A Compound Model for TCP Connection
Arrivals for LAN and WAN Applications

Carl Nuzman Iraj Saniee Wim Sweldens Alan Weiss
Bell Laboratories, Lucent Technologies
600 Mountain Ave., Murray Hill, NJ 07974 USA

Abstract

We propose a two level model for TCP connection arrivals in local area
networks (LAN). The £rst level are user sessions whose arrival is time-
varying Poisson. The second level are connections within a user session.
Their number and mean interarrival are independent and biPareto across user
session. The interarrivals within a user session are Weibull, and across all
users are correlated Weibull. Our model has a small number of parameters
which are inferred from real trafEc collected at a £rewall. We show that
trafEc synthesized with our model closely matches the original data. We
extend this approach to a general model involving shot noise and show it
is asymptotically consistent with more common fractal models used in data
networks. Finally, we show that this model extends to the wide area net-
work applications without alteration and it predicts smoothing of wide area
network trafEc pro£le due to spatial aggregation, which we observe experi-
mentally by synthetically creating large aggregate TCP load.

1 Introduction

The development of data networking in the 1960s, £rst as an academic exer-
cise, and subsequently as a means of providing a host of new services, presents
new challenges and opportunities to the well-established £eld of teletrafEc theory.
Apart from a few pioneering investigations, such as Mandelbrot [20], some of the
features that distinguish data trafEc from voice telephony were noticed as early
as the late 1980s (Fowler and Leland [13], Meier-Hellstern et al. [21]). In their
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pioneering study of LAN traffc, Willinger et al. [17] presented data and argued
for use of alternative models. By showing that sufEciently aggregated data traf-
£c exhibited self-similarity over a wide range of time scales, the authors argued
for the use of fractal models and, more explicitly, use of statistical processes ex-
hibiting long-range dependence (LRD). In subsequent reports [26], the authors
contended that the underlying cause of self-similarity was effectively unrelated to
the mechanisms of data transmission, and were exclusively due to the nature of
aggregated load. Unlike voice, individual streams of load in data networks fol-
lowed distributions with heavy tails, the aggregation of which, it was argued, gave
rise to its observed self-similarity. Cox [5, 4] had given a related theoretical model
for long-range dependence, namelyMnG/c queue with heavy tailed service
times.

Many of the succeeding investigations (for Web data notably Crovella [6]
and Paxson [22]) have followed the same general methodology. This consists
of counting bytes and packets carried over identical non-overlapping time inter-
vals and studying the general behavior of this process as the aggregation interval
is increased both spatially and temporally. Some studies of the impact of self-
similarity on the performance of switching systems have argued in favor of the
self-similar approach [9], while others have argued against it [7, 25]. The latter
studies argued that the short-term correlation in data trafEc could capture much,
if not all, of the performance impacts attributed to self-similarity. Followup work
in this direction has concentrated on demonstration and causes of multi-fractality
in low aggregate Web trafEc [11] and potential performance impacts of multi-
fractality [8].

TCP connection arrival processes from various data sets were classifed ac-
cording to source application in [22]. Here it was observed that protocols such as
TELNET that tend to generate a single connection per “user session” are well
modeled by Poisson processes, whereas applications such as HTTP and X11
which may generate multiple connections per “user session” are not. The au-
thors conjectured that if the underlying user sessions could be observed, such ses-
sions would follow a Poisson arrival process. The concept of user sessions (“user
equivelents”) is also central to the SURGE model used to simulate the workload
of HTTP servers [1].

In this report, we use high-resolution packet data, collected at one Bell Labs fa-
cility, to provide evidence for the correctness of the user session concept. We also
show that this concept is useful for analyzing the trafEc and that it can be used to
develop simple, accurate, and efEcient models for TCP connection arrivals. In this
analysis phase, we group TCP connections into user sessions, and then measure
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distributions of measurements such as the number of connections per user session.
We found that the user sessions arrivals followed a Poisson process, while per ses-
sion measurements tend to be heavy tailed. We are then able to generate synthetic
trafEc traces from a simple, two layer model, using a small number of parameters
determined by the measurements in the analysis phase. After empirically veri-
fying the accuracy of the model, we examine some of its theoretical properties.
We show that it generalizes tiM/G/o queue in the shot noise framework, and
demonstrate the way in which long-range dependence can arise.

In contrast to the count processes used extensively in the study of self-similar
and multi-fractal phenomena, we look at #ival processest the user sesion
and connection layers. The arrival processes can easily be converted to count pro-
cesses as needed. The data we studied and the resulting model agree with the ob-
servation made in [10], that the interarrival times for TCP connections are subex-
ponential and well-modeled by Weibull distributions (when signiEcant HTTP traf-
£c is present). In addition, we observe that the sequence of interarrival times is
long-range dependent, in the data and in our model. As reported extensively in
[3], the relative amplitude of this long-range dependence diminishes as traffc is
aggregated spatially; this is also true in the model we present here.

Our contributions consist of

- Inferring user session groupings from TCP packet headers, and verifying
the appropriateness of a Poisson model for these sessions (Section 2).

- Providing a model of TCP connection arrivals within a user session, using
a newly de£ned biPareto distribution (Section 2).

- Verifying that this compound model agrees with measurement (Section 3).

- Showing the model extends to characteristics of large-scale aggregation ob-
served in trafEc in the network core (Section 3).

- Placing the model in a general shot noise framework (Section 4).

2 Model-based Measurements

2.1 Data Set

Our data was collected by a system at Bell Laboratories in Murray Hill, New
Jersey [3]. As pictured in Figure 1, the math and computer science research center
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at Bell Labs is connected to the Internet through a £rewall. The £rewall connects

to the center via a router; the data was collected from the link between this router

and the £rewall. A packet sniffer recorded all the packet headers. Our data comes
from a 27-hour period beginning the evening of November 17, 1998.

To - - |
Internal Firewall Internet [- L L .| J
Network e —
) [- - -]
Sniffer »-Time
(D= User Session
8 —— = Connection

Storage
9 mm = Packet

Figure 1. The data collection system Figure 2: Sketch of user sessions, TCP con-
nections, and packets.

We analyzed two subsets of the data:

1. All the TCP data. This amounted to 72% of the packets; almost all the rest
were UDP.

2. HTTP data between 10 AM and 5 PM. This allows us to assume a stationary
model and focus on a single type of trafEc. The majority of TCP packets in
the trace are HTTP.

Note that the data represents carried trafEc (closed loop) while we model offered
trafEc (open loop), ignoring the effects of vagaries in the Internet. Our justi£cation
for this is that the £rewall, at least, was lightly loaded, so that any congestion was
due to other links in the network. Also, it is very difEcult to infer the effect of the
TCP control algorithm on trafEc.

The model we develop in this paper has a Poisson process of user session
arrivals at the top level. Based on this model, the important quantities that must
be measured or estimated include the arrival Pat&f user sessions, the joint
distribution of user session duration and rate, and the mechanism by which each
user session generates connections. Each of these measurements are discussed in
turn below.

2.2 De£nition and Characterization of User Sessions

The grouping of IP packets into TCP connections is determined by the TCP pro-
tocol. However, the way in which TCP connections should be combined into user
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sessions is a matter of choice. Our de£nition of user session was based only on
information contained in the TCP and IP packet headers. For each TCP connec-
tion, the host IP address initiating the connection was def£ned to be the user for
that connection. The TCP connections corresponding to a given user were then
grouped into user sessions as follows:

e A user session begins when a user who has been idle opens a TCP connec-
tion.

e A user session ends, and the next idle period begins, when the user has had
no open connections farconsecutive seconds.

This method, of course, has the problem that different users sharing the same ma-
chine cannot be distinguished, and this can lead to extremely long “user” sessions
on shared machines.

We usedt = 100 seconds, so that periods of HTTP activity separated by more
than a couple of minutes were considered to be separate user sessions. We also
tried, though don’t report in detail, valuesohigher than 100 seconds, including
10 minutes and one hour. The qualitative results of the study do not depend on the
particular choice of, although some quantitative factors such as the arrival rate
of user sessions do vary with

Using the above de£nition for user sessions, we determined that the user ses-
sion arrival process is consistent with a Poisson process with a very slow (diurnal)
variation in arrival rate. The arrivals came faster during the day than at night, but
the rate was approximately constant over periods of a few hours. We found that the
interarival times were exponentially distributed, and that various transformations
of the interarrival process were uncorrelated.

2.3 Structure of Connection Arrivals

In the rest of work that will be reported here, we focused on approximately 4000
HTTP user sessions initiated between 9 AM and 5 PM. We split our model of
connection arrival within a user session into two parts. This was done based on
the data, not based on expectations we had of our model. In any user session we
de£neC as the number of TCP connections that are part of that user session. If
C > 1 we de£ne two additional statistic.is the total interarrival time; it is the

time from the £rst connection arrival to the last connection arrival. alerage
connection interarrival timés deEned to bg= T /(C— 1). Note that the timing
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of connection arrivals is not addressedbgndy; this will be addressed in Section

2.6.

2.4 Model Statistics for Connection Interarrivals

Figure 3 shows the tail distribution function ©f the number of connections gen-
erated by a user session. Figure 4 shows the tail distributign dfote that on
these log-log plots, a distribution of the form-1F (x) = x~® would appear as a
straight line with slope-a. In Figure 4, there are two nearly linear regimes, with

a smooth transition between them. In Figure 3, there appear to be two regimes,
although the regime on the left is never linear.

Number of Connections per Http User Session

Average Inter-connection Time within Http User Session
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Figure 3: Empirical tail distribution
and biPareto £t o2, the number of
connections per user session.
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Figure 4: Empirical tail distribution

and biPareto £t gfi, the mean connec-
tion interarrival time within a user ses-
sion.

If the entire plot were almost linear, the distribution could be modeled by a
Pareto distribution, for which the tail distribution function is given by

- { 67 2t

where the parametecs> 0 andk > O are the decay exponent and scale parame-
ter, respectively. The scale parameter is also the minimum possible value of the

random variable.



To give the rexibility needed to model empirical distributions such as that in
Figure 4 effectively, we de£ned th@Paretodistribution, which has a tail distri-
bution function given by

_ qu
1_F<X>:{ ()7 ()" x>k
1 x <k

The minimum possible value of such a random variable is the scale parameter
k > 0. From this point, the tail distribution initially decays as a power law with
exponentr > 0. Then, in the vicinity of a breakpoiikb (with b > 0), the decay
exponent gradually changesfio> 0. Some further properties of this distribution

are given in Appendix B

The circles in Figures 3 and 4 show the tail distribution function of biPareto
distributions matched to the empirical distributions. The parameters of the match-
ing distribution are listed on the plots in the order 3,kb,k). The £t between the
measured data and the biPareto distributions is excellent.

Some measured parameters of the trafEc trace seemed to be drawn from a
censorediPareto distribution, namely the distribution that results from throwing
out realizations of a biPareto distribution above a given threshold. An example
is the durationT, in seconds, of user sessions. The lowest curve in Figure 5 is
the empirical tail distribution function of user session duration. Therdhaes
linear regions in the log-log plot; the extreme tail appears to be asymptotic to a
vertical line atT ~ 600 minutes, suggesting that the distribution does not allow
observations above this level. B

Suppose that a random variat{ewith tail distributionF(x) is censored by
throwing out realizations greater than some thresbgldrhe resulting tail distri-
bution is truncated to

F(x) — F(Xo)

1-F(Xo)
Given thecensoring probability Xo), the original distributiorF (onx < Xo) can
be recovered frork* as

F*(x) =P(X > x|X < Xg) = X < Xo.

F(x) = F(Xo) + (1—F (X0)) F*(x).

Suppose that the observations recorded in the lower curve in Figure 5 are drawn
from a censored distributioR*. The two upper curves in Figure 6 show two
different estimates of (X) based on the censoring probability estimeido) =
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Http User Session Duration
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Figure 5: Empirical tail distribution of user session durati@rand two hypo-
thetical uncensored distributions. (Bottom curve: data, Middle curve: assuming

F(To) = 0.006, Top curve: assumirfg(To) = 0.012)

0.012 for the upper curve arfel(Tp) = 0.006 for the middle curve. The middle
curve is asymptotically straight, indicating that a biPareto £t could be appropriate.
The empiricalF* based on the estimate(Tp) = 0.006 is then plotted against a
biPareto £t in Figure 6. In the upper curve of Figure 5, the tail is convex, indicating
that Q012 is too high an estimate of the censoring probability.

When working with heavy-tailed data, a censored model may sometimes be
appropriate, even when no obvious truncation is apparent. Suppose for example
that we observé&l realizations of a random variable, and that the tail distribution
shows a clear power-law decay, down to observable probabilities on the order of
1/N. Based on the observations, we could form a model with an infnite power
law tail, or we could form a model censored to some value greater than the largest
observed value. Suppose that we use the model to gertersgathetic realiza-
tions. If K << N, the two models would most likely generate similar values.
However, ifK >> N, the uncensored model will produce a number of realiza-
tions which are much larger than any of the observed values. In this case, the
choice of model should depend on physical intuition; is it reasonable for the tail
to extend in£nitely, or are there mechanisms in the system that would limit maxi-
mum values? Possible censoring mechanisms could include £nite data collection
windows, hardware speed and memory limitations, and thresholds specifed by
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Http User Session Duration

0.500 1.000

1-(1-p)*F(x), p=0.006

0.050  0.100

—— Empirical Cdf A
O  Bi-Pareto (0.09,0.85,1.9,0.004) %,

0.005 0.010

0.01 0.10 1.00 10.00 100.00

Time (minutes)

Figure 6: Empirical estimate of the uncensored tail distribution of user session
durationD, and a biPareto £t, assuming a censoring probability @ ®.

communication protocols.

2.5 Independence of number of connectionL) and mean in-
terarrival time ( )

To fully characterize the user session parameters su€h psandT, we need

to describe not only their marginal distributions, but also their joint distributions.
Although T is strongly correlated with both andC, the relationship betwegn
andC is much weaker. The correlation coefEcient betwgandC was measured

to be only—0.013 in our data set. We also examined the megn cbnditioned

on various ranges @. Here again we found a weak inverse relationship between
pandC.

In the mathematical model, we def£@eand  to be mutually independent
random variables. This simpliEcation appears to have a relatively minor effect on
the effectiveness of the model. If more careful modeling is required later, one ap-
proach would be to de£ne a few different condition distributiongifmonditioned
on ranges of€.



2.6 Connection Arrivals within a User Session

In the model we have described so far, user sessions arrive according to a Poisson
process, and theth user session is assigned a number of connec@pasid a

total connection arrival tim& = (C; — 1), whereC; and; are drawn indepen-
dently from biPareto distributions. The last step is to model the way in which the
connections are distributed within a user sessions.

Physical intuition and qualitative examination of the data suggest that the ar-
rival of connections within a user session will be complex. For example, when
opening a Web page, typical browsers will open as many as four simultaneous
TCP connections for text and images, generating very closely spaced connection
arrivals. Along with these machine-driven dynamics, there are also slower dy-
namics based on the behavior of the human user.

Rather than attempting to model these effects explicitly, we took a simple
approach based on a renewal process. GivandT, theC — 1 interarrival times
{X;} for a given user session were de£ned to be

Z.

Xj=T—a—, jei{l,---,C-1

J ZE:_llzk J { }

where theZy are positive, i.i.d. random variables. That@arrivals from a re-
newal process are scaled to span exattgeconds. For the distribution function
of the Zy, we chose a Weibull distribution with parametex 1. The Weibull
distribution was used because it is a commonly observed interarrival distribution
[15, 10] and because its coefEcient of variation (ratio of the standard deviation to
the mean) can be easily adjusted using the shape paramétethe synthesis de-
scribed belowg = 0.48 so that the coefEcient of variation matched the measured
averagecoef£cient of variation for within-session connection interarrival times.

In our experience, the properties of the synthesized model are fairly robust
to changes in the distribution chosen for the For example, we found that
increasing the coef£cient of variation of tdg tended to increase the coefEcient
of variation of the overall interarrival times, but that large changeZginvere
required to effect signiEcant changes overall.

3 Synthesized Connection Arrivals

To test the appropriateness of the connection arrival model, we used the model to
generate synthetic connection arrivals. The rate of the user session arrival process,
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the parameters of the biPareto distributionsCoénd |, and the coeffcient of
variation of the within-session interarrivals were all matched to measurements
from the data as described in the previous section.

Here is the procedure we used to generate synthetic arrivals.

1. Generate a user session arrival at an independent exponentially distributed
time from the previous user session arrival.

2. Generat€, the number of connections in this user session, as an indepen-
dent biPareto random variable.

3. If C > 1, generat@l as an independent biPareto random variable.

4. If C > 1, generateC — 1 independent Weibull random variabl&s, and
scale them t as described in Section 2.6. Note that this uses the variable
T = (C— 1) TheX; represent the timings of connection arrivals.

We now show that our synthetic TCP connection arrivals are well-matched to
the data both in terms of interarrival marginal and interarrival autocorrelation. The
match of the two marginal distributions to each other is depicted in Figure 7. A
straight line would indicate a perfect £t. In fact, the plot is curved “downward”,
indicating that the marginal of the simulated interarrivals is slightly more extreme
than that of the data. In agreement with [10, 3], the distributions of the data and
model are well-described by Weibull distributions.

The autocorrelation of the actual and simulated interarrivals are shown in Fig-
ure 8. Again the match is very good, though not exact. Because of the long-range
dependence in the data, the empirical autocorrelation varies signi£cantly from re-
alization to realization.

A measure of the accuracy of the model across different scales is depicted in
Figure 9. In this £gure, we examine processes derived by counting the number
of connections arriving in intervals of various durations. If the model matches
the data well, then the marginal distribution of the count process derived from the
model should match that of the data on all time scales. In this £gure, we have
simply measured the square of the coeffcient of variation of the count processes
as a function of scale. The line labelled “bi-level simulation” refers to the model.
The line labeled “direct simulation” refers to a technique similar to that described
in [3], which directly matches the marginal and autocorrelation of the observed
interarrival sequence. In the line marked “i.i.d. simulation”, the arrival process
is a renewal process with interarrival distribution matched to the data. The bi-
level model and direct simulation are roughly equivalent in their ability to match
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Figure 7: Fit of synthesized TCP con-  Figure 8: Empirical autocorrelation

nection interarrivals to data. function of TCP connection interar-
rival sequence: from data and from
model.

the data in terms of aggregated coef£cient of variation, while the i.i.d. simulation
departs signi£cantly from the data as the time scale increases. The coef£cient of
variation of the data has a dip at the 100ms scale that is not reproduced by any of
the three models.

We have, in Figures 10 and 11, a visual comparison of the number of connec-
tion arrivals observed in the data compared to a trace generated by the synthesized
procedure. There are two time scales depicted: one is a count of arrivals per 100
ms; the other is a count per 100 seconds. Qualitatively, the left half of each plot
(data) looks identical to the right half (synthetic). This is just a visual way to
check that the synthetic data doesn’t have any glaring anomalies.

Generating synthetic TCP connection using the model is computationally ef-
£cient; the slowest part of the algorithm is sorting together the connections from
different user sessions, which may require somethingQike logN) operations,
whereN is the number of TCP connections.

3.1 The Effect of Spatial Aggregation

The proposed model captures the temporal aspects of TCP connections for data
collected over a local area network. As shown in Figures 10 and 11, this corre-
sponds to an average of (roughly) 10 TCP connections per second. We wish to
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Aggregation Behavior of Various TCP Connection Models

&
(=3
(=]
S 1
=1 O Data
A bi-level simulation
X +  direct simulation
X iid simulation
8 \g
s 3 o
8 \
g §\
S
,5 . \%\
S o \8
b
2 x\@
& \ \g
El X\ \n
o
X\ o
x
o
S
S \x

0.001 0.010 0.100 1.000 10.000 100.000
Time Bin Width (seconds)

Figure 9: Square of the coefEcient of variation for a TCP connection count process
as a function of bin length, from data and various models.

examine the validity of this model for wide area trafEc consisting of (say) 10-
40gbps trunks carrying thousands of such connections per second. In the absence
of explicit measurements from 10-40gbps trunks carrying primarily data trafEc,
we propose to examine the effect of large-scale, or spatial, aggregation of TCP
connections as follows. First, we synthesize spatial aggregates from the existing
data. Next, we examine the temporal correlation structure of the resulting traces,
as measured by the Hurst parameter, and compare it to that of the original trace.
We then measure the asymptotic variability of the aggregate trace, as measured
by its coefEcient of variation, and show how it relates to that of the local area net-
work, the original trace. Finally, we show how the observed effects of large-scale
aggregation are exhibited naturally in the proposed model.

Synthesis of Spatial Aggregatitve use the technique of randomized shifts [9,
8] to create copies of the original trace which appear to be mutually independent,
but whose correlation structures are virtually identically to the original trace. Each
copy is generated by cutting the original trace at a random point and interchanging
the beginning and ending segments. Multiple copies are then summed together to
form the spatial aggregate. In order for this method to work, the observation
interval should be much shorter than the total length of the trace. In our case, we
took a trace consisting of about 100,000 counts, summed between 10 and 1000
shifted copies, and observed the results on a segment of 2000 counts, depicted in
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Figure 10: HTTP Connection arrivals  Figure 11: HTTP connection arrivals
in 100ms intervals in 100 second intervals

the left side of Figure 12. This £gure shows estimates of the presumed counts
over links carrying 10 to 1000 times more connections than the link we studied.
On the right side of the £gure, we show corresponding counts generated from the
compound model. The only difference between the model used in Figure 10 and
the models used in Figure 12 is that the user session arrival iat@creased by

a factors of 10, 100, and 1000 in Figures 12 (a), (b), and (c), respectively.

Correlation Structure of Trace and Its Spatial Aggreg&iigure 13 shows
variance-scale log-log plots for the original trace and for spatial aggregates by
the factors 10, 100, and 1000. The linearity of the plots indicates self-similar be-
havior, with the Hurst parametét being proportional to the slope. The graph
shows that the spatial aggregation procedure does not affect the value of the Hurst
parameter, which is estimated to be 0.72+/-0.03 in all four cases.

Reduction in CoefEcient of Variation without Change in An important
characteristic of the spatial aggregation is increased smoothness visible in Fig-
ures 12(a)-(c). This is a simple manifestation of the law of large numbers\ Let
denote the number of independent realizations of a count process that are summed
to form an aggregate. The mean and variance of the marginal distribution of the
aggregate process both scale linearly vihthso that the coeffcient of variation
tends to zero abl~1/2. This highlights the importance of considering the auto-
correlation amplitude as well as the decay exponent in evaluating the “strength”
of long-range dependence. Even though all of the aggregates have the same Hurst
parameter, the long-range dependence is more important in the traces with high
coefEcient of variation.
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Figure 12: Incremental number of TCP connections per 100msec for the synthet-
ically aggregated trace (left side) and corresponding model (right side).
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Figure 13: Variance-time log-log plots showing no change to H as a result of
aggregation.

Comparing Figure 11 with Figure 12 (c) demonstrates the difference between
spatial and temporal aggregation. The coeffcient of variation of a long-range
dependent process falls more slowly under temporal aggregation than under spa-
tial aggregation, because in the temporal case, the variables being aggregated are
strongly correlated. For a short-term dependent process, the decay rate is the same
in both cases.

4 General Framework

The model presented in the previous section is a special case of a more general
approach that is presented below. This framework includes the approach of [4]
and [19], and like these models provides a link to the more familiar fractal models
used in data networking, for example [17] and [26].

We will construct a stochastic, instantaneous rate process for arrivals which
will be used to modulate a point process, giving a doubly stochastic point process.
This point process could be Poisson, as in [18], or a burstier renewal process, e.g.
the process with Weibull interarrivals discussed in the previous section. Here we
focus on properties of the modulating rate function.
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4.1 Rate process construction

We construct the rate process using a shot noise construction for which the roots
go back as least as far as [24] and [14]. In a general shot noise setting, events
arrive in a poisson stream with rateEach arrivalA; generates a puldgt — A;, X)
parameterized by an i.i.d. sequer{c§¢} of random vectors which parameterize
the pulses and which are independen{ Af}.

The entire shot noise is the sum of pulses,

A(t) =3 ht—ALX). (1)

Some examples: Lowen and Teich [19] de£ne fractal shot noise as
h(t—A,X) =X f(t—A)

where

a/2—-1
f(t):{ct A<t<B

0 otherwise

HereX; is a scalar quantity which may be random or deterministic,Banehy be
inEnite.

The power law decay in the impulse response of these shot noises leads to
asymptotic long-range dependence and fractal behavior. These models are partic-
ularly appropriate for a variety of physical processes ranging from neuron £rings
and Cherenkov radiation from charged particles [19],[18].

In the case of computer trafEc traces, long range dependence manifests itself
in random distributions with power-law decay, rather than in slowly decaying im-
pulse responses. X = T, is a random time length parameter, dnd the function

h(t>Ti> = 1(O,Ti) (t) )

depicted on the left side of Figure 14, then we obtain the M/Glueue”. That s,

A(t) is the number of servers busy at titnehen the arrival process is Poissan,

is the random service time, and there is no limit on the number of active servers.
When the distribution of the user session service times is heavy-tailed, long-range
dependence is induced it).

In the trafEc analysis reported in previous sections, we noted that different
users generated trafEc at widely different rates. We also observed that to £rst order
the average interarrival time for connections within a user session was independent
of the total amount of traffc it generated. We deffe= (C;, 1), whereGC; is
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h(t,T) h(t, [C u])

1/

AreaC
AreaT

Figure 14: Shot noise impulse responses for the M/Gieue (left) and a gener-
alization (right).

the amount of trafEc generated by the user sessionuaigithe expected time
between trafEc events generated by that session, and where the vatiadotes

are independent of one another. Then the impulse response corresponding to the
model given in Section 2 is

h(t. () = &1@@) t).

As depicted in Figure 14, each user session consists of a rate rectangle of height
1/, width G, and aredC;. Note that ify; = pis a determistic constant, this
model reduces to the M/&/case.

We are interested in the way in which the distribution€pandy; affect the
autocorrelatiorry (t) of the rate process(t). In particular, we are interested in
how heavy tailed distributions give rise to long range dependenkg)n

4.2 Mean and autocorrelation ofA(t)

Suppose that for shot noise given by equation (1), the impulse reshadeter-
ministic, i.e. does not depend of. Then [24] the mean and autocorrelation of
A(t) are given by

00

X:EMGH:V/ h(t) dt

—00

and

[ee]

r“ﬂ:EﬂMU—ﬂQa+U—ﬂ}:v/ h(t) h(t + 1) dt.

—00
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Whenh(t) is a rectangular pulse of £xed heighidand are&, the mean id =vC
and the autocorrelation is

I’)\(T):{ Vi (C_%> T<pc

0 else

Suppose that there anéendependent deterministic shot noises with parameters
Vi, li, andC;. Suppose also thgtv; = v. Then summing the shot noises together
produces an equivalent random shot noise, in which the paranigte@s) are
drawn with probability; /v for each arrival.

Due to the independence of the shot noises, the means and autocorrelations
sum. In the limit of largen, we can think oftandC having a given continous joint
distribution, and the mean and autocorrelation can be obtained via integration.
Specifcally,

0

A —VE{C} :v/o p(C)CdC

and

(1) :VE{ 5 (C—%)+} :V/ow/om p(u,C)%l (C—%)+ dudC (2)

wherep(C) and p(p,C) are probability distribution functions. Note thgt0) =
VE{C/u}, or in caseC andp are independent, (0) = vE{C} E{ (1/p) }.

4.3 Long-range dependence

Heavy-tailed random distributions pfandC can lead to long-range dependence
in the autocorrelation ok(t). Cox [4] analyzed this relationship for tiv/G/co
gueue, i.e. fou= 1 and randonC, showing thatx— behavior in the tail dis-
tribution of C leads tatl~® behavior in the autocorrelation of the queue size. To
be more precise, gegularly varying function U with parameterip defned as a
function which satisfes

jim YU _

Co Ut)
forallx> 0. If p=0,U is referred to as alowly varying functionlit turns out that
each regularly varying function can be written in the fddtt) = tPL(t), where
L is slowly varying. Examples of slowly varying functions include functions with
£nite, non-zero limits and powers of lag
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Cox's result states that if the complementary distribution fundfiefx) of C
is regularly varying with £nite mean, i.e. if

Fe(X) = xL(x)

for anya > 1 and slowly-varying functioh.(x), then the autocorrelation function
of the queue size process is

r (1) :\)/Too p(C)(C—T)dC:v/TmF_C(C)dCE AL (1)

whereL* is a slowly varying function (see Theorem A.1). IKla < 2, thenr, (1)
is unsummable, and hence the rate process is long-range dependent.

In the case that bot® and u are random, it turns out that power-law tails
in eitherC or p can lead to power-law decay . As an illustrative example,
consider the case in whidb is Paretod,1), u is Pareto,lp), andC andp are
mutually independent. After evaluating (2), the autocorrelation turns out to be

_ Vv ap Bt
”“"m((a—l)(ﬁﬂ) B+2uO)

for |t| < po and

B ) va L
()= o(a —1)(B+2—a) (Ho> BT DB+ B2 (“0)

for |t| > po. If o —1 < B+ 1, then the autocorrelation decays with exponent

o — 1. If the inequality is reversed, the autocorrelation decays with exponent
B+ 1. As in the M/Gf queue, long-range dependence is induced whenewer 1

a < 2. The following theorem shows that these observations can be generalized
to distributions with regularly varying tail distributions. To simplify the statement
of the theorem, we de£ne the function

G(t) = /t ) %de(u). 3)

WhenF, is regularly varying with parameter3, Lemma A.2 shows thab is
regularly varying with parameter3 — 1. Also, we denote the Mellin transform
of a functionf by

f(2) = /owtzf(t)dt/t
2

0



and we denote the relationship

lim F(t) =1

e g(t)
by f(t) ~ g(t).

Theorem 4.1 Suppose that C and p are independent random variables with tail
distributionsFc andF,, and thatE{1/u} < co. B

|. Suppose thalkc varies regularly with parameter-a < —1, and thatF, is
bounded by a regularly varying function with parametes < —1, wherea — 1 <
B+ 1. Then

() ~ the(t)G(1—a),

and ry (t) is regularly varying with parametet — a. _

Il. Suppose thaF, varies regularly with parameter-3 < —1 and thatkc is
bounded by a regularly varying function with parametex < —1, where+ 1 <
a—1. Then

(1) ~ G(t)Fc(-B-2),

and n(t) is regularly varying with parameter3 — 1.

A proof of this theorem is provided in Appendix A. Although the theorem as
stated does not cover the case- 1 = B+ 1, the appendix gives asymptotic
bounds. These bounds show that)jft) varies regularly in this case, then as
expected it varies regularly with exponent1.

BiPareto distributions have regularly varying tail distributions, and hence rate
and count processes based on biPa@etmdp will have regularly varying auto-
correlation functions. In practice, it is important to keep in mind that observations
have a limited temporal range. If the regularly varying behavi@ ahdp is only
in the extreme tail, then the regular variation induced in the autocorrelation may
not be apparent at time scales of practical interest.

The second-order temporal structure of a point process is specifed by its co-
occurence function. In the case of a doubly stochastic Poisson process, this func-
tion is proportional to the autocorrelation of the rate function [18]. For count pro-
cesses derived from the point process, the autocorrelation is closely related to the
co-occurence function and typically has the same asymptotic decay. Hence long-
range dependent rate functioh) lead to long-range dependent arrival count
processes. Under sufEcient levels of aggregation, any such count process eventu-
ally approaches the usual fractional Brownian motion model.
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4.4 Other properties

As Theorem 4.1 shows, the shot noise rate function we have proposed leads to
such a long-range dependent process wher@veheavy-tailed with parameter
1 < a < 2. However, the model retains a great deal of sexibility in the distribut-
lons ofprandC, even after the parameters £xed. These distributions determine
the remaining properties of the rate function, including the marginal distribution,
short-term correlation properties, and the amplitude of the slowly decaying auto-
correlation tail. For example, a continuous distributiorpdaads to a continuous
marginal distribution for the rate function. If very small valuesuadre allowed,
the variance of the rate function increases V@thl/p }, and the short-term auto-
correlation may also change shape.

While the tail densities o€ andu determine the Hurst parameter of the rate
process, its coefEcient of variation is controlled by the arrivalvaitthe Poisson
process of user session arrivals. Speci£cally,

((O)Y? _ 1/ E{(C/W 1
A E{C}

Increasingy corresponds exactly to increasing the level of spatial aggregation, as
dicussed in Section 3.1. As the population generating rate events increases, the
relative auctuations in total rate become smaller.

The properties of the interarrival processes corresponding to point processes
modulated by\(t) are also determined by the distributionsudindC. Although
the count processes obtained from these point processes inherit properties such
as long range dependence directly from the rate process, the relationship between
the statistics of the rate process and those of the inter-arrival sequence is much
more complex. For example, the second order statistidgtofare not sufEcient
to determine even the marginal distribution of the interarrival process [5].

5 Conclusions

The compound, shot noise approach appears to be a useful and sexible model-
ing method. The distributions of parameters sucluamdC can be estimated
based on empirical measurements, as in this work, or based on system knowledge
and experience. Once the distributions are £xed, the model automatically repro-
duces complex point process behavior, including long-range dependence counts
and bursty interarrivals. In [27], a complexity/aexibility tradeoff is noted between
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Cox’s model and Kurtz’'s model [16]. Generalizing Cox’s model along the lines
that we have described provides an intermediate point in this tradeoff spectrum.

One £nal observation relates to Section 3.1. The smoothing effect observed
through large-scale synthesis, as well as that predicted by the analytical model, has
a signiEcant impact on trafEc engineering issues. For LAN data trafEc, variability
around the mean is substantial and good trafEc engineering needs to take account
of these unusually large auctuations. However, for very large aggregates, such as
those in wide area traffEc, as in the core of networks, the variability is considerably
reduced. This reduction substantially simplifes the trafEc engineering problem
for WANs and implies that high utilizations are feasibdgardlessof the short or
long term temporal correlations in the trafEc.

There are many areas for further study. Initial investigation suggests that the
relationship between TCP connections and aggregated IP packets may be anal-
ogous to that between user sessions and TCP connections, and that it may be
possible to simulate the packet-level arrivals using a bi-level model based directly
on user sessions, or using a three-level model including user sessions, TCP con-
nections, and packets. The timing of packets within a TCP connection is clearly
affected in a complicated way by closed-loop features of the TCP protocol such as
congestion avoidance. However, it is possible that a simple timing model such as
that described in Section 2.6 may be suffcient in order to reproduce empirical be-
havior in sufEciently aggregated packet trafEc. Detailed queueing analysis of the
present two-level model would test the applicability of our results to buffer statis-
tics, and it would be desirable to have greater analytic understanding of properties
of this family of models.

A Regularly Varying Functions

The standard reference on regularly varying functions is [2]. Useful introductions
to regularly varying functions and their applications in probablity also include

relevant chapters of [12] and [23]. In this section, we give a proof of Theorem 4.1,
preceeded by some supporting results.

De£nition A.1 A measurable function UR™ — R™ is regularly varying with
parameter p if for each x O,




Regularly varying functions behave in some sensetRksith regards to inte-
gration, as in the following theorem taken from [12].

Theorem A.1 If Z varies regularly with exponemntand the integral

Zy(t) = /t uPZ(u)du
exists, then

tPH1Z(t)
p(t)

whereh = —(p+y-+1) > 0. Conversely, if (4) holds with > 0, then Z and Z
vary regularly with exponentg= —A — p— 1 and —A, respectively.

— A (4)

Lemma A.2 Suppose thaﬁl is regularly varying with parameter3 < —1, and
thatE{1/p} is £nite. Then the function(@® de£ned in (3) is £nite and monoton-
ically decreasing for all t> 0, is regularly varying with parameter3— 1, and
satisfes
B . 1p
~ ——t FRy(t).

G(t) ~ 5t MRy
Likewise, ifF_pl is bounded by a regularly varying function with paramete,
then G is bounded by a regularly varying function with parametgr— 1.

Proof:
By assumption(0) = E{ 1/p} is £nite, ands is monotonically decreasing since
Fu is a distribution function. Far > 0, integration by parts establishes that

o) = [ dRw = [ RO -Fw)] 5

From Theorem A.1 we know that
/ Fa(u)u=2du ~ (B+ 1)Lt~ 1FR,(),
t

Then

GO) ~t IR~ (B+1) IR = ot IR
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so thatG is regular varying with parameter3 — 1. SinceG(t) < F_u(t)/t, aregu-
larly varying bound orlr, becomes a bound dB, with parameter reduced by one.
O

The Mellin convolution of two functionk andg is de£ned to be

o g(x) = /O “kx/)g(t) dtt = /0 " gx/Ok(t) dt.

Under appropriate conditions dnandg, the convolutionk x g inherits regular
variation fromg [2, Theorem 4.1.6].

Theorem A.3 (Arandelovic (1976)) Suppose that a measurable function f is reg-
ularly varying with parametep. Suppose that the Mellin transforknof k con-
verges at least in the strip < Re(z) <1, where—o < 0 < p < T < o, and that
f(x)x~9 is bounded on every intervéd, al. Then

ki £(x) ~ R(p)f(x)
(and k« f is regularly varying with parametep.)

We are interested in the case in which both functions are at least bounded by
regular variation.

Lemma A.4 Suppose that f and g are positive, bounded functior[®em). Sup-
pose that f is regularly varying with parametep, and that g is bounded by a
regularly varying function with parametero, whereo > p > 0. Then the Mellin
convolution fx g satisEes

fxg(x) ~ §(-p)f(x),

and is regularly varying with parameterp. If p = o, then then for any € > 0,
and any postive, bounded function h regularly varying with parametep, the
convolution obeys the bounds

T
(1—¢)f(x) /0 gt dt/t < fxg(x) < h(x)
for suffciently large x.

Proof:
The caseo > p is a direct application of Theorem A.3. Singas bounded
by a constant and by a regularly varying function with parametey its Mellin
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transform exists at least in the strifp < Re(z) < 0. (See [2, Section 1.5.6]; The
transform may or may not converge -at.) Also f(x)x° is bounded on £nite
intervals, and we may conclude thiatg(x) ~ §(—p)f(x).

For the upper bound in the cagse= p, de£ne for any > 0 the functionks =
max{g,dh}. The ratioh/g is regularly varying with parameter> 0 and hence
increases without limit, so tha(x) = dh(x) for sufEciently largex. Applying
the £rst part of the lemma, we have

frg(x) < frks(x) ~ ks(x)F(e—p) ~ 8F(e—p)h(x),

and we may také < 1/f(e —p).

To obtain the lower bound, lefr be the truncation o to the intervall0, T].
Thengr can be upperbounded by a regularly varying function with arbitrary pa-
rameter, and applying the £rst part of the theorem, we have

fFxg(x) = frgr(x) ~ f(x) gr(-p)

as desired. O
Finally, we may prove Theorem 4.1.
Proof of Theorem 4.Applying integration by parts to (2), we have

o0 = v[ [t (e L) areRw

-V (C—ﬁ) dFe(C) dRu(W)

ool o
= v/ 5] Feucdrm

© © 1
— v [ R(c| R
= VH=x*G(t)

whereH (t) =tkc(t) andG is def£ned by (3).

SinceH decays asymptotically to zero, and becad$g) <t, H is bounded on
[0,0). If Fc is (resp. is bounded by) a regularly varying function with parameter
—a, thenH is (resp. is bounded by) a regularly varying function with parameter
1—a, and Lemma A.2 similarly relatgs andF,. Hence ifa < +2 we may ap-
ply Lemma A.4 withp = a — 1,0 = 3+ 1 to obtain the desired results. Otherwise
if B<a—2,wetakep=p+1ando=a—1. O
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If H andG have the same coeffcient of variatior &t = —3— 1, Lemma A.4
provides the asymptotic lower bounds

(1— €)xFe(x /G tPdt/t and (1—¢)G /Fc ()t dt/t

for ry(x), and shows that, (t) is asymptotically upper bounded by any positive,
regularly varying function with parameter strictly greater thand.

B BiPareto distribution

B.1 Pareto Distribution

The Pareto distribution has cumulative distribution function

X\ —a
Paretda,k): F(x)=1— (E) , x>k
The decay exponermt must be strictly positive, and theth order moment will
exist if and only ifa > v. In particular, the mean and variance are de£ned when
a > 1 anda > 2, respectively. The meanksi/(a — 1) and the variance is given

by
o

(a—1)%a-2)

Thek corresponds simply to scaling: multiplying a Par&ta() random vari-
able bya results in a Paretak, a) variable. We restrick to be £nite and strictly
positive.

The probability density function of the Pareto distribution is

f(x) =akix %1 x>k

k2

B.2 Bi-Pareto Distribution

The bi-Pareto distribution has cumulative distribution function

_ a—P
BiParetda,B,c,k): F(X)=1— (E) ’ (xil:rcc) X > K.

The distribution looks like a Paret(k) distribution for small values ok and
like a Paretd§, k(1+ c)1~%/P) distribution in the tail. The parametemarks the
boundary between the two types of behavior.
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The probability density function of the biPareto distribution is
f(x) =kP(1+ )P % H(x+ ko)* P~ L(Bx+ake), x> k.

We make the obvious restrictiofis> 0, ¢ > 0, andk > 0. The initial exponent
must satisfyo > —/c and hence can be negative in general. In the applications
found the present study, we always hae 0 < 3.

Because the tail is like that of a Pareto distribution with decay exp@)ehée
v-th order moments occur if and onlyff> v.

Thek parameter is related to scaling just as for the Pareto distribution. On the
log-log plot, changindk simply shifts the graph to the left or right.

To examine special cases of the distribution, is is useful to rewrite the cdf as

FO)=1—-KP(1+0)P 9% % (x+ko)® P, x>k
Then the following special cases and distributional limits become clear.
e biPareto(, 3,0,k) = Pareto, k)
e lim¢ .. biParetoé, 3, c, k) = Paretod, k)
e biPareto@, a, c, k) = Paretog, k)
e limy_.o biPareto(0B,b/k, k) = ParetolI3, b)
The Paretollf, b) distribution has the cdf

F(X)=1-(x/b+1)P x>o0.

B.3 Moments

For £nite values ok andc, the existence of moments is determined by the tail-
decay exponerfy. In particular, the-th momente{ X" } is £nite for every value
of r strictly less tharg.

Forr < [, ther-th moment of a biPareto distribution is

E{X'} =K <1+ rc"P(1+ C)B“’BC/(1+C)(B— rr— a))
where the incomplete beta function is de£ned as

X
Bx(a,b) = /o W i(1—uPtdu
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for 0 < x < 1 anda> 0. The above expression can be derived using the formula

E{X'} = r/o X~L(1—F(x)) dx
valid for any positive random variable such thatl — F(x)) — 0 asx — oco.

The expression for the mean can be seen to simplify in several special cases.
Whena = 0, we getu= k(B +c¢)(B—1). Taking the limit ak — 0 with c = b/k,
we obtainkb/(B — 1), the mean of the Paretofi(b) distribution. Some other
special cases correspond to the Pareto distribution, as explained above.

B.4 Maximum Likelihood Estimator

The maximum likelihood estimator based Nnndependent samples from a bi-
Pareto distribution £nds the four parameters which maximize the joint density
function

N
=[x

or equivalently the logarithm of this function,

Inf(x) = iln f(x)

This equation can’t be solved in closed form, but is amenable to numerical
optimization. It is convenient for this development to replace the paramleters
andc by u=Ink andy = Inc. Taking partial derivatives with respect to each
parameter, we have

o, . (a—B—1)eVtd aeYt
ou' ) = B B + cey+u 2
0 . (B-a)e (a-p-1)etv aerty
ayln o) = 1+e + X; + evtu + Bx; + oev+u (6)
iInf(x-) = —In(1+€) +Inx +In( -—i-e\’+“)+L+Ll (7)
da o ' X Bx +oeyty
0 Xi
v N Yy L ay+u
GBm f(x) u+In(1+e)—In(x+e™)+ T (8)
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If we exclude the limiting cases= 0 andc = o, the dimensionality of the
problem can be reduced from a four-dimensional optimization to three, because
the ML estimate fok is simplyk = min; ;. To see this, note that

0 0 N (a—PB)e¥  B+ae’
(ﬁ‘&)'””x')‘“ 1rer  1te’ ©)

independent o%;. Suppose thdD denotes the domain over which the parameters
are de£ned and on which the probability function is non-zero, nametyO,
B>0,vye R, andu < minjIn(x). For any set of parameters in the interior of
D, (9) is strictly positive. Hence the maximum of the probability function must
occur on the boundary & in either they or u dimensions. If the maximum point
occurs at a £nite value gf the partial derivative with respect Yomust be zero,
the partial derivative with respect tomust be positive, and s@ must be at its
upper limit, miniIn(x;).

Hence, the £rst step in maximum likelihood estimation df &d biPareto
samples is to taklke = min; x;, or equivalentlyu= min;Inx;. Secondly, use numer-
ical optimization techniques to £nd £nd the values g8, andy which maximize

In f (o, B,y,0,%) = In (a1, B,y,0,x/k) — NInk.

From the righthand expression, it follows that the second step can be performed by
forming the normalized observation vecyo& x/R, and £nding the MLE estimate
of the normalized vector over the family of distributions whth- 1.

For the biPareto probability function witk= 1, the £rst- and second-order
partial derivatives are fairly simple to compute, and can be used in the numerical
optimization.

%Mf(xi) = —In(1+ey)+lnxi+ln(><i+ey)+[3x%yaey
a%Inf(xi) = In(1+eV)—|n(Xi+ey)+ﬁ,
%Inf(xi) _ (Bl—_I-ogleV (a;i[i_—(e\/l)ev+BXiof\;ey
Y
%%Inf(xi) = —m
%a%lnf(xi) = —(&(ii%e;ey)z
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0 0 N e¥ eY BxeY

daay" ) = e T Tre T By rae?

d 0 L X2

%%Inf(xl) - _(Bxi +aey)2

00 N - ev ax;e’

a_Ba_mf(X') 1re x+e  (Bxtoe)?

ggln f(X) _ (B—G)Gy (a —B—l)Xiey GBXiey

ayay 7 (1+e)2 T (x+e)2 (Bx+oe)?
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