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Abstract

We propose a two level model for TCP connection ar-
rivals in local area networks. The first level are user ses-
sions whose arrival is time-varying Poisson. The second
level are connections within a user session. Their number
and mean interarrival are independent and biPareto across
user session. The interarrivals within a user session are
Weibull, and across all users are correlated Weibull. Our
model has a small number of parameters which are in-
ferred from real traffic collected a a firewall. We show
that traffic synthesized with our model closely character-
izes the original data.

1 Introduction

The development of data networking in the 1960s, first
as an academic exercise, and subsequently and rapidly
as a means of providing a host of new services, presents
new challenges and opportunities to the well-established
field of teletraffic theory. Apart from a few pioneering
investigations, such as Mandelbrot [13], some of the dis-
tinguishing features of data traffic from voice telephony
were noticed as early as the late 1980s (Folwer and Le-
land [9], Meier-Hellstern et al. [14]). In their pioneer-
ing study of LAN traffic, Willinger et al. [11] presented
data and argued for use of alternative models. By show-
ing that sufficiently aggregated data traffic exhibited self-
similarity over a wide range of time scales, the authors
argued for the use of fractal models and more explicitly
use of statistical processes exhibiting long-range depen-
dence (LRD). In subsequent reports [12], the authors con-
tended that the underlying cause of self-similarity was ef-
fectively unrelated to the mechanisms of data transmis-
sion, and were exclusively due to the nature of aggregated
load. Unlike voice, individual streams of load in data net-
works followed distributions with heavy tails, the aggre-
gation of which, it was argued, gave rise to its observed
self-similarity. Cox [1, 2] had given a different (M/G/oc)

theoretical model of long-range dependent process.

Much of the succeeding investigations (for Web data
notably Crovella [3] and Paxson [16]) have followed the
same general methodology. This consists of counting
bytes and packets carried over identical non-overlapping
time intervals and studying the general behavior of this
process as the aggregation interval is increased both spa-
tially and temporally. The potential impacts of self-
similarity on the performance of switching systems have
been argued not only in favor of the self-similar approach
(see Erramilli et al. [6]), but also against it (Elwalid and
his coauthors [18] and [4]). In the latter works it was ar-
gued that the short-term correlation in data traffic could
capture much, if not all, of the performance impacts at-
tributed to self-similarity. Followup work in this direction
has concentrated on demonstration and causes of multi-
fractality in low aggregate Web traffic (Reidy and Levi-
Vehel [17] and Feldmann et al [8]) and potential perfor-
mance impacts of multi-fractality (Erramilli et al. [5]).

A key observation made in relation to Web traffic by
Paxson [16] was that although the traffic itself exhibited
LRD for a variety of applications, the user behavior itself
could be modeled as in the standard teletraffic approach
using what may be termed loosely as “Poisson models”.
As exhaustive as this study was in regard to the variety of
protocols and data traces it analyzed, it did not classify the
various layers present in the data to determine if the same
was true at layers below the user.

It is the purpose of this report to model the arrival pro-
cess at two layers. We used high-resolution packet data,
collected at one Bell Labs facility. We aggregated the data
into two distinct layers: the “user layer” and the “con-
nection layer”. In contrast to the general methodology
followed in much data traffic analysis attempted so far,
we look at the “arrival process” for each of the above-
mentioned layers. The arrival process has the advantage
that it is easily converted to the “count process” used ex-
tensively in the study of self-similar and multi-fractal phe-
nomenon, while it provides a possible link to the more
standard teletraffic theory. Our observations for the “user
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Figure 1: The data collection system
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layer” and “connection layer” largely agree with a previ-
ous study by Feldmann [7]. We give an explicit model
of the two layers that captures the interarrival character-
istics of data traffic, and lends itself easily to simulation.
Specifically, we model the arrival process of user sessions
as Poisson, and we model user session characteristics and
TCP connection timing using heavy-tailed distributions
such as Weibull and Pareto. The resulting simulated (syn-
thesized) trace matches many key statistics of the actual
data.

Earlier work by Paxson and Floyd [16] and [7] found
non-Poisson arrivals of connections. Further, Feldmann
observed fat-tailed marginals for TCP connections. Our
contribution consists of extending that work to include the
correlated structure of interarrival times, and the resulting
link with self-similar models based on packet/byte counts.

2 TCP Connection Arrival Process

2.1 Data Set

Our data was collected by a system at Bell Laboratories
in Murray Hill, New Jersey by Don Sun, Dong Lin, and
William Cleveland. As pictured in Figure 1, the math
and computer science research center at Bell Labs is con-
nected to the Internet through a firewall. The firewall con-
nects to the math center via a router; the data was col-
lected from the link between this router and the firewall.
A packet sniffer recorded all the packet headers. Our data
comes from a 27-hour period beginning the evening of
November 17, 1998.
We analyzed two subsets of the data.

1. Allthe TCP data. This amounted to 72% of the pack-
ets; almost all the rest were UDP.

2. HTTP data between 10 AM and 5 PM. This allows
us to assume a stationary model and focus on a sin-
gle type of traffic. The majority of TCP packets are
HTTP.

Note that the data represents carried traffic (closed loop)
while we model offered traffic (open loop), ignoring the
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Figure 2: Sketch of user sessions, TCP connections, and
packets.

effects of vagaries in the Internet. Our justification for this
is that the firewall, at least, was lightly loaded, so that any
congestion was due to other links in the network. Also,
it is very difficult to infer the effect of the TCP control
algorithm on traffic.

3 Modd-based M easurements

The model we develop in this paper has a Poisson pro-
cess of user session arrivals at the top level. Based on this
model, the important quantities that must be measured or
estimated include the arrival rate A of user sessions, the
joint distribution of user session duration and rate, and the
mechanism by which each user session generates connec-
tions. Each of these measurements are discussed in turn
below.

3.1 Definition of User Sessions

The grouping of IP packets into TCP connections is deter-
mined by the TCP protocol. However, the way in which
TCP connections should be combined into user sessions
is a matter of choice. Our definition of user session was
based only on information contained in the TCP and IP
packet headers. For each TCP connection, the host IP ad-
dress initiating the connection was defined to be the user
for that connection. The TCP connections corresponding
to a given user were then grouped into user sessions as
follows:

e A user session begins when a user who has been idle
opens a TCP connection.

e A user session ends, and the next idle period begins,
when the user has had no open connections for 7 con-
secutive seconds.

We used 7 = 100 seconds, so that periods of HTTP ac-
tivity separated by more than a couple of minutes were
considered to be separate user sessions. The grouping of
packets into connections ad user sessions is sketched in
Figure 2.



This method, of course, has the problem that different
users sharing the same machine cannot be distinguished,
and this can lead to extremely long users session.

In choosing a particular value of , we wanted to use
a time that was on the order of Web browsing speed. In
a typical Web browsing behavior, a human user clicks on
a link. The Web browser opens up several simultaneous
connections to retrieve the information. Then, when the
information is presented, the user may take a few seconds
or minutes to digest the information before locating the
next desired link. We wanted 7 to be large enough to keep
such a sequence of clicks together, but not so large as to
group essentially unrelated Web uses together. If 7 is very
large, each user generates only a single user session, and
many more users are considered to be active at the same
time. Note that if the pool of potential users were not
large, then the arrival rate might depend on the number of
active users, and a Poisson model would not be appropri-
ate.

3.2 User Session Arrivals Are Poisson

User sessions are supposed to resemble phone calls, at
least in the process of initiation (arrival process). We
tested this supposition several ways; the bottom line is
that overall user session arrivals look like a time-varying
Poisson process, with very slow (diurnal) variation in ar-
rival rate.

Figure 3 compares the quantiles of an hour’s worth of
user session interarrivals with quantiles taken from an ex-
ponential distribution. The linear nature of the plot indi-
cates that this distribution provides a good fit.

The interarrivals were uncorrelated, as depicted in Fig-
ure 4, and appeared independent. We arrived at the lat-
ter conclusion by examining the correlation of powers
(squares, cubes) of interarrival times; the results were so
similar to Figure 4 as to not be worth showing. Note, too,
that the autocorrelation pictured in Figure 4 lies almost
entirely between two dotted horizontal lines that repre-
sent the 95% confidence interval for an autocorrelation of
zero.

3.3 Structure of Connection Arrivals

In the rest of work that will be reported here, we focused
on approximately 4000 HTTP user sessions initiated be-
tween 9 AM and 5 PM. We split our model of connection
arrival within a user session into two parts. This was done
based on the data, not based on expectations we had of
our model. In any user session we define C' as the number
of TCP connections that are part of that user session. If
C > 1 we define two statistics. 7' is the total interarrival
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Figure 3: Fit of TCP user session interarrivals to an expo-
nential distribution.
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rivals sequence.
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Figure 5: Empirical tail distribution and biPareto fit of C,
the number of connections per user session.

time; it is the time from the first connection arrival to the
last connection arrival. The average connection interar-
rival timeis defined to be u = T'/(C' — 1). Note that the
timing of connection arrivals is not addressed by C and p;
this will be addressed in Section 3.6.

3.4 Model Statistics for Connection Interar-
rivals

Figure 5 shows the tail distribution function of C, the
number of connections generated by a user session. Fig-
ure 6 shows the tail distribution of . Note that on these
log-log plots, a distribution of the form 1 — F(z) = =%
would appear as a straight line with slope —a.. In Figure 6,
there are two nearly linear regimes, with a smooth transi-
tion between them. In Figure 5, there appear to be two
regimes, although the regime on the left is never linear.

If the entire plot were almost linear, the distribution
could be modeled by a Pareto distribution, for which the
tail distribution function is given by

-rw={ @7 22

where the parameters « > 0 and & > 0 are the decay
exponent and scale parameter, respectively. The scale pa-
rameter is also the minimum possible value of the random
variable.

To give the flexibility needed to model empirical dis-

tributions such as that in Figure 6 effectively, we de-
fined the biPareto distribution, which has a tail distribu-
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Figure 6: Empirical tail distribution and biPareto fit of p,
the mean connection interarrival time within a user ses-
sion.

tion function given by

o, a—p
1-F(z) = { (%) (liillzg) z Z:
z <

The minimum possible value of such a random variable
is the scale parameter ¥ > 0. From this point, the tail
distribution initially decays as a power law with exponent
a > 0. Then, in the vicinity of a breakpoint kb (with
b > 0), the decay exponent gradually changes to g > 0.
The Pareto and Paretoll distributions are special cases of
the biPareto distribution [15].

The circles in Figures 5 and 6 show the tail distribution
function of biPareto distributions matched to the empirical
distributions. The parameters of the matching distribution
are listed on the plots in the order («, 8,kb,k). The fit
between the measured data and the biPareto distributions
is excellent.

3.5 Independence of number of connections

(C) and mean interarrival time (u)

To fully characterize the user session parameters such as
C, u, and T', we need to describe not only their marginal
distributions, but also their joint distributions. Although T’
is strongly correlated with both p and C, the relationship
between g and C' is much weaker. The correlation coeffi-
cient between y and C' was measured to be only —0.013
in our data set. A further illustration of the the relation-
ship between g and C' is given in Figure 7, which depicts
the estimated mean of u conditioned on various ranges of
C. The user sessions are grouped according to the num-
ber of connections they contain; for example, the sessions
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Figure 7: Conditional mean of y based on ranges of C.

with 1 to 20 connections form the first group and the ses-
sions with 21 to 40 connections form the second group.
The mean of the average connection interarrival time is
plotted for each group. If the two parameters were in-
dependent, this mean value should be constant, which is
certainly not the case. However, the mean of y appears
roughly independent of C for sufficiently large values of
C.

In the mathematical model, we define C' and p to be
mutually independent random variables. This simplifica-
tion appears to have a relatively minor effect on the ef-
fectiveness of the model. If more careful modeling is re-
quired later, one approach would be to define a few differ-
ent condition distributions for x conditioned on ranges of
C.

3.6 Connection Arrivals within a User Ses-
sion

In the model we have described so far, user sessions arrive
according to a Poisson process, and the i-th user session
is assigned a number of connections C; and a total con-
nection arrival time T; = u;(C; — 1), where C; and u;
are drawn independently from biPareto distributions. The
last step is to model the way in which the connections are
distributed within a user sessions.

Physical intuition and qualitative examination of the
data suggest that the arrival of connections within a user
session will be complex. For example, when opening a
Web page, typical browsers will open as many as four si-
multaneous TCP connections for text and images, gener-
ating very closely spaced connection arrivals. Along with
these machine-driven dynamics, there are also slower dy-
namics based on the behavior of the human user.

Rather than attempting to model these effects explicitly,
we took a simple approach based on a renewal process.
Given C and T', the C' — 1 interarrival times {X} for a
given user session were defined to be

X-:TL je{l---C—l}

J chz_ll Zka ’ ’
where the Zj, are positive, i.i.d. random variables. That is,
C arrivals from a renewal process are scaled to span ex-
actly T seconds. For the distribution function of the Zj,
we chose a Weibull distribution with parameter ¢ < 1.
The Weibull distribution was used because it is a com-
monly observed interarrival distribution [10] and because
its coefficient of variation can be easily adjusted using the
shape parameter, c.
The Weibull distribution function is

F(z) =1—exp(—(z/b)),

where b and ¢ are known as the scale and shape pa-
rameters, respectively. A Weibull(b, ¢) random variable
Y = X'/¢ can be obtained by taking the ¢-th root of an
exponential random variable X with meanb. Whene = 1,
the result is an exponential distribution, while for ¢ < 1,
the Weibull distribution is more variable than the expo-
nential, in the sense that extremely small or large values
are more likely. The HTTP connection interarrivals were
well-modeled by a Weibull distribution with shape param-
eter ¢ = 0.75. The coefficient of variation, or ratio of vari-
ance to squared mean, of the interarrivals was about twice
that of an exponential distribution.

The coefficient of variation of a distribution is the ratio
of the variance to the square of the mean; for positive dis-
tributions, it is a normalized measure of variability. The
coefficient of variation of an exponential distribution is
unity. For a Weibull(b, ¢) distribution, the coefficient of
variation V'(c) is given by

Vie) = I'(1+2/c) 1
r(1+1/¢)’

x>0, b,c>0,

When ¢ < 1, V(c) is greater than one, and the Weibull
interarrivals are more variable than exponential interar-
rivals.

In the synthesis described below, we used ¢ = 0.48 so
that the coefficient of variation matched the measured av-
erage coefficient of variation for within-session connec-
tion interarrival times, which was 5.6 in our data set.

3.7 Truncated Distributions

Some of the measurements in the data set appear to come
from a truncated biPareto distribution. By a truncated dis-



tribution, we mean the distribution that arises when all re-
alizations of a random variable which exceed some thresh-
old M are thrown out. Let F(z) be any cdf, M > 0 be
a truncation threshold, and F'(M) be the probability that
the original random variable does not exceed the thresh-
old. Then the distribution function Fjs(z) of the trun-
cated distribution is

F(z) z< M
— F(M
FM(w)_{ (1) x> M

From each distribution F'(z), truncation produces a fam-
ily of distributions Fs(x) parameterized by M. How
can we identify the F'(z) which gives rise to Fas(z)? If
F(M) is known, F(x) can be recovered for x < M as
F(z) = F(M)Fp(z). If F(M) is not known, we can
search for a scaling of F'5,(x) which produces a plausible

This latter technique is illustrated in Figure 8. The
lower line in the plot depicts the empirical distribution of
the duration D of user sessions from the HTTP data set,
in seconds. The duration is defined to be the time from
the beginning of the first connection to the end of the last
connection within a user session. Note that on this log-log
scale, the distribution turns sharply off toward negative in-
finity, indicating that the distribution may be truncated.
An estimate of the truncation threshold M is given by
the maximum value observed, which is 22011 seconds, or
about 6 hours. If we assume the truncation probability is
1-F(M) =0.006and plot1-F(z) = 1-F(M)Fp(z),
we obtain the middle line of the plot, which looks like a
good candidate for a biPareto model. If we assume a trun-
cation probability of 1 — F/(M) = 0.012, we get the top
line; we have gone “too far” if we want to use a biPareto
model.

4 Synthesized Connection Arrivals

To test the appropriateness of the connection arrival
model, we used the model to generate synthetic connec-
tion arrivals. The rate of the user session arrival process,
the parameters of the biPareto distributions of C' and g,
and the coefficient of variation of the within-session inter-
arrivals were all matched to measurements from the data
as described in the previous section.

Here is the procedure we used to generate synthetic ar-
rivals.

1. Generate a user session arrival at an independent ex-
ponentially distributed time from the previous user
session arrival.
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Figure 8: Empirical tail distribution of HTTP user session
duration. Bottom: original estimate. Middle: assuming a
truncation probability of 0.006. Top: assuming a trunca-
tion probability of 0.012.

2. Generate C, the number of connections in this user
session, as an independent biPareto random variable.

3. If C > 1, generate y as an independent biPareto ran-
dom variable.

4. If C > 1, generate C' — 1 independent Weibull
random variables Z;, and scale them to X; as de-
scribed in Section 3.6. Note that this uses the vari-
able T = (C — 1)p. The X represent the timings of
connection arrivals.

We now show that our synthetic TCP connection ar-
rivals are well-matched to the data both in terms of interar-
rival marginal and interarrival autocorrelation. The match
of the two marginal distributions is depicted in Figure 9.
A straight line would indicate a perfect fit. In fact, the plot
is curved “downward”, indicating that the marginal of the
simulated interarrivals is slightly more extreme than that
of the data.

The autocorrelation of the actual and simulated inter-
arrivals are shown in Figure 10. Again the match is very
good, though not exact. Because of the long-range de-
pendence in the data, the empirical autocorrelation varies
significantly from realization to realization.

A measure of the accuracy of the model across differ-
ent scales is depicted in Figure 11. In this figure, we ex-
amine processes derived by counting the number of con-
nections arriving in intervals of various durations. If the
model matches the data well, then the marginal distribu-
tion of the count process derived from the model should
match that of the data on all time scales. In this figure,
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Figure 11: TCP connection count process coefficient of
variation as a function of bin length, for data and various
models.

we have simply measured the coefficient of variation of
the count processes as a function of scale. The line la-
belled “bi-level simulation” refers to the model. The line
labeled “direct simulation” is a technique which directly
matches the marginal and autocorrelation of the observed
interarrival sequence, as described in the full version of
this paper. In the line marked “i.i.d. simulation”, the ar-
rival process is a renewal process with interarrival distri-
bution matched to the data. The bi-level model and direct
simulation are roughly equivalent in their ability to match
the data in terms of aggregated coefficient of variation,
while the i.i.d. simulation departs significantly from the
data as the time scale increases. It is interesting to note a
dip in the coefficient of variation of the data on the order
of 100 ms, which is not reproduced by any of the three
models.

We have, in Figures 12 and 13, a visual comparison
of the number of connection arrivals observed in the data
compared to a trace generated by the synthesized proce-
dure. There are two time scales depicted: one is a count of
arrivals per 100 ms; the other is a count per 100 seconds.
Qualitatively, the left half of each plot (data) looks identi-
cal to the right half (synthetic). This is just a visual way
to check that the synthetic data doesn’t have any glaring
anomalies.

Generating synthetic TCP connection using the model
is computationally efficient; the slowest part of the al-
gorithm is sorting together the connections from dif-
ferent user sessions, which may require something like
O(N log N) operations, where N is the number of TCP
connections.
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Figure 12: HHTP Connection arrivals in 100 ms intervals
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5 Areasfor Further Study

Initial investigation suggests that the relationship between
TCP connections and aggregated IP packets may be anal-
ogous to that between user sessions and TCP connections.
It may be possible to simulate the packet-level arrivals us-
ing a bi-level model based directly on user sessions, or
using a three-level model including user sessions, TCP
connections, and packets. The timing of packets within a
TCP connection is clearly affected in a complicated way
by closed-loop features of the TCP protocol such as con-
gestion avoidance. However, it is possible that a simple
timing model such as that described in Section 3.6 may be
sufficient in order to reproduce empirical behavior in suf-
ficiently aggregated packet traffic. Also, detailed queue-
ing analysis of the present two-level model would test the
applicability of our results to buffer statistics.
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