Au)* = [Go(=Bs)| = ld0(=27)I".
Hence, for all j # k

2|4 2 2|4 2
bir = — okl [Go(=2k) " = leukj|” |go(—Az) [ = bu;> (151)
rendering B self adjoint?.
In order to prove that B is nonnegative, consider an arbitrary vector X = (X1, Xo, ..., X))’

and let X* = (X, Xo,...,X,,) denote its adjoint. Then

i=1

ij=1 = ivjiii
= =) byl X+ ) by XX (152)
irji#i i.ji#i
= Y Iyl 1Xi =X >0,
i,i<i

where we used properties 3. and 4. above. Hence B is nonnegative.
Now, if Y = Bry then

1 m
Y;:ﬁ;jbijzoa

by property 4. Consequently 0 is an eigenvalue for B with corresponding eigenvector ry.
To prove that 0 is a simple eigenvalue we use the irreducibility of B. On the set of

components {1,2,...,m} of vectors in C™ we define the following relation:

Definition 6.1. We say that components i and i are always coupled to zeroth order.

We say that components i,j are coupled to first order if bj; # 0.

We say that components i,j are coupled to n™, n > 2 order if there exists a sequence
of components ki, ks, ..., k,_1, such that the pairs 1,kq; ki,ko;...;kn_1,7; are all coupled
to first order.

We say that components i,j are coupled if they are coupled to any order.

3Identity (151) does not rely upon B having a finite dimension. Therefore it is valid even when B has
infinite dimension.

44



It is easy to show that “to be coupled” is an equivalence relation on the set of compo-

nents {1,2,...,m}. Hence it induces a partition of the components.
Claim 1. If B is irreducible the above partition is trivial.

Indeed, if we assume contrary the partition is formed by at least two proper subsets of
the set of components {1,2,...,m}. By a reordering of the components, i.e. a reordering

of the standard basis vectors in C™, we can assume assume that the partition is formed by:
{1,2,...,m1}, {ml +1,m1+2,...,m2},...

Then b;; = 0 whenever 4, j fall in different subsets of the partition, otherwise they would

be coupled. Consequently, B has the form:
B = dlag [Bl, BQ, .. ] y

where B is a m; X my; matrix, By is a my X my matrix, etc. But these contradict the

irreducibility of B, see also the discussion before Corollary 3.1.

Claim 2. If X = (X1, Xo,..., X)" is a zero eigenvector for B and i, j are coupled then

Indeed, X*BX = 0 because BX = 0, and (152) implies

> byl - X = X5 =0. (153)
04ji<j
If 7,5 are coupled to the first order then by definition b;; # 0 and we must have X; = X;
in order for (153) to hold. By induction on the order of coupling one obtains the result of
the claim.
Finally, Claim 1 and the irreducibility of B imply that all components are coupled.
Then Claim 2 implies that all components of a zero eigenvector must be equal. Hence all
zero eigenvectors are parallel to ry. Since B is self adjoint this means that 0 is a simple

eigenvalue. ||

Lemma 6.2. If B is infinite dimensional, then B is a bounded linear operator on ¢* with
|B||l1 < 2. In addition, for |e| < 1, the operator T, = I — 2B transforms positive vectors

(i-e. vectors with all components positive) into positive vectors and conserves their £' norm.

45



Proof. It is well known that B = (b;;)i<ik<co is a bounded linear operator on ¢' iff there

exists a constant C > 0 such that:
o0
dobl<C Vi=1,2,... (154)
i=1

In this case|| B||; < C. We are going to show that for B given by (22) we can choose C' = 2
n (154).
Indeed, let us fix an arbitrary j € {1,2,...} and consider the ;' vector in the standard

basis of /! :

_ ' _J 0 ifi#y
X = (X1, Xo,...), X’_{l ifi= (155)
Let
A = (04) 1< 000
ai; = i Go(—=Ay) = (Wi, Bi)) / go ()Xt dy, (156)
By a direct calculation we have
2 sl = 2 X Z aintip X - ZakaZaka
=1 =1 ,p_
= ) |Xi(A- AX); - (AX), (AX),] (157)

1

.
Il

[Xa[ - [(A-AX)| + ) [(AX))

1 =1

<

M

2

Clearly X € £, || X||o = 1. We are going to prove below that:
Claim 3. A is a bounded operator on ¢? with || Al < 1.

Hence ©
D IAX)P = [ AX |5 < |1 X5 =1, (158)
i=1
while using Cauchy-Buniakowski-Schwarz inequality we have:

o) 0 172 / « 1/2
D OIX| (A AX)| < (Z\Xz’\2> (Z|(A'Ax)i|2>

= (I XIl2- |4~ AX[l2 < A X]l2 (159)
1.

IA
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By plugging in (158) and (159) into (157) we get
> byl <2 (160)
i=1

and, since j was arbitrary, (154) holds with C' = 2. Consequently, B is a bounded linear
operator on ¢! with norm ||BJ|; < 2.
Consider now
T.=1-¢"B, T.= (tij)1cijcon-
Then for 7 # 7,
ti; = —€%b; > 0.

Note that by (151) we also have:
tji = tij, Vi, j. (161)

On the other hand
tz’z’ =1- 821)2'2' =1- 62 Z |bij|;

i

where we used properties 3. and 4. above. Moreover

D byl = 1bal + > lbis| = ‘— > by
=1

YE JJ#e

+ byl =2 [byl.

JI#i Yk

Using now (160) and (151) we have

1 & 1 &
Z |bij| = 52 |bis| = 3 Z |bji| < 1. (162)
j=1 j=1

Jj#
Hence
ti=1—) |by|>1-€>>0, if[e]<1.
JjFi

We also have:

00

Doty=tat ) ty=1-¢ |byl+e Y |byl=1,

Jj=1 J,#1 J:J71 J,#1

and by (161)

itﬁ = itﬁ = 1. (163)
=1 =1
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Now let
X =(X,Xy,...) €, X;>0Vj=1,2,...

Then

) = Ztinj >0
j=1

since all terms in the sum are nonnegative with at least one being strictly positive. Moreover

o o

ITeX |l =) [(TeX) I—Zzth ZX Ztm DX =Xl
=1 =1 j=1 = j=1

where we exchanged the order of summation because we are dealing with convergent series

with nonnegative terms and we also used (163).

The Lemma is now finished provided we prove Claim 3. Let
X =(X,X,,..) € X2 =1

be arbitrary and denote by

=D NNy, Y eH, |Y@l=1
=1

Then
X*AX| = Z“JkX X _‘/ 9o(D) (X252, €N X 05, Yoo 1 €M X Biby ) dit
7,k=1
_ ‘ / go(t)<Y(t),ﬁY(t))dt‘§ [ o) 100, Y @)
< [ oo I8l (= 180 [ lan(0ldt = I3lelolzs =1

where, at the very end, we used (H2) and (H3). []

Lemma 6.3. If B is infinite dimensional, then B is a bounded, linear, self adjoint, nonneg-
ative operator on % with spectral radius less or equal to 2. Moreover, 0 is not an eigenvalue
for B.

Proof. Because of (151) B is symmetric on ¢2. Consider the 2-form induced by B on /£2:

X*BX = ZbZ]XX me\X|2+ZZb,JXX

,Jl i1=1 j,j#1

= —Z Z big | Xl + Z Z b XX, = Z Z 1bi; (| X2 — X,X;), (164)

i=1 jji i=1 jji i=1 j,j#i
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where we used properties 3. and 4. above. Hence

ST 2 12 >
xBx = Y gl (1 D) —2 90 iy

i=1 jj#i i=1 jj#i

o
< 2sup (X0001) 301X < 20X,
¢ i=1

where we used (162). So the 2-form induced by B is bounded. Since B is symmetric this
implies that B is a self adjoint, bounded operator on ¢? with ||B||s < 2. Therefore its
spectral radius is less or equal to 2.

Moreover, (164) implies
X*BX =3 |by] - 1Xi = X,* > 0.
i<j
On one hand this shows that B is nonnegative. On the other hand, together with obvious
generalizations of Claims 1 and 2 in Lemma 6.1 for the case of infinitely but countable
components, it shows that if a zero eigenvector for the irreducible operator B exists then

the eigenvector should have all components equal. However such a vector is not in £? unless

it is trivial. Therefore 0 is not an eigenvalue for B. ]
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