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Abstract

Results for optical switch dimensioning are obtained by analysing an urn occupancy
problem in which a random number of balls is used. This analysis is applied to a high
speed bufferless optical switch which uses tuneable wavelength converters to resolve
contention between packets at the output fibres. Under symmetric packet routing the
urn problem reduces to the classical occupancy problem. Since the problem is large scale
and the desired loss probabilities are very small (= 10719) we outline a large deviations

approximation as an alternative to exact analysis.

1 Introduction

Future communication networks are projected to have dramatic increases in bandwidth
demand. These demands can be met by the use of optical fibres carrying data at very
high line speeds and by sending signals across multiple wavelengths (wavelength division
multiplexing). The switching of these optical signals, however, represents a severe technical
challenge which may be met by the use of all-optical devices which avoid the electronic
bottle-neck. There is, therefore, considerable interest in all optical packet switches which
can allocate packets to output fibres and assign wavelengths on the micro-second time-scale.
The design of such switches gives rise to a range of problems including the one considered

here.
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We consider an application of the classical occupancy problem to the dimensioning of an
n X n packet switch with an all optical fabric. The switch has synchronous inputs so that
all packets for a given timeslot are presented at the inputs simultaneously. The switch is
bufferless so that packets not routed to an output are lost. The switch is controlled by an
electronic unit basing its decisions on header information tapped from the input packet.
The switch was first described in [2] and is illustrated in figure 1.

A key problem for packet switch design is the management of contention between pack-
ets routed to the same output fibre. Among the options for managing contention are (i)
buffering which under current optical technology can be accomplished only by bundles of
fibre delay lines [8],[9], (ii) deflection routing, which depends on the network topology and
is better suited to networks with high inter-connectivity [3], (iii) wavelength translation [5]
and (iv) dimensioning of traffic on wavelengths at the network level, [4], this latter approach
relies on a high number of tuneable wavelength converters.

In the wavelength translation approach, if two packets of the same wavelength are destined
to the same output fibre, one will be converted to an unused wavelength on that fibre. In
the simplest architecture a large number of converters are required. In the switch considered
here, wavelength converters are provisioned as a shareable resource at the switch output
with the outputs of the converters themselves connected to dedicated switch inputs. This
allows a considerable reduction in the number of converters needed at the expense of some
increase in switch complexity.

The focus of this paper is thus on the number of wavelength converters needed in order to
ensure a target packet loss. This loss includes packets for which a wavelength assignment
cannot be made at the given output and those for which an assignment has been made but
cannot be converted because all the converters are already taken. In order to ensure low
probability for packet retransmission we take a target value for overall loss of 10710,

Our analysis supposes that the input traffic to the switch is stationary. Since operation is
synchronised and there is no buffering, mean packet loss is then determined by the marginal
distribution of packets over input-output pairs. Furthermore, to provide a simplified pre-
sentation, we suppose a packet is present at a particular input fibre and wavelength with
probability a independent of all other fibres and wavelengths. Finally, it will also be sup-
posed that the packets are routed to output fibres independently with equal probability of
a particular output being selected. These assumptions may be reasonable if the packet ar-
rivals are generated from a diverse number of independent sources. The analysis we present
permits the relaxation of both of these assumptions.

Under these assumptions, the dimensioning of the wavelength converters can be couched in
terms of an occupancy problem, with a random number of balls (corresponding to packets

in a given timeslot) thrown into a fixed number of urns (corresponding to output fibres).
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We will be interested in the probability that an unusually small number of urns are occupied
when a random number of balls are thrown into them. This corresponds to an exceptionally
high requirement for wavelength converters.

Whilst exact formulas, based on the exclusion-inclusion principle, can be used in principle,
see [6] the approach suffers from the curse of dimensionality as it involves repeated con-
volutions. Rounding error is a further problem as inclusion-exclusion involves alternating
sums of quantities with varying magnitude. It is also difficult to generalise under some
relaxations of the assumptions.

The large deviations approach is much more numerically tractable. Moreover it is asymptot-
ically exact in the case of a large number of inputs and outputs. Since the loss probabilities
are very small, the approach turns out to be quite accurate. The approach provides insight
into loss, as it provides formulas for the limiting exponent of loss. It admits the following

generalisations.

i)  Multiple fibres serving the same edge
ii) Switches with small n but large F
iii) Frequency converters with constrained output

iv) Other traffic distributions than binomial (including non-uniform traffic)

The rest of the paper is as follows. Section 2 details the switch architecture and discusses
some implications of the design. Section ??7 centres on results for the classical occupancy
problem, the key result being a large deviations approximation for the number of balls
needed to occupy a given fraction of a large number of urns. In section 3 results are given
for packet loss in a switch with an unlimited number of converters. Subsequently the results
of section ?? are extended to the case that a random number of balls are thrown (packet
arrivals) which allow results for overall packet loss to be obtained, including that due to
limitations on the number of wavelength converters. In section ??7 we examine the accuracy
of the large deviations approximation and indicate the numbers of wavelength converters

which are needed in a practical switch. Finally we present our conclusions.

2 The Switch Architecture

The switch is an all-optical design described in detail in [2]. There are n input fibres
and n output fibres, and packets arrive on one of F' wavelengths. There are thus nF' fibre-
wavelength pairs which we refer to as ports. Operation is time-slotted so that packets, which
are of fixed size, arrive in parallel over the various input ports. Any packet may be sent to
any output fibre so there is the possibility of contention at the output because more than F'

packets can be addressed to a given output fibre. Since the packets cannot be buffered the
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Figure 1: A Bufferless Optical Switch with Shareable Wavelength Conversion

excess packets must be dropped. Contention occurs also because packets using the same
wavelength are routed to the same output. The switch resolves this contention by switching
packets through a tuneable wavelength optical converter (TWOC). There are W converters
provided as a shareable resource at the switch output, as shown in figure 1. Converters in
the pool have the capability to convert any input wavelength to any output wavelength and
have to be rapidly tuneable for this application. The output of each wavelength converter
is connected to the input of the switch so that the packet on its new wavelength can be
switched to the desired output fibre.
This switch design is intended to provide a happy medium between two alternate archi-
tectures. In the first, there is no provision for wavelength conversion. The switch fabric
simplifies to F' (n) X (n) switches operating in parallel. Denoting by a the probability that
an input port has a packet in a given time slot, the number of packets N contending for an
output port in that time slot is Binomial(n,a/n). The blocking probability is

L0 = 2E[[N —1]4] ~

bl

N

where the approximation uses the Poisson approximation to the binomial for large n, and
a is assumed small.

To mitigate this severe blocking, full wavelength conversion can be used. Here a wavelength
converter is provisioned at the output port of each of the nF' channels, and a full (nF') x (nF')
swithc fabric is employed. Blocking only occurs now if more than F' packets contend for the
F wavelengths carried by a given fiber. The number N of such packets is Binomial(nF,a/n),

and the blocking probability is

I = R[N - FL]
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Figure 2: Packet loss with shared wavelength conversion
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where we have again used the Poisson approximation to get the last expression. In this case
the blocking probability falls of exponentially with increasing F', and blocking on the order
of 1010 becomes feasible when several wavelengths are employed.

The design depicted in Figure 1 provides an intermediate point in the tradeoffs between no
wavelength conversion and full conversion. Increasing the number of converters W increases
the cost of the switch fabric and converters, but decreases the blocking probability.

Figure 2 examines the blocking behavior for a particular switch, using the analysis developed
in the remainder of this paper. This switch has n = 25 input and output fibers, with each
fiber carrying up to F' = 20 wavelength multiplexed packets. The lower curve depicts the
blocking L™ achievable using full conversion. The other curves depict the blocking LW
achievable via a shared pool of converters, for W = 20,25, 30, 35. If the goal is to operate
at 10710 blocking probability, then the load must be capped at a < 0.2, in which case only
W = 35 converters perform just as well as 500. Hence a significant cost savings may be
possible using the shared design. One disadvantage of the shared design over either of the
other two is that converted packets pass through the switch fabric twice and hence incur

additional loss.
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3 Loss Analysis

Whether the switch uses full or shared conversion, packets are dropped if more than F
packets require the same output fiber. If shared conversion is used, additional packets are
dropped when more than W packets require wavelength conversion. In this section, we
use large deviations to compute the distribution of the number of wavelength converters
required per time slot, whence the blocking probability.

Remark: If packets must be dropped due to an overloaded output fiber, then in an optimal
algorithm, any wavelength converters which would have been required for those packets
become available. To simplify our analysis, do not take this effect into account, and hence
the number of wavelength converters that we compute is an upper bound. As long as the
probability of a full output fiber is small, this simplification has a negligible impact, and
the bound is tight.

3.1 Converter Requirement from a Single Wavelength

Let us focus on a packets of a given wavelength A. The number of packets R, of that
wavelength is a Binomial(n,a) random variable. Denote by 0 < N, < R, the number of
distinct output fibres to which these packets are assigned. Then the number of wavelength
converters required is W) = Ry — N,.

The variables Ry and N, can be interpreted directly in terms of the classical occupancy
problem; that is, we throw R balls at random into n urns, and wish to know the distribution
of the number of occupied urns N)y.

For a fixed number of packets Ry = r, the large deviations behavior of N, in n was given
in [?]. If r and n increase together so that 8 = r/n is fixed, then the probability of an
unusually low number of occupied urns decreases exponentially, with exponent given by

lim —TB{N{ /n < €[R /n = 0} = J(€,6)

n—oo n

where

log(1 — p¢)

J(6,6) = (6 €)log p+ (1 — &) log(1 — &) — @

and p is the unique root of 8p = —log(1 — p¢).
The large deviations behavior of Ry as n grows is given informally by the expression
1 0 1-6
lim ——P{R{" /n ~ 0} = 1,(8) = flog - + (1 — 6) log .
a

n—oo 1

An unusually high number of converters Wy = an typically occurs when there are unusually

many packets Ry occupying unusually few fibers NV,. In the large deviations limit, the most
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probable combination of Ry and N, meeting a given constraint will dominate. As we show
in the appendix, this leads to
lim —%]P{W/{") > a} = jut J(6— 0,0) +1,(6) = £a(c)

The computation of &,(«) for a particular switch is depicted in Figure ??. Here there are
n = 50 fibres, there are a = 0.4 packets per port, and we are interested in the probability that
15 or more packets of a particular wavelength A require conversion, so that o = 15/50 = 0.3.
The solid line in the figure depicts J(6 — «,0) as a function of 8, the dashed line depicts
14(0), and the line marked with dots represents the sum. The sum of the two exponents is
minimized at 6 ~ 0.64, with the minimum value being 0.24. The probability of this event is
therefore approximately exp(—50 x 0.24) ~ 7.1 x 107%. Exact calculation of this probability
using inclusion /exclusion formulas yields 9.1 x 10~7. The minimum number of converters

0—10

required to achieve less than 1 is 20, according to the exact formula, and 21, by the

large deviations estimate.

3.2 Total Converter Requirement

Modulo the remark at the beginning of this section, the total number of converters required
to avoid blocking in any time slot is given by the sum of requirements over all wavelengths,

W =3, Wy. Because Ry and N, are independent across wavelengths, it follows that

. 1 .
nlglolo - logP{W ™ /n > a} = z;&f—a; Ea, (ar),
where the traffic load for each wavelength is a). When the traffic loads are all equal, the
minimizing vector of converter requirements is @y = «a/F and the minimum exponent is
simply F&,(a/F). This fact is due to the convexity of £(a) [?].
Because of this convexity, the tail of the wavelength converter distribution grows more
slowly than the number of wavelengths F' as F' increases. In the numerical example above,
we had P{W), > 21} =~ 1010, If there F' = 10 wavelengths, then P{>", Wy > 81} ~ 10719,

so that four times as many converters are needed to service ten times as many packets.

3.3 Packet Loss due to Insufficient Converters

For a given number of converters w, the expected fraction of packets which must be dropped

due to insufficient converters is given by

nkF
P = (naF) 'E[(W-w)i]= > P{W >k}
k=w+1



Optical Switch Dimensioning and the Classical Occupancy Problem 8

nF
— Z e—nFS(k/nF)
k=w+1

For large n this last sum approximates a Riemann integral. Because £(«) is increasing and

convex, the integral can be upper bounded as follows:

1
P ~ a_l/ e e 4o
w/nF
< a-1 f“?(/)nF e—nF(E(w/nF)+(a—w/nF)E (w/nF)) 4.,
e nFE(w/nF)

- naF&'(w/nF) @)

As mentioned in Section 2, the lower curve in Figure 2 depicts the blocking probability for a
switch with full conversion, computed from (1). The other curves were obtained by adding
to the lower curve the additional blocking probability caused by insufficient wavelength

converters, via (2).

4 Conclusions

We have analysed a bufferless optical wavelength-multiplexed packet switch with wavelength
converters provided as a shareable resource at the switch output. Our analysis indicates
that, when a given low blocking probability is targeted, the number of wavelength converters
w required may be much smaller than the total number of output channels nF. The ratio
w/nF decreases as the number of fibers n and number of wavelengths F' increases.

Our results also indicate that a large deviations approximation for survival and loss prob-
abilities (at the converter) is reasonably accurate, even for small switch sizes (of the order
n = 50) and for low blocking. The large deviations analysis may be readily generalised
to other assumptions on the arrival distribution, beyond the independent binomial result
obtained here, by modifying the corresponding optimisation problem. Large deviations re-
sults may also be obtained in other cases by working with other urn models, but not with
the approach taken here which relies on the Gartner-Ellis theorem. Such an analysis would
allow assumptions such as converters with a fixed output or other routing assumptions to

be included in the model.

A Establishing the Large Deviations Principle

Theorem A.1 A large deviations principle exists for the conditional occupancy problem.
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Proof
We will establish the conditions needed for the Gartner-Ellis theorem [1] to apply. Given a

sequence b, such that b, /n — £, define the sequence of random variables
by
R,=> B, (3)
7j=1

where Bj is the random number of balls needed to occupy the jth cell when there are n
cells and j — 1 cells are already occupied. Piling up corresponds to making more throws

than usual and so we will be interested in the probability,

bn
P{> " B} >nb} . (4)

j=1

which is a large deviations event provided ¢ < 1 — e~?. Setting,

on(t) = %logE [etR"] (5)
we find that
1 1
pn(t) = — log(pje’) — — > log(l — ge"), (6)
j=1 j=1
b bn, brn,
= -+ log(p;) — — ) log(1 - gje’)
j=1 j=1

which is well defined provided ¢ < —logé&, otherwise,
E[er] =00 . (7)

As argued earlier,

1 ¢
— E logp; — / log(1 — z)dx
n 0

1 ¢
— Z log(1 — gje') — / log(1 — elz)dz ,
n 0

so that

lim (1) = o(8) = £ — (1~ ) log(1 &) + 1= 1og(1 — et ®

It follows that the effective domain D, is (—oo,—log§) and 0 € D,. It follows that As-
sumption 2.3.2 of [1] applies to ¢.

¢ is clearly lower semi-continuous. Differentiating, we find that for ¢t € D,

¢'(t) =& —log(1 — &e') — &e* (9)
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and exists. Moreover ¢'(t) — oo as t — —log&. ¢ is therefore steep. It follows that ¢ is
essentially smooth, as defined in 2.3.5 of [1]. We have thus validated the conditions for the
Gartuner-Ellis theorem to apply and it follows that the sequence of random variables {R,,}

satisfies a large deviations principle with good rate function,

J(,0) = supth— (! (10)
t
_ 1—p¢
= (0—&logp+ (1—¢)log(l—¢) — 5 log(1 — p¢)
where p satisfies
Op = —log(1 —p¢) . (11)
This completes the proof. O

We now establish some useful properties of J(8 — «, 8) for 5 > a.

Lemma A.1 Fiz a € (0,1) then J is a non-negative decreasing function in the interval
(v, Bo], where By = min(1,By) and By is the root of the equation e P + 3 —1= a. Moreover
JTooas Bl aandif fop <1 then J(By — a,Bp) = 0. and dJ/dB — 0 as B T Ba. In

addition J is strictly convex in the interval («, Bo].

Proof
It is convenient to suppose that 8, < 1, a similar argument applies if this is not the case.
We set 8 = 8, = 8 — a and take derivatives,

j_g = —log(l1—¢&) —1+1log(l—£&p)+1 (12)
9 —
- 75115 + 2—2 log(1—¢&p) + %Pﬁ
B¢ et 0]
- By

where pg = dp/df, since the coeflicients of pg cancel. We thus see that J is decreasing
provided p > 1. Also p = 1 implies that

ePrp-1=a (13)
which implies that 8 = (,. Differentiating both sides of the equation 0p = —log(1 — &p)
with respect to G gives,

Epg tp
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so that
3 ) &p?
0 — = . 15
( 1-6)" " 1-¢ (15)
The RHS is positive and since
€p 0
Op — = Op—e"+1
1-¢p
< 0

as p > 0, we may deduce that pg < 0. Thus as

B1Bay pb1, JLO . (16)

Since p is determined by 1 — e~% = £p it can also be seen that p T oo as 3 | « and thus
J 1T oo.
To show convexity of J it is sufficient to show that log(1—¢&p) is increasing, since — log(1—¢)

is an increasing function of 8. Alternatively we wish to show that £p is decreasing. However,

d
dep) - _ p+E&ps

dg
= (1-¢&p)(p+0pp)

from (14) and
6 —&e
p+0pg = ————
P00 -¢) -9
from (15) after rearrangement.

The numerator is positive and p times the denominator is

Op(1—&p) —Ep=e (9p+ 1-— eap> <0 .
Hence

d(&p)
~ap <"

as required. O

Since both [, J are strictly convex it follows that H(3) = J(8,8 — «) +1(5, a) is also convex
and has a unique minimum. Since H is decreasing in the interval («,a) it follows that
B € (a,B]- In the case By < 1 3 is determined by H'(8) = 0.

This leads to,
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Lemma A.2 Provided that B, < 1 the exponent is given by

E(a) =U(B,a) +alogp(B) + (1 +a—PB)log(l+a—p)+B(1-(B-a)pB) (17)

where

1—
(1-a)pB—-a) (1-a)p

and (3 is the unique root in (a,Bs) of

Bp(B) = —log(1 — (B — a)p(B)) (19)

such that p(B8) > 1.

(18)

Proof
Making the substitution 8 = 3,£ = 8 — « and then differentiating H and setting it to 0
yields,

(20)

Straightforward manipulation then yields p(8). If we are given 8 € (a,f,) such that
p(B) > 1 and ( is a root of (19) then 8 determines a minimum of H which has already been
established to be unique. O

Corollary A.1 £ is non-negative, monotone increasing.

Proof

We now consider the asymptotic exponent for the case where there is a binomial number

of packets R,, with parameter a. We will prove

Theorem A.2 Let w, be a sequence of converter requirements such that w,/n — a. We
then have that

la —~P(W, > w,} = £(a) = inf J(6,5 — ) +1(6,a) | (21)

where W, is the number of converters actually used per use of the switch.



Optical Switch Dimensioning and the Classical Occupancy Problem 13

Proof

The idea of the proof is that the total probability of this event is the sum of n exponentially
small quantities in n and this sum is therefore dominated by the term with the smallest
exponent. Let R, be the number of packets arriving at the switch for a given frequency.
Observe that we cannot require w converters if R,, < w. For convenience we suppose that
Bo < 1. The case when fy = 1 requires only minor modifications.

Define the entropy function as

h(p) = — (plogp + (1 — p) log(1 — p))

Given r such that r > 1,n —r > 1,7 = n(, we have that

B S B Y N N S
\&mpa—p = ( , ) <\ 2mmBa- ) 22)

see for example [7].
We then have the following approximation to the binomial probabilities.

P{R, =r} = ( n ) a"(1—a)"" = e (en(B)+h(B)+1(a,8)) — gnlen(B)+U(B,a)) (23)
T

where ¢ = O(—n"'logy/n) from (22) and f(z,y) = ylogz + (1 — y)log(1 — x).
To obtain an upper bound we use Chernoff’s theorem on the conditional probabilities. This

will be an exponential bound for § provided

ePrp-1<a . (24)
Indeed
P{> B} >r|R, =1} <e @bt (25)
j=1

where A,, is an error term. This error corresponds to replacing the sums in (7) by their
corresponding integrals and by approximating w by na. We may take a uniform bound
A, < A for (3 in the range (a + €,y — €], with §* < By —e. For 8 < a + € it will be

convenient to bound,
J(B—a,B) > J(,a+e)

and for 8 > [y — € the conditional probability will be bounded by 1. Now £* € (a, ) so
that putting together (23) and (25) we obtain
Ry, —wy
P{W, >wa} = P{ ) B} >R} (26)
j=1
< pxe MHE)
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for € sufficiently small. From this it immediately follows that

1
lim sup EIP’{Wn >wpt < —H(FY) (27)
n
To obtain a lower bound take a sequence 7, such that r,/n — §*.
Ry —wn Tn—Wn
P{ Y B} >Ry} >P{ Y B} >r,}P{R,=rn}. (28)
j=1 j=1

Using theorem A.1, we have that

. . 1 " [) * *

lim inf — log P{ Y B>} > —J(B - ab) (29)

j=1
1
lim —logP{R, =r,} = —I(8"a) .
non
Putting these together we obtain,
Ry —wn

lim inf > To P{W,, > w,} lim inf 2 To P{ Y B} >Ry} (30)

1 - n Z Wnp = - j = 1ip

m it - log e P j

> —H(B")

which establishes the lower bound.
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