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Abstract

We propose a two level model for TCP connection arrivals in local area
networks (LAN). The £rst level are user sessions whose arrival is time-
varying Poisson. The second level are connections within a user session.
Their number and mean interarrival are independent and biPareto across user
session. The interarrivals within a user session are Weibull, and across all
users are correlated Weibull. Our model has a small number of parameters
which are inferred from real traf£c collected at a £rewall. We show that
traf£c synthesized with our model closely matches the original data. We
extend this approach to a general model involving shot noise and show it
is asymptotically consistent with more common fractal models used in data
networks. Finally, we show that this model extends to the wide area net-
work applications without alteration and it predicts smoothing of wide area
network traf£c pro£le due to spatial aggregation, which we observe experi-
mentally by synthetically creating large aggregate TCP load.

1 Introduction

The development of data networking in the 1960s, £rst as an academic exer-
cise, and subsequently as a means of providing a host of new services, presents
new challenges and opportunities to the well-established £eld of teletraf£c theory.
Apart from a few pioneering investigations, such as Mandelbrot [20], some of the
features that distinguish data traf£c from voice telephony were noticed as early
as the late 1980s (Fowler and Leland [13], Meier-Hellstern et al. [21]). In their
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pioneering study of LAN traf£c, Willinger et al. [17] presented data and argued
for use of alternative models. By showing that suf£ciently aggregated data traf-
£c exhibited self-similarity over a wide range of time scales, the authors argued
for the use of fractal models and, more explicitly, use of statistical processes ex-
hibiting long-range dependence (LRD). In subsequent reports [26], the authors
contended that the underlying cause of self-similarity was effectively unrelated to
the mechanisms of data transmission, and were exclusively due to the nature of
aggregated load. Unlike voice, individual streams of load in data networks fol-
lowed distributions with heavy tails, the aggregation of which, it was argued, gave
rise to its observed self-similarity. Cox [5, 4] had given a related theoretical model
for long-range dependence, namely anM/G/∞ queue with heavy tailed service
times.

Many of the succeeding investigations (for Web data notably Crovella [6]
and Paxson [22]) have followed the same general methodology. This consists
of counting bytes and packets carried over identical non-overlapping time inter-
vals and studying the general behavior of this process as the aggregation interval
is increased both spatially and temporally. Some studies of the impact of self-
similarity on the performance of switching systems have argued in favor of the
self-similar approach [9], while others have argued against it [7, 25]. The latter
studies argued that the short-term correlation in data traf£c could capture much,
if not all, of the performance impacts attributed to self-similarity. Followup work
in this direction has concentrated on demonstration and causes of multi-fractality
in low aggregate Web traf£c [11] and potential performance impacts of multi-
fractality [8].

TCP connection arrival processes from various data sets were classi£ed ac-
cording to source application in [22]. Here it was observed that protocols such as
TELNET that tend to generate a single connection per “user session” are well
modeled by Poisson processes, whereas applications such as HTTP and X11
which may generate multiple connections per “user session” are not. The au-
thors conjectured that if the underlying user sessions could be observed, such ses-
sions would follow a Poisson arrival process. The concept of user sessions (“user
equivelents”) is also central to the SURGE model used to simulate the workload
of HTTP servers [1].

In this report, we use high-resolution packet data, collected at one Bell Labs fa-
cility, to provide evidence for the correctness of the user session concept. We also
show that this concept is useful for analyzing the traf£c and that it can be used to
develop simple, accurate, and ef£cient models for TCP connection arrivals. In this
analysis phase, we group TCP connections into user sessions, and then measure
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distributions of measurements such as the number of connections per user session.
We found that the user sessions arrivals followed a Poisson process, while per ses-
sion measurements tend to be heavy tailed. We are then able to generate synthetic
traf£c traces from a simple, two layer model, using a small number of parameters
determined by the measurements in the analysis phase. After empirically veri-
fying the accuracy of the model, we examine some of its theoretical properties.
We show that it generalizes theM/G/∞ queue in the shot noise framework, and
demonstrate the way in which long-range dependence can arise.

In contrast to the count processes used extensively in the study of self-similar
and multi-fractal phenomena, we look at thearrival processesat the user sesion
and connection layers. The arrival processes can easily be converted to count pro-
cesses as needed. The data we studied and the resulting model agree with the ob-
servation made in [10], that the interarrival times for TCP connections are subex-
ponential and well-modeled by Weibull distributions (when signi£cant HTTP traf-
£c is present). In addition, we observe that the sequence of interarrival times is
long-range dependent, in the data and in our model. As reported extensively in
[3], the relative amplitude of this long-range dependence diminishes as traf£c is
aggregated spatially; this is also true in the model we present here.

Our contributions consist of

- Inferring user session groupings from TCP packet headers, and verifying
the appropriateness of a Poisson model for these sessions (Section 2).

- Providing a model of TCP connection arrivals within a user session, using
a newly de£ned biPareto distribution (Section 2).

- Verifying that this compound model agrees with measurement (Section 3).

- Showing the model extends to characteristics of large-scale aggregation ob-
served in traf£c in the network core (Section 3).

- Placing the model in a general shot noise framework (Section 4).

2 Model-based Measurements

2.1 Data Set

Our data was collected by a system at Bell Laboratories in Murray Hill, New
Jersey [3]. As pictured in Figure 1, the math and computer science research center
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at Bell Labs is connected to the Internet through a £rewall. The £rewall connects
to the center via a router; the data was collected from the link between this router
and the £rewall. A packet sniffer recorded all the packet headers. Our data comes
from a 27-hour period beginning the evening of November 17, 1998.

Router
To

Internal
Network

Firewall Internet

Sniffer

Storage

Figure 1: The data collection system

Time
= User Session
= Connection
= Packet

Figure 2: Sketch of user sessions, TCP con-
nections, and packets.

We analyzed two subsets of the data:

1. All the TCP data. This amounted to 72% of the packets; almost all the rest
were UDP.

2. HTTP data between 10 AM and 5 PM. This allows us to assume a stationary
model and focus on a single type of traf£c. The majority of TCP packets in
the trace are HTTP.

Note that the data represents carried traf£c (closed loop) while we model offered
traf£c (open loop), ignoring the effects of vagaries in the Internet. Our justi£cation
for this is that the £rewall, at least, was lightly loaded, so that any congestion was
due to other links in the network. Also, it is very dif£cult to infer the effect of the
TCP control algorithm on traf£c.

The model we develop in this paper has a Poisson process of user session
arrivals at the top level. Based on this model, the important quantities that must
be measured or estimated include the arrival rateλ of user sessions, the joint
distribution of user session duration and rate, and the mechanism by which each
user session generates connections. Each of these measurements are discussed in
turn below.

2.2 De£nition and Characterization of User Sessions

The grouping of IP packets into TCP connections is determined by the TCP pro-
tocol. However, the way in which TCP connections should be combined into user
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sessions is a matter of choice. Our de£nition of user session was based only on
information contained in the TCP and IP packet headers. For each TCP connec-
tion, the host IP address initiating the connection was de£ned to be the user for
that connection. The TCP connections corresponding to a given user were then
grouped into user sessions as follows:

• A user session begins when a user who has been idle opens a TCP connec-
tion.

• A user session ends, and the next idle period begins, when the user has had
no open connections forτ consecutive seconds.

This method, of course, has the problem that different users sharing the same ma-
chine cannot be distinguished, and this can lead to extremely long “user” sessions
on shared machines.

We usedτ = 100 seconds, so that periods of HTTP activity separated by more
than a couple of minutes were considered to be separate user sessions. We also
tried, though don’t report in detail, values ofτ higher than 100 seconds, including
10 minutes and one hour. The qualitative results of the study do not depend on the
particular choice ofτ, although some quantitative factors such as the arrival rate
of user sessions do vary withτ.

Using the above de£nition for user sessions, we determined that the user ses-
sion arrival process is consistent with a Poisson process with a very slow (diurnal)
variation in arrival rate. The arrivals came faster during the day than at night, but
the rate was approximately constant over periods of a few hours. We found that the
interarival times were exponentially distributed, and that various transformations
of the interarrival process were uncorrelated.

2.3 Structure of Connection Arrivals

In the rest of work that will be reported here, we focused on approximately 4000
HTTP user sessions initiated between 9 AM and 5 PM. We split our model of
connection arrival within a user session into two parts. This was done based on
the data, not based on expectations we had of our model. In any user session we
de£neC as the number of TCP connections that are part of that user session. If
C > 1 we de£ne two additional statistics.T is the total interarrival time; it is the
time from the £rst connection arrival to the last connection arrival. Theaverage
connection interarrival timeis de£ned to beµ = T/(C−1). Note that the timing
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of connection arrivals is not addressed byC andµ; this will be addressed in Section
2.6.

2.4 Model Statistics for Connection Interarrivals

Figure 3 shows the tail distribution function ofC, the number of connections gen-
erated by a user session. Figure 4 shows the tail distribution ofµ. Note that on
these log-log plots, a distribution of the form 1−F(x) = x−α would appear as a
straight line with slope−α. In Figure 4, there are two nearly linear regimes, with
a smooth transition between them. In Figure 3, there appear to be two regimes,
although the regime on the left is never linear.
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Figure 3: Empirical tail distribution
and biPareto £t ofC, the number of
connections per user session.
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Figure 4: Empirical tail distribution
and biPareto £t ofµ, the mean connec-
tion interarrival time within a user ses-
sion.

If the entire plot were almost linear, the distribution could be modeled by a
Pareto distribution, for which the tail distribution function is given by

1−F(x) =
{ (

x
k

)−α
x > k

1 x≤ k

where the parametersα > 0 andk > 0 are the decay exponent and scale parame-
ter, respectively. The scale parameter is also the minimum possible value of the
random variable.
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To give the ¤exibility needed to model empirical distributions such as that in
Figure 4 effectively, we de£ned thebiParetodistribution, which has a tail distri-
bution function given by

1−F(x) =

{ (
x
k

)−α (
x+kb
k+kb

)α−β
x > k

1 x≤ k

The minimum possible value of such a random variable is the scale parameter
k > 0. From this point, the tail distribution initially decays as a power law with
exponentα > 0. Then, in the vicinity of a breakpointkb (with b > 0), the decay
exponent gradually changes toβ > 0. Some further properties of this distribution
are given in Appendix B

The circles in Figures 3 and 4 show the tail distribution function of biPareto
distributions matched to the empirical distributions. The parameters of the match-
ing distribution are listed on the plots in the order (α, β,kb,k). The £t between the
measured data and the biPareto distributions is excellent.

Some measured parameters of the traf£c trace seemed to be drawn from a
censoredbiPareto distribution, namely the distribution that results from throwing
out realizations of a biPareto distribution above a given threshold. An example
is the durationT, in seconds, of user sessions. The lowest curve in Figure 5 is
the empirical tail distribution function of user session duration. There arethree
linear regions in the log-log plot; the extreme tail appears to be asymptotic to a
vertical line atT ≈ 600 minutes, suggesting that the distribution does not allow
observations above this level.

Suppose that a random variableX with tail distribution F̄(x) is censored by
throwing out realizations greater than some thresholdX0. The resulting tail distri-
bution is truncated to

F̄∗(x) = P(X > x|X < X0) =
F̄(x)− F̄(X0)

1− F̄(X0)
, x < X0.

Given thecensoring probability F(X0), the original distributionF̄ (onx< X0) can
be recovered from̄F∗ as

F̄(x) = F̄(X0)+(1− F̄(X0)) F̄∗(x).

Suppose that the observations recorded in the lower curve in Figure 5 are drawn
from a censored distribution̄F∗. The two upper curves in Figure 6 show two
different estimates of̄F(x) based on the censoring probability estimateF̄(T0) =
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Figure 5: Empirical tail distribution of user session durationD and two hypo-
thetical uncensored distributions. (Bottom curve: data, Middle curve: assuming
F̄(T0) = 0.006, Top curve: assuminḡF(T0) = 0.012)

0.012 for the upper curve and̄F(T0) = 0.006 for the middle curve. The middle
curve is asymptotically straight, indicating that a biPareto £t could be appropriate.
The empiricalF̄∗ based on the estimatēF(T0) = 0.006 is then plotted against a
biPareto £t in Figure 6. In the upper curve of Figure 5, the tail is convex, indicating
that 0.012 is too high an estimate of the censoring probability.

When working with heavy-tailed data, a censored model may sometimes be
appropriate, even when no obvious truncation is apparent. Suppose for example
that we observeN realizations of a random variable, and that the tail distribution
shows a clear power-law decay, down to observable probabilities on the order of
1/N. Based on the observations, we could form a model with an in£nite power
law tail, or we could form a model censored to some value greater than the largest
observed value. Suppose that we use the model to generateK synthetic realiza-
tions. If K << N, the two models would most likely generate similar values.
However, if K >> N, the uncensored model will produce a number of realiza-
tions which are much larger than any of the observed values. In this case, the
choice of model should depend on physical intuition; is it reasonable for the tail
to extend in£nitely, or are there mechanisms in the system that would limit maxi-
mum values? Possible censoring mechanisms could include £nite data collection
windows, hardware speed and memory limitations, and thresholds speci£ed by
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Figure 6: Empirical estimate of the uncensored tail distribution of user session
durationD, and a biPareto £t, assuming a censoring probability of 0.006.

communication protocols.

2.5 Independence of number of connections (C) and mean in-
terarrival time ( µ)

To fully characterize the user session parameters such asC, µ, andT, we need
to describe not only their marginal distributions, but also their joint distributions.
AlthoughT is strongly correlated with bothµ andC, the relationship betweenµ
andC is much weaker. The correlation coef£cient betweenµ andC was measured
to be only−0.013 in our data set. We also examined the mean ofµ, conditioned
on various ranges ofC. Here again we found a weak inverse relationship between
µ andC.

In the mathematical model, we de£neC and µ to be mutually independent
random variables. This simpli£cation appears to have a relatively minor effect on
the effectiveness of the model. If more careful modeling is required later, one ap-
proach would be to de£ne a few different condition distributions forµ conditioned
on ranges ofC.
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2.6 Connection Arrivals within a User Session

In the model we have described so far, user sessions arrive according to a Poisson
process, and thei-th user session is assigned a number of connectionsCi and a
total connection arrival timeTi = µi(Ci −1), whereCi andµi are drawn indepen-
dently from biPareto distributions. The last step is to model the way in which the
connections are distributed within a user sessions.

Physical intuition and qualitative examination of the data suggest that the ar-
rival of connections within a user session will be complex. For example, when
opening a Web page, typical browsers will open as many as four simultaneous
TCP connections for text and images, generating very closely spaced connection
arrivals. Along with these machine-driven dynamics, there are also slower dy-
namics based on the behavior of the human user.

Rather than attempting to model these effects explicitly, we took a simple
approach based on a renewal process. GivenC andT, theC−1 interarrival times
{Xj} for a given user session were de£ned to be

Xj = T
Zj

∑C−1
k=1 Zk

, j ∈ {1, · · · ,C−1}

where theZk are positive, i.i.d. random variables. That is,C arrivals from a re-
newal process are scaled to span exactlyT seconds. For the distribution function
of the Zk, we chose a Weibull distribution with parameterc < 1. The Weibull
distribution was used because it is a commonly observed interarrival distribution
[15, 10] and because its coef£cient of variation (ratio of the standard deviation to
the mean) can be easily adjusted using the shape parameter,c. In the synthesis de-
scribed below,c = 0.48 so that the coef£cient of variation matched the measured
averagecoef£cient of variation for within-session connection interarrival times.

In our experience, the properties of the synthesized model are fairly robust
to changes in the distribution chosen for theZk. For example, we found that
increasing the coef£cient of variation of theZk tended to increase the coef£cient
of variation of the overall interarrival times, but that large changes inZk were
required to effect signi£cant changes overall.

3 Synthesized Connection Arrivals

To test the appropriateness of the connection arrival model, we used the model to
generate synthetic connection arrivals. The rate of the user session arrival process,
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the parameters of the biPareto distributions ofC and µ, and the coef£cient of
variation of the within-session interarrivals were all matched to measurements
from the data as described in the previous section.

Here is the procedure we used to generate synthetic arrivals.

1. Generate a user session arrival at an independent exponentially distributed
time from the previous user session arrival.

2. GenerateC, the number of connections in this user session, as an indepen-
dent biPareto random variable.

3. If C > 1, generateµ as an independent biPareto random variable.

4. If C > 1, generateC− 1 independent Weibull random variablesZj , and
scale them toXj as described in Section 2.6. Note that this uses the variable
T = (C−1)µ. TheXj represent the timings of connection arrivals.

We now show that our synthetic TCP connection arrivals are well-matched to
the data both in terms of interarrival marginal and interarrival autocorrelation. The
match of the two marginal distributions to each other is depicted in Figure 7. A
straight line would indicate a perfect £t. In fact, the plot is curved “downward”,
indicating that the marginal of the simulated interarrivals is slightly more extreme
than that of the data. In agreement with [10, 3], the distributions of the data and
model are well-described by Weibull distributions.

The autocorrelation of the actual and simulated interarrivals are shown in Fig-
ure 8. Again the match is very good, though not exact. Because of the long-range
dependence in the data, the empirical autocorrelation varies signi£cantly from re-
alization to realization.

A measure of the accuracy of the model across different scales is depicted in
Figure 9. In this £gure, we examine processes derived by counting the number
of connections arriving in intervals of various durations. If the model matches
the data well, then the marginal distribution of the count process derived from the
model should match that of the data on all time scales. In this £gure, we have
simply measured the square of the coef£cient of variation of the count processes
as a function of scale. The line labelled “bi-level simulation” refers to the model.
The line labeled “direct simulation” refers to a technique similar to that described
in [3], which directly matches the marginal and autocorrelation of the observed
interarrival sequence. In the line marked “i.i.d. simulation”, the arrival process
is a renewal process with interarrival distribution matched to the data. The bi-
level model and direct simulation are roughly equivalent in their ability to match
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Figure 7: Fit of synthesized TCP con-
nection interarrivals to data.
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the data in terms of aggregated coef£cient of variation, while the i.i.d. simulation
departs signi£cantly from the data as the time scale increases. The coef£cient of
variation of the data has a dip at the 100ms scale that is not reproduced by any of
the three models.

We have, in Figures 10 and 11, a visual comparison of the number of connec-
tion arrivals observed in the data compared to a trace generated by the synthesized
procedure. There are two time scales depicted: one is a count of arrivals per 100
ms; the other is a count per 100 seconds. Qualitatively, the left half of each plot
(data) looks identical to the right half (synthetic). This is just a visual way to
check that the synthetic data doesn’t have any glaring anomalies.

Generating synthetic TCP connection using the model is computationally ef-
£cient; the slowest part of the algorithm is sorting together the connections from
different user sessions, which may require something likeO(N logN) operations,
whereN is the number of TCP connections.

3.1 The Effect of Spatial Aggregation

The proposed model captures the temporal aspects of TCP connections for data
collected over a local area network. As shown in Figures 10 and 11, this corre-
sponds to an average of (roughly) 10 TCP connections per second. We wish to
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Figure 9: Square of the coef£cient of variation for a TCP connection count process
as a function of bin length, from data and various models.

examine the validity of this model for wide area traf£c consisting of (say) 10-
40gbps trunks carrying thousands of such connections per second. In the absence
of explicit measurements from 10-40gbps trunks carrying primarily data traf£c,
we propose to examine the effect of large-scale, or spatial, aggregation of TCP
connections as follows. First, we synthesize spatial aggregates from the existing
data. Next, we examine the temporal correlation structure of the resulting traces,
as measured by the Hurst parameter, and compare it to that of the original trace.
We then measure the asymptotic variability of the aggregate trace, as measured
by its coef£cient of variation, and show how it relates to that of the local area net-
work, the original trace. Finally, we show how the observed effects of large-scale
aggregation are exhibited naturally in the proposed model.

Synthesis of Spatial AggregationWe use the technique of randomized shifts [9,
8] to create copies of the original trace which appear to be mutually independent,
but whose correlation structures are virtually identically to the original trace. Each
copy is generated by cutting the original trace at a random point and interchanging
the beginning and ending segments. Multiple copies are then summed together to
form the spatial aggregate. In order for this method to work, the observation
interval should be much shorter than the total length of the trace. In our case, we
took a trace consisting of about 100,000 counts, summed between 10 and 1000
shifted copies, and observed the results on a segment of 2000 counts, depicted in
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Figure 10: HTTP Connection arrivals
in 100ms intervals

0 20 40 60 80
0

500

1000

1500

Time (minutes)

N
um

be
r 

of
 a

rr
iv

al
s

from trace

0 20 40 60 80
0

500

1000

1500

Time (minutes)

N
um

be
r 

of
 a

rr
iv

al
s

from model

Figure 11: HTTP connection arrivals
in 100 second intervals

the left side of Figure 12. This £gure shows estimates of the presumed counts
over links carrying 10 to 1000 times more connections than the link we studied.
On the right side of the £gure, we show corresponding counts generated from the
compound model. The only difference between the model used in Figure 10 and
the models used in Figure 12 is that the user session arrival rateν is increased by
a factors of 10, 100, and 1000 in Figures 12 (a), (b), and (c), respectively.

Correlation Structure of Trace and Its Spatial AggregateFigure 13 shows
variance-scale log-log plots for the original trace and for spatial aggregates by
the factors 10, 100, and 1000. The linearity of the plots indicates self-similar be-
havior, with the Hurst parameterH being proportional to the slope. The graph
shows that the spatial aggregation procedure does not affect the value of the Hurst
parameter, which is estimated to be 0.72+/-0.03 in all four cases.

Reduction in Coef£cient of Variation without Change in HAn important
characteristic of the spatial aggregation is increased smoothness visible in Fig-
ures 12(a)-(c). This is a simple manifestation of the law of large numbers. LetN
denote the number of independent realizations of a count process that are summed
to form an aggregate. The mean and variance of the marginal distribution of the
aggregate process both scale linearly withN, so that the coef£cient of variation
tends to zero asN−1/2. This highlights the importance of considering the auto-
correlation amplitude as well as the decay exponent in evaluating the “strength”
of long-range dependence. Even though all of the aggregates have the same Hurst
parameter, the long-range dependence is more important in the traces with high
coef£cient of variation.
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(a) trace and model spatially aggregated 10 times
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(b) trace and model spatially aggregated 100 times
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(c) trace and model spatially aggregated 1000 times

Figure 12: Incremental number of TCP connections per 100msec for the synthet-
ically aggregated trace (left side) and corresponding model (right side).
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Figure 13: Variance-time log-log plots showing no change to H as a result of
aggregation.

Comparing Figure 11 with Figure 12 (c) demonstrates the difference between
spatial and temporal aggregation. The coef£cient of variation of a long-range
dependent process falls more slowly under temporal aggregation than under spa-
tial aggregation, because in the temporal case, the variables being aggregated are
strongly correlated. For a short-term dependent process, the decay rate is the same
in both cases.

4 General Framework

The model presented in the previous section is a special case of a more general
approach that is presented below. This framework includes the approach of [4]
and [19], and like these models provides a link to the more familiar fractal models
used in data networking, for example [17] and [26].

We will construct a stochastic, instantaneous rate process for arrivals which
will be used to modulate a point process, giving a doubly stochastic point process.
This point process could be Poisson, as in [18], or a burstier renewal process, e.g.
the process with Weibull interarrivals discussed in the previous section. Here we
focus on properties of the modulating rate function.
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4.1 Rate process construction

We construct the rate process using a shot noise construction for which the roots
go back as least as far as [24] and [14]. In a general shot noise setting, events
arrive in a poisson stream with rateν. Each arrivalAi generates a pulseh(t−Ai ,Xi)
parameterized by an i.i.d. sequence{Xi} of random vectors which parameterize
the pulses and which are independent of{Ai}.

The entire shot noise is the sum of pulses,

λ(t) = ∑
i

h(t −Ai,Xi). (1)

Some examples: Lowen and Teich [19] de£ne fractal shot noise as

h(t −Ai,Xi) = Xi f (t −Ai)

where

f (t) =
{

ctα/2−1 A < t < B
0 otherwise

HereXi is a scalar quantity which may be random or deterministic, andB may be
in£nite.

The power law decay in the impulse response of these shot noises leads to
asymptotic long-range dependence and fractal behavior. These models are partic-
ularly appropriate for a variety of physical processes ranging from neuron £rings
and Cherenkov radiation from charged particles [19],[18].

In the case of computer traf£c traces, long range dependence manifests itself
in random distributions with power-law decay, rather than in slowly decaying im-
pulse responses. IfXi = Ti is a random time length parameter, andh is the function

h(t,Ti) = 1(0,Ti) (t) ,

depicted on the left side of Figure 14, then we obtain the M/G/∞ “queue”. That is,
λ(t) is the number of servers busy at timet when the arrival process is Poisson,Ti

is the random service time, and there is no limit on the number of active servers.
When the distribution of the user session service times is heavy-tailed, long-range
dependence is induced inλ(t).

In the traf£c analysis reported in previous sections, we noted that different
users generated traf£c at widely different rates. We also observed that to £rst order
the average interarrival time for connections within a user session was independent
of the total amount of traf£c it generated. We de£neXi = (Ci,µi), whereCi is
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Figure 14: Shot noise impulse responses for the M/G/∞ queue (left) and a gener-
alization (right).

the amount of traf£c generated by the user session andµi is the expected time
between traf£c events generated by that session, and where the variablesCi andµi

are independent of one another. Then the impulse response corresponding to the
model given in Section 2 is

h(t,(Ci,µi)) =
1
µi

1(0,µiCi) (t) .

As depicted in Figure 14, each user session consists of a rate rectangle of height
1/µi , width Ciµi , and areaCi. Note that ifµi = µ is a determistic constant, this
model reduces to the M/G/∞ case.

We are interested in the way in which the distributions ofCi andµi affect the
autocorrelationrλ(t) of the rate processλ(t). In particular, we are interested in
how heavy tailed distributions give rise to long range dependence inλ(t).

4.2 Mean and autocorrelation ofλ(t)

Suppose that for shot noise given by equation (1), the impulse responseh is deter-
ministic, i.e. does not depend onXi. Then [24] the mean and autocorrelation of
λ(t) are given by

λ̄ = E{λ(t)} = ν
∫ ∞

−∞
h(t)dt

and

rλ(τ) = E
{

(λ(t)− λ̄)(λ(t + τ)− λ̄)
}

= ν
∫ ∞

−∞
h(t)h(t + τ)dt.
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Whenh(t) is a rectangular pulse of £xed height 1/µand areaC, the mean is̄λ = νC
and the autocorrelation is

rλ(τ) =

{
ν1

µ

(
C− |τ|

µ

)
|τ| < µC

0 else
.

Suppose that there aren independent deterministic shot noises with parameters
νi, µi , andCi. Suppose also that∑νi = ν. Then summing the shot noises together
produces an equivalent random shot noise, in which the parameters(µi ,Ci) are
drawn with probabilityνi/ν for each arrival.

Due to the independence of the shot noises, the means and autocorrelations
sum. In the limit of largen, we can think ofµ andC having a given continous joint
distribution, and the mean and autocorrelation can be obtained via integration.
Speci£cally,

λ̄ = νE{C} = ν
∫ ∞

0
p(C)CdC

and

rλ(τ) = νE

{
1
µ

(
C− |τ|

µ

)+
}

= ν
∫ ∞

0

∫ ∞

0
p(µ,C)

1
µ

(
C− |τ|

µ

)+

dµdC (2)

wherep(C) andp(µ,C) are probability distribution functions. Note thatrλ(0) =
νE{C/µ}, or in caseC andµ are independent,rλ(0) = νE{C}E{(1/µ)}.

4.3 Long-range dependence

Heavy-tailed random distributions ofµ andC can lead to long-range dependence
in the autocorrelation ofλ(t). Cox [4] analyzed this relationship for theM/G/∞
queue, i.e. forµ = 1 and randomC, showing thatx−α behavior in the tail dis-
tribution ofC leads tot1−α behavior in the autocorrelation of the queue size. To
be more precise, aregularly varying function U with parameter pis de£ned as a
function which satis£es

lim
t→∞

U(xt)
U(t)

= xp

for all x> 0. If p= 0,U is referred to as aslowly varying function. It turns out that
each regularly varying function can be written in the formU(t) = t pL(t), where
L is slowly varying. Examples of slowly varying functions include functions with
£nite, non-zero limits and powers of logt.
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Cox’s result states that if the complementary distribution functionF̄C(x) of C
is regularly varying with £nite mean, i.e. if

F̄C(x) = x−αL(x)

for anyα > 1 and slowly-varying functionL(x), then the autocorrelation function
of the queue size process is

rλ(τ) = ν
∫ ∞

τ
p(C)(C− τ)dC= ν

∫ ∞

τ
F̄C(C)dC≡ τ1−αL∗(τ)

whereL∗ is a slowly varying function (see Theorem A.1). If 1< α < 2, thenrλ(τ)
is unsummable, and hence the rate process is long-range dependent.

In the case that bothC and µ are random, it turns out that power-law tails
in eitherC or µ can lead to power-law decay inrλ. As an illustrative example,
consider the case in whichC is Pareto(α,1), µ is Pareto(β,µ0), andC andµ are
mutually independent. After evaluating (2), the autocorrelation turns out to be

rλ(t) =
ν
µ0

(
αβ

(α−1)(β+1)
− β

β+2
t
µ0

)

for |t| ≤ µ0 and

rλ(t)=
νβ

µ0(α−1)(β+2−α)

(
t
µ0

)1−α
+

ναβ
µ0(β+1)(β+2)(α−β−2)

(
t
µ0

)−β−1

for |t| ≥ µ0. If α − 1 < β + 1, then the autocorrelation decays with exponent
α − 1. If the inequality is reversed, the autocorrelation decays with exponent
β +1. As in the M/G/∞ queue, long-range dependence is induced whenever 1<
α < 2. The following theorem shows that these observations can be generalized
to distributions with regularly varying tail distributions. To simplify the statement
of the theorem, we de£ne the function

G(t) =
∫ ∞

t

1
u

dFµ(u). (3)

WhenFµ is regularly varying with parameter−β, Lemma A.2 shows thatG is
regularly varying with parameter−β−1. Also, we denote the Mellin transform
of a function f by

³f (z) =
∫ ∞

0
t−z f (t)dt/t
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and we denote the relationship

lim
t→∞

f (t)
g(t)

= 1

by f (t) ∼ g(t).

Theorem 4.1 Suppose that C and µ are independent random variables with tail
distributionsF̄C andF̄µ, and thatE{1/µ} < ∞.

I. Suppose that̄FC varies regularly with parameter−α < −1, and thatF̄µ is
bounded by a regularly varying function with parameter−β <−1, whereα−1<
β+1. Then

rλ(t) ∼ tF̄C(t) ³G(1−α),

and rλ(t) is regularly varying with parameter1−α.
II. Suppose that̄Fµ varies regularly with parameter−β < −1 and thatF̄C is

bounded by a regularly varying function with parameter−α <−1, whereβ+1<
α−1. Then

rλ(t) ∼ G(t) ³̄FC(−β−2),

and rλ(t) is regularly varying with parameter−β−1.

A proof of this theorem is provided in Appendix A. Although the theorem as
stated does not cover the caseα − 1 = β + 1, the appendix gives asymptotic
bounds. These bounds show that ifrλ(t) varies regularly in this case, then as
expected it varies regularly with exponent 1−α.

BiPareto distributions have regularly varying tail distributions, and hence rate
and count processes based on biParetoC andµ will have regularly varying auto-
correlation functions. In practice, it is important to keep in mind that observations
have a limited temporal range. If the regularly varying behavior ofC andµ is only
in the extreme tail, then the regular variation induced in the autocorrelation may
not be apparent at time scales of practical interest.

The second-order temporal structure of a point process is speci£ed by its co-
occurence function. In the case of a doubly stochastic Poisson process, this func-
tion is proportional to the autocorrelation of the rate function [18]. For count pro-
cesses derived from the point process, the autocorrelation is closely related to the
co-occurence function and typically has the same asymptotic decay. Hence long-
range dependent rate functionsλ(t) lead to long-range dependent arrival count
processes. Under suf£cient levels of aggregation, any such count process eventu-
ally approaches the usual fractional Brownian motion model.
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4.4 Other properties

As Theorem 4.1 shows, the shot noise rate function we have proposed leads to
such a long-range dependent process wheneverC is heavy-tailed with parameter
1 < α < 2. However, the model retains a great deal of ¤exibility in the distribut-
ions ofµ andC, even after the parameterα is £xed. These distributions determine
the remaining properties of the rate function, including the marginal distribution,
short-term correlation properties, and the amplitude of the slowly decaying auto-
correlation tail. For example, a continuous distribution onµ leads to a continuous
marginal distribution for the rate function. If very small values ofµ are allowed,
the variance of the rate function increases withE{1/µ}, and the short-term auto-
correlation may also change shape.

While the tail densities ofC andµ determine the Hurst parameter of the rate
process, its coef£cient of variation is controlled by the arrival rateν of the Poisson
process of user session arrivals. Speci£cally,

(rλ(0))1/2

λ̄
= ν−1/2E{(C/µ)}1/2

E{C}
Increasingν corresponds exactly to increasing the level of spatial aggregation, as
dicussed in Section 3.1. As the population generating rate events increases, the
relative ¤uctuations in total rate become smaller.

The properties of the interarrival processes corresponding to point processes
modulated byλ(t) are also determined by the distributions ofµ andC. Although
the count processes obtained from these point processes inherit properties such
as long range dependence directly from the rate process, the relationship between
the statistics of the rate process and those of the inter-arrival sequence is much
more complex. For example, the second order statistics ofλ(t) are not suf£cient
to determine even the marginal distribution of the interarrival process [5].

5 Conclusions

The compound, shot noise approach appears to be a useful and ¤exible model-
ing method. The distributions of parameters such asµ andC can be estimated
based on empirical measurements, as in this work, or based on system knowledge
and experience. Once the distributions are £xed, the model automatically repro-
duces complex point process behavior, including long-range dependence counts
and bursty interarrivals. In [27], a complexity/¤exibility tradeoff is noted between
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Cox’s model and Kurtz’s model [16]. Generalizing Cox’s model along the lines
that we have described provides an intermediate point in this tradeoff spectrum.

One £nal observation relates to Section 3.1. The smoothing effect observed
through large-scale synthesis, as well as that predicted by the analytical model, has
a signi£cant impact on traf£c engineering issues. For LAN data traf£c, variability
around the mean is substantial and good traf£c engineering needs to take account
of these unusually large ¤uctuations. However, for very large aggregates, such as
those in wide area traf£c, as in the core of networks, the variability is considerably
reduced. This reduction substantially simpli£es the traf£c engineering problem
for WANs and implies that high utilizations are feasibleregardlessof the short or
long term temporal correlations in the traf£c.

There are many areas for further study. Initial investigation suggests that the
relationship between TCP connections and aggregated IP packets may be anal-
ogous to that between user sessions and TCP connections, and that it may be
possible to simulate the packet-level arrivals using a bi-level model based directly
on user sessions, or using a three-level model including user sessions, TCP con-
nections, and packets. The timing of packets within a TCP connection is clearly
affected in a complicated way by closed-loop features of the TCP protocol such as
congestion avoidance. However, it is possible that a simple timing model such as
that described in Section 2.6 may be suf£cient in order to reproduce empirical be-
havior in suf£ciently aggregated packet traf£c. Detailed queueing analysis of the
present two-level model would test the applicability of our results to buffer statis-
tics, and it would be desirable to have greater analytic understanding of properties
of this family of models.

A Regularly Varying Functions

The standard reference on regularly varying functions is [2]. Useful introductions
to regularly varying functions and their applications in probablity also include
relevant chapters of [12] and [23]. In this section, we give a proof of Theorem 4.1,
preceeded by some supporting results.

De£nition A.1 A measurable function U: IR+ → IR+ is regularly varying with
parameter p if for each x> 0,

lim
t→∞

U(tx)
U(t)

= xp.
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Regularly varying functions behave in some sense liket p with regards to inte-
gration, as in the following theorem taken from [12].

Theorem A.1 If Z varies regularly with exponentγ and the integral

Z∗
p(t) =

∫ ∞

t
upZ(u)du

exists, then

t p+1Z(t)
Z∗

p(t)
→ λ (4)

whereλ = −(p+ γ + 1) ≥ 0. Conversely, if (4) holds withλ > 0, then Z and Z∗
vary regularly with exponentsγ = −λ− p−1 and−λ, respectively.

Lemma A.2 Suppose that̄Fµ is regularly varying with parameter−β < −1, and
thatE{1/µ} is £nite. Then the function G(t) de£ned in (3) is £nite and monoton-
ically decreasing for all t≥ 0, is regularly varying with parameter−β−1, and
satis£es

G(t) ∼ β
β+1

t−1F̄µ(t).

Likewise, ifF̄µ is bounded by a regularly varying function with parameter−β,
then G is bounded by a regularly varying function with parameter−β−1.

Proof:
By assumption,G(0) = E{1/µ} is £nite, andG is monotonically decreasing since
Fµ is a distribution function. Fort > 0, integration by parts establishes that

G(t) =
∫ ∞

t

1
u

dFµ(u) =
∫ ∞

t

[
F̄µ(t)− F̄µ(u)

] du
u2 .

From Theorem A.1 we know that∫ ∞

t
F̄µ(u)u−2du ∼ (β+1)−1t−1F̄µ(t),

Then

G(t) ∼ t−1F̄µ(t)− (β+1)−1t−1F̄µ(t) =
β

β+1
t−1F̄µ(t)
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so thatG is regular varying with parameter−β−1. SinceG(t) ≤ F̄µ(t)/t, a regu-
larly varying bound onF̄µ becomes a bound onG, with parameter reduced by one.
2

The Mellin convolution of two functionsk andg is de£ned to be

k∗g(x) =
∫ ∞

0
k(x/t)g(t)dt/t =

∫ ∞

0
g(x/t)k(t)dt/t.

Under appropriate conditions onk and g, the convolutionk∗ g inherits regular
variation fromg [2, Theorem 4.1.6].

Theorem A.3 (Arandelovíc (1976)) Suppose that a measurable function f is reg-
ularly varying with parameterρ. Suppose that the Mellin transform³k of k con-
verges at least in the stripσ ≤ Re(z) ≤ τ, where−∞ < σ < ρ < τ < ∞, and that
f (x)x−σ is bounded on every interval(0,a]. Then

k∗ f (x) ∼ ³k(ρ) f (x)

(and k∗ f is regularly varying with parameterρ.)

We are interested in the case in which both functions are at least bounded by
regular variation.

Lemma A.4 Suppose that f and g are positive, bounded functions on[0,∞). Sup-
pose that f is regularly varying with parameter−ρ, and that g is bounded by a
regularly varying function with parameter−σ, whereσ > ρ > 0. Then the Mellin
convolution f∗g satis£es

f ∗g(x) ∼ ³g(−ρ) f (x),

and is regularly varying with parameter−ρ. If ρ = σ, then then for any T,ε > 0,
and any postive, bounded function h regularly varying with parameterε−ρ, the
convolution obeys the bounds

(1− ε) f (x)
∫ T

0
g(t)tρ dt/t ≤ f ∗g(x) ≤ h(x)

for suf£ciently large x.

Proof:
The caseσ > ρ is a direct application of Theorem A.3. Sinceg is bounded

by a constant and by a regularly varying function with parameter−σ, its Mellin
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transform exists at least in the strip−σ < Re(z) < 0. (See [2, Section 1.5.6]; The
transform may or may not converge at−σ.) Also f (x)xσ is bounded on £nite
intervals, and we may conclude thatf ∗g(x) ∼ ³g(−ρ) f (x).

For the upper bound in the caseσ = ρ, de£ne for anyδ > 0 the functionkδ =
max{g,δh}. The ratioh/g is regularly varying with parameterε > 0 and hence
increases without limit, so thatkδ(x) = δh(x) for suf£ciently largex. Applying
the £rst part of the lemma, we have

f ∗g(x) ≤ f ∗kδ(x) ∼ kδ(x) ³f (ε−ρ) ∼ δ ³f (ε−ρ)h(x),

and we may takeδ < 1/ ³f (ε−ρ).
To obtain the lower bound, letgT be the truncation ofg to the interval[0,T].

ThengT can be upperbounded by a regularly varying function with arbitrary pa-
rameter, and applying the £rst part of the theorem, we have

f ∗g(x) ≥ f ∗gT(x) ∼ f (x) ³gT(−ρ)

as desired. 2

Finally, we may prove Theorem 4.1.
Proof of Theorem 4.1Applying integration by parts to (2), we have

rλ(t) = ν
∫ ∞

0

∫ ∞

0

1
µ

(
C− t

µ

)+

dFC(C)dFµ(µ)

= ν
∫ ∞

0

1
µ

∫ ∞

t/µ

(
C− t

µ

)
dFC(C) dFµ(µ)

= ν
∫ ∞

0

1
µ

∫ ∞

t/µ
F̄C(C)dCdFµ(µ)

= ν
∫ ∞

0
F̄C(C)dC

∫ ∞

t/C

1
µ

dFµ(µ)

= νH ∗G(t)

whereH(t) ≡ tF̄C(t) andG is de£ned by (3).
SinceH decays asymptotically to zero, and becauseH(t)≤ t, H is bounded on

[0,∞). If F̄C is (resp. is bounded by) a regularly varying function with parameter
−α, thenH is (resp. is bounded by) a regularly varying function with parameter
1−α, and Lemma A.2 similarly relatesG andF̄µ. Hence ifα < β+2 we may ap-
ply Lemma A.4 withρ = α−1, σ = β+1 to obtain the desired results. Otherwise
if β < α−2, we takeρ = β+1 andσ = α−1. 2
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If H andG have the same coef£cient of variation 1−α =−β−1, Lemma A.4
provides the asymptotic lower bounds

(1− ε)xFC(x)
∫ T

0
G(t)tβ+1dt/t and (1− ε)G(x)

∫ T

0
FC(t)tα dt/t

for rλ(x), and shows thatrλ(t) is asymptotically upper bounded by any positive,
regularly varying function with parameter strictly greater than 1−α.

B BiPareto distribution

B.1 Pareto Distribution

The Pareto distribution has cumulative distribution function

Pareto(α,k) : F(x) = 1−
(x

k

)−α
, x≥ k.

The decay exponentα must be strictly positive, and theν-th order moment will
exist if and only ifα > ν. In particular, the mean and variance are de£ned when
α > 1 andα > 2, respectively. The mean iskα/(α−1) and the variance is given
by

k2 α
(α−1)2(α−2)

.

Thek corresponds simply to scaling: multiplying a Pareto(k,α) random vari-
able bya results in a Pareto(ak,α) variable. We restrictk to be £nite and strictly
positive.

The probability density function of the Pareto distribution is

f (x) = αkαx−α−1, x > k.

B.2 Bi-Pareto Distribution

The bi-Pareto distribution has cumulative distribution function

BiPareto(α,β,c,k) : F(x) = 1−
(x

k

)−α
(

x/k+c
1+c

)α−β
x≥ k.

The distribution looks like a Pareto(α,k) distribution for small values ofx and
like a Pareto(β,k(1+c)1−α/β) distribution in the tail. The parameterc marks the
boundary between the two types of behavior.
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The probability density function of the biPareto distribution is

f (x) = kβ(1+c)β−αx−α−1(x+kc)α−β−1(βx+αkc), x > k.

We make the obvious restrictionsβ > 0, c≥ 0, andk > 0. The initial exponent
must satisfyα ≥ −β/c and hence can be negative in general. In the applications
found the present study, we always had 0< α < β.

Because the tail is like that of a Pareto distribution with decay exponentβ, the
ν-th order moments occur if and only ifβ > ν.

Thek parameter is related to scaling just as for the Pareto distribution. On the
log-log plot, changingk simply shifts the graph to the left or right.

To examine special cases of the distribution, is is useful to rewrite the cdf as

F(x) = 1−kβ(1+c)β−αx−α (x+kc)α−β , x≥ k.

Then the following special cases and distributional limits become clear.

• biPareto(α,β,0,k) = Pareto(β,k)

• limc→∞ biPareto(α,β,c,k) = Pareto(α,k)

• biPareto(α,α,c,k) = Pareto(α,k)

• limk→0 biPareto(0,β,b/k,k) = ParetoII(β,b)

The ParetoII(β,b) distribution has the cdf

F(x) = 1− (x/b+1)−β x≥ 0.

B.3 Moments

For £nite values ofk andc, the existence of moments is determined by the tail-
decay exponentβ. In particular, ther-th momentE{Xr } is £nite for every value
of r strictly less thanβ.

For r < β, ther-th moment of a biPareto distribution is

E{Xr } = kr
(

1+ rcr−β(1+c)β−αBc/(1+c)(β− r, r −α)
)

where the incomplete beta function is de£ned as

Bx(a,b) =
∫ x

0
ua−1(1−u)b−1du
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for 0≤ x < 1 anda > 0. The above expression can be derived using the formula

E{Xr } = r
∫ ∞

0
xr−1(1−F(x)) dx,

valid for any positive random variable such thatxr(1−F(x)) → 0 asx→ ∞.
The expression for the mean can be seen to simplify in several special cases.

Whenα = 0, we getµ= k(β+c)(β−1). Taking the limit ask→ 0 with c = b/k,
we obtainkb/(β − 1), the mean of the ParetoII(β,b) distribution. Some other
special cases correspond to the Pareto distribution, as explained above.

B.4 Maximum Likelihood Estimator

The maximum likelihood estimator based onN independent samples from a bi-
Pareto distribution £nds the four parameters which maximize the joint density
function

f (x) =
N

∏
i=1

f (xi)

or equivalently the logarithm of this function,

ln f (x) =
N

∑
i=1

ln f (xi)

This equation can’t be solved in closed form, but is amenable to numerical
optimization. It is convenient for this development to replace the parametersk
and c by u = lnk and γ = lnc. Taking partial derivatives with respect to each
parameter, we have

∂
∂u

f (xi) = β+
(α−β−1)eγ+u

xi +eγ+u +
αeγ+u

βxi +αeγ+u (5)

∂
∂γ

ln f (xi) =
(β−α)eγ

1+eγ +
(α−β−1)eγ+u

xi +eγ+u +
αeγ+u

βxi +αeγ+u (6)

∂
∂α

ln f (xi) = − ln(1+eγ)+ lnxi + ln(xi +eγ+u)+
eγ+u

βxi +αeγ+u (7)

∂
∂β

ln f (xi) = u+ ln(1+eγ)− ln(xi +eγ+u)+
xi

βxi +αeγ+u (8)
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If we exclude the limiting casesc = 0 andc = ∞, the dimensionality of the
problem can be reduced from a four-dimensional optimization to three, because
the ML estimate fork is simply k̂ = mini xi. To see this, note that(

∂
∂u

− ∂
∂γ

)
ln f (xi) = β+

(α−β)eγ

1+eγ =
β+αeγ

1+eγ , (9)

independent ofxi. Suppose thatD denotes the domain over which the parameters
are de£ned and on which the probability function is non-zero, namelyα ≥ 0,
β > 0, γ ∈ IR, andu ≤ mini ln(xi). For any set of parameters in the interior of
D, (9) is strictly positive. Hence the maximum of the probability function must
occur on the boundary ofD in either theγ or u dimensions. If the maximum point
occurs at a £nite value of̂γ, the partial derivative with respect toγ must be zero,
the partial derivative with respect tou must be positive, and so ˆu must be at its
upper limit, mini ln(xi).

Hence, the £rst step in maximum likelihood estimation of aN iid biPareto
samples is to takêk = mini xi, or equivalently ˆu= mini lnxi. Secondly, use numer-
ical optimization techniques to £nd £nd the values ofα, β, andγ which maximize

ln f (α,β,γ, û,x) = ln f (α,β,γ,0,x/k̂)−N ln k̂.

From the righthand expression, it follows that the second step can be performed by
forming the normalized observation vectory = x/k̂, and £nding the MLE estimate
of the normalized vector over the family of distributions withk = 1.

For the biPareto probability function withk = 1, the £rst- and second-order
partial derivatives are fairly simple to compute, and can be used in the numerical
optimization.

∂
∂α

ln f (xi) = − ln(1+eγ)+ lnxi + ln(xi +eγ)+
eγ

βxi +αeγ

∂
∂β

ln f (xi) = ln(1+eγ)− ln(xi +eγ)+
xi

βxi +αeγ

∂
∂γ

ln f (xi) =
(β−α)eγ

1+eγ +
(α−β−1)eγ

xi +eγ +
αeγ

βxi +αeγ

∂
∂α

∂
∂α

ln f (xi) = − e2γ

(βxi +αeγ)2

∂
∂α

∂
∂β

ln f (xi) = − xieγ

(βxi +αeγ)2
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∂
∂α

∂
∂γ

ln f (xi) =
eγ

xi +eγ −
eγ

1+eγ +
βxieγ

(βxi +αeγ)2

∂
∂β

∂
∂β

ln f (xi) = − x2
i

(βxi +αeγ)2

∂
∂β

∂
∂γ

ln f (xi) =
eγ

1+eγ −
eγ

xi +eγ +
αxieγ

(βxi +αeγ)2

∂
∂γ

∂
∂γ

ln f (xi) =
(β−α)eγ

(1+eγ)2 +
(α−β−1)xieγ

(xi +eγ)2 +
αβxieγ

(βxi +αeγ)2
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