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Abstract—In wireless networks, monotonic, strictly subhomo-
geneous functions have been used to analyze power control
algorithms. We provide an alternative analysis based on the
observation that such functions are shrinking with respect to
certain metrics. These metrics are then used to analyze problems
involving two classes of non-monotonic functions. The first class
consists of normalized interference functions that can be used
to compute the maximum achievable signal-to-interference ratio
under power constraints. The second class consists of absolutely
subhomogeneous functions that are used to approximate power
control dynamics with outages. The eigensolutions of monotonic,
strictly subhomogeneous functions are characterized as part of
this development.

I. INTRODUCTION

For communication systems with interference between
users, power control is used to ensure that users receive
sufficiently strong signals and sufficiently low interference.
The effectiveness of power control often has a crucial effect on
the performance of systems such as wireless cellular networks,
mobile ad hoc networks, and digital subscriber line bundles.
This paper develops a mathematical framework that is useful
for analyzing power control systems, including some systems
with non-monotonic behavior.

A wireless code-division multiple access uplink provides a
canonical example. Here, geographically distributed mobiles
transmit signals that are received at a number of base stations.
The goal of the uplink power control problem is to choose
minimal transmission powers such that all mobiles achieve
a satisfactory signal to interference plus noise ratio (SINR).
Reference [1] showed that under two simple conditions, this
minimum power solution is well-defined and can be obtained
by simple distributed synchronous and asynchronous algo-
rithms. The synchronous algorithms are based on repeated
iterations of an interference function f. The two required
conditions, monotonicity and scalability of f, are satisfied
by a wide variety of system models. Further variations on
the algorithms were explored in [2] and subsequent work. In
keeping with some related literature (e.g. [3]), we use the term
strictly subhomogeneous in place of scalable.

In Section II of this paper, we re-examine the properties of
monotonic, strictly subhomogeneous functions from a contrac-
tion mapping point of view, showing that such functions are
shrinking with respect to certain metrics. The theory provides
alternative proofs for results in [1], but more importantly, can
be extended to certain non-monotonic functions. In Section III,

the results are used to compute a maximal achievable SINR
via iterations of a non-monotonic function. In Section IV, non-
monotonicity is required to model a threshold effect in which
calls with very low SINR are dropped.

The general approach in all cases is to show that the function
in question is shrinking with respect to a metric, and that the
range of the function is contained in a compact set. Global
convergence to a unique fixed point then follows by a version
of the Banach fixed point theorem. The metrics, based on
componentwise log ratios of vectors, are related to Hilbert’s
projective pseudo-metric, which plays a key role in some
treatments of the Perron-Frobenius theory of non-negative
matrices [4], [5]. Some of the results are based on an analysis
of the eigensystems of monotonic, strictly subhomogeneous
functions. This analysis, which has connections to non-linear
generalizations of Perron-Frobenius theory such as [6], [7], is
of some independent interest.

Throughout the paper, we indicate vector quantities in bold
(x rather than x). The positive and non-negative orthant in
m dimensions are denoted R and RT, respectively. The
relation x < y denotes x; < y; for each component, and
similarly x < y is defined componentwise. The notation
x < y indicates that x < y with x # y. The rectangle
a < x < b is denoted R(a,b), and for a function f, f"
denotes the n-fold composition f* = f o f?~1,

II. WIRELESS UPLINK POWER CONTROL

For a system with M active mobiles, represent the uplink
transmission powers by the vector p € ]Rf . For the mobile
m, one can define an interference function f,, : ]Rj‘f — IFR+;
given that all (other) mobiles transmit with powers specified
by p, fm(p) is the minimum power at which mobile m must
transmit to achieve its target SINR. As a concrete example,
consider a system with K base stations, where mobile m
homes to a fixed base station k(m), and where My, is the set
of mobiles that home to base station k. Denote by g, the gain
from mobile m to base station k, and by 7, the ambient noise
power at base station k. Then the SINR for mobile m € M

is GkmPm/ (Zn;ﬁm JknPn + nk). If the desired SINR is v,
then the interference function is

fm(p) -1

- mynPn + Mkemy | - (D
i (mym ng( ynPn T Nk(m)

n#m
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One can combine the individual interference functions into the
vector function f : ]Rf — Rf. The power control problem
is then simply to find the minimal vector p such that p >
f(p). One can define a wide variety of interference functions
under different operational models. Following [1], we will only
require that the function have the following two properties:

e Monotonicity: x <y implies f(x) < f(y).

o Strict subhomogeneity: for each a > 1, f(ax) < af(x).
The original definition also required positivity, (f(0) > 0)
but [2] points out that this is a consequence of the other two
properties. We will refer to a function satisfying these two
properties as monotonic and strictly subhomogeneous (MSS).
When the strict inequality above is relaxed to weak inequality,
we say that a function is monotonic and subhomogeneous
(MS). Reference [1] showed that an MSS function has at most
one fixed point v = f(v). If it has at least one feasible point
x > f(x), then there is a fixed point and this point is minimal
in the sense that v < x for any feasible x. Iterations of the
form p[n + 1] = f(p[n]) converge to v, and the iterations
themselves have nice monotonicity properties; for example, if
one starts at a feasible point p[0] > f(p[0]), then the sequence
p[n] decreases monotonically to v.

In the original paper, these and other properties were
proved with elegant, direct arguments. In this paper, we will
reformulate the proof in terms of non-expansive and shrinking
mappings. We will then show how this approach allows us
to generalize to related applications featuring non-monotonic
functions.

A mapping f from a metric space (X, u) to itself is said to
be

o nonexpansive if u(f(x),f(y)) < p(x,y) for x,y € X;

o shrinking if p(f(x),f(x)) < p(x,y) forx#y e X ;

o a contraction if there is ¢ < 1 such that u(f(x),f(y)) <

cpulx,y) forx £y e X.
As is well-known, the Banach fixed point theorem states that a
contraction on a complete metric space converges globally to
a unique fixed point. The shrinking property yields the same
result if the metric space is known to be compact [8].

Theorem 2.1: Suppose that f : X — X is shrinking on a
compact metric space (X, ). Then f has exactly one fixed
point v, and f"(x) converges to v for each x € X.

For x,y € R"™?, define

pa(xy) = max|loga;/y;|
ps(x,y) = max(loga;/y)" +max (logy;/z:) "

where ()" denotes max(z, 0). The functions 1, and i, are
metrics on R". To see this, consider the metrics on R™ defined
by

pa(X,y) = I?EIX |z — il
ps(x,y) = z:élx (x; — y¢)+ + I?Eilx (ys — Ii)+

and note that the component-wise logarithm defines an iso-
morphism from (R, u) to (R™,p) in each case. For later

reference, note that a finite closed rectangle in R’ bounded
away from the origin is compact under p, (or us), since it
corresponds to a finite closed rectangle in R™ under p, (or
Ps)-

While an MSS function is always strictly positive, compo-
nents of an MS function f may be zero for certain inputs.
However, it is not difficult to show that if f;(x) = 0 for a
strictly positive input x > 0, then f; is identically zero for
any input. From now on, we will use the term MS to refer to
functions from which any such degenerate components have
been eliminated, so that f(x) > 0 when x > 0.

Lemma 2.2: Suppose that f : R" — R% is MS. Then f is
non-expansive with respect to p, and ps. If £ is MSS, then it
is shrinking with respect to these metrics.

Proof: Suppose first that strict subhomogeneity holds.
Take x,y > 0 with pg(x,y) = § > 0. Then x < €y.
Applying monotonicity and then strict subhomogeneity, one
obtains

f(x) < f(e”y) < e’f(y),

so that log f;(x)/ fi(y) < ¢ for each i. A symmetric argument
upper bounds f;(y)/fi(x). Hence f is shrinking with respect
to pg.- When the strict inequalities are relaxed, f is non-
expansive. A similar argument applies for ps. |
The metrics p, and ps are closely related. Metric ps turns out
to be useful in studying normalized iterations in Section III,
while p, is used to study absolutely subhomogeneous func-
tions in Section IV. Either one suffices for the following result.

Theorem 2.3: Suppose that f : R — R is MSS. Then f
has at most one fixed point. If there is y with f(y) <y, then
there is a fixed point v > 0, and f"(x) converges to v for
any x > 0.

Proof: Since f(0) > 0, any fixed point is positive. The
shrinking property of f on (R’ 11,) then ensures that there
cannot be more than one fixed point. Finally, if f(y) <y, then
also f(ay) < ay for any e > 1 so that f maps R(f(0), ay)
to itself. Given x, there is a rectangle of this form containing
f(x), and the result follows from Theorem 2.1. [ |

III. COMPUTING FEASIBLE SINR

For given SINR targets, the methods of the previous section
can be used to compute the minimal feasible power vector.
This method converges globally whenever the problem is
feasible. A related problem of interest is to compute the
maximum target SINR that can be achieved for all users,
for given power constraints. Let f represent the interference
function for the SINR target v = 1 (e.g. the result of setting
v = 1 in (1)). Then we want to compute the largest v such

that p > « f(p) has a solution. If the interference function is
linear, say f(p) = Ap, with A non-negative and primitive,
then Perron-Frobenius theory indicates that the maximal -y
is the inverse of the Perron-eigenvalue r. This value can be
computed via the power method; for any p > 0, the sequence
A"p/ ||A"p|| converges to the Perron eigenvector of A, and
r is the corresponding eigenvalue. We will show that for any

MSS interference function, an analogous method can be used
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to compute an eigensolution 7v = f(v) such that 1/r is the
maximal feasible SINR. In the linear case, the same eigenvalue
is obtained for any scaling of the eigenvector. By contrast, with
an MSS interference function, the maximal SINR increases
(eigenvalue decreases) as the size of the eigenvector is allowed
to increase. We show that repeated iterations of the function
g(p) =0f(p)/ ||[f(p)| converge to the solution obtaining the
maximal SINR possible under the constraint ||p|| < 6. These
results follow immediately from structural properties of the
eigensystem of MSS functions, which we derive next.

For an MSS function f : RT — RT, we are interested in all
solutions of the equation rv = f(v). Since f(x) > £(0) > 0,
we must have » > 0 and v > 0. A number of properties follow
immediately from Theorem 2.3.

Lemma 3.1: Let £ be MSS. Then

1) There is at most one eigenvector v associated with a
given r > 0.

2) If r is an eigenvalue, then so is s for every s > r.

3) If s >r, rv=_£(v) and su = f(u), then u < v.

Proof:

1) The function f;,j(x) := f(x)/r is MSS, and hence
has at most one fixed point. Fixed points of f[,] are in
one-to-one correspondence with eigenvectors of f with
eigenvalue r.

2) Let rv = f(v). Then fj,(v) < v, and so f{,) has a fixed
point.

3) Continuing the argument above, the sequence f[’;] (v)
decreases monotonically to u. Then u < fi(v) < v.

|
Although there are always an infinite number of eigenvectors,
each can be uniquely identified by its norm. We say that a
norm is monotonic (on the orthant Ri’) if x < y implies
[lz|l < |ly||. Examples of monotonic vector norms include the
max norm, Euclidean norm, and L; norm.

Theorem 3.2: Fix any monotonic norm ||-|| and MSS func-
tion f. For each 6 > 0, there is exactly one eigenvector v and
associated eigenvalue r of f such that ||v|| = 6.

Proof: Consider the function

0f(x)

86 = ol
and observe that the fixed points of g are in one-to-one
correspondence with the eigenvectors of f having norm 6.
Since a monotonic norm is an MS function from R’ to R,
Lemma 3.3 below shows that h(x) = x/ ||x|| is non-expansive
with respect to ps. Then by virtue of Lemma 2.2, g = 6hof
is shrinking with respect to ;.

For any input, g satisfies ||g|| = 6. Since a monotonic vector
norm has bounded level sets, we have g < b for some finite
b. A lower bound for the range of g2 is therefore

0f(0)

2

g (x) > =a
I£(b)]|

and we see that the range of g™ falls inside the finite positive

rectangle R(a,b) for n > 2. By Theorem 2.1, g" converges
globally to a unique fixed point v. Hence there is a unique

> 0.

eigenvector of f having norm 6. Statement (3) of Lemma 3.1
shows that only one eigenvalue can be associated with this
eigenvector. |
The proof of Lemma 3.3 is postponed to the end of this
section. By virtue of Lemma 3.1 and Theorem 3.2, we can
define a strictly decreasing function 7¢ and strictly increasing
vector function vy which together describe the complete set
of eigensolutions of f.

Returning to the problem of computing a maximal SINR for
a uplink system modeled by an MSS interference function f,
we have a family of solutions vy such that the SINR v9 = 1/ry
is achieved, and ~y is the maximal SINR achievable within
the constraint ||p|| < 6. Repeated iteration of the function g
defined in the proof of Theorem 3.2 provides a constructive
method for computing ~y. Note that the power constraint can
be expressed by any monotonic norm; for example one can
use ||p|| = max; p; or ||p|| = >_, p; to compute the maximum
SINR under maximum or total power constraints, respectively.

It remains to prove that normalization by a MS function is
non-expansive with respect to .

Lemma 3.3: Suppose that h(x) = x/v(x), where v
R — R4 is MS. Then h is non-expansive on (R, yi).

Proof: Consider x,y > 0 with u(x,y) =4 > 0.
When h(x) % h(y) and h(y) # h(x), we have

ziv(y) yiv(x)
ws(h(x), h(y = maxlog + max log
(h(x), biy) i yiv(x) ziv(y)
i Yi
= maxlog — + maxlog —
i i i T
S .u“S (Xa y)

So it remains to consider cases in which h(x) > h(y) or
h(y) > h(x).
e Suppose x > y. One has y < x < €’y and v(y) <
v(x) < e’v(y). Moreover,

- (’%(X)>_V(y> T
o 1= max = max — = e’.
i \hily))  v(x) i w v(x)
The bounds on v then show that 1 < « so that h(x) £
h(y). On the other hand, if h(x) > h(y), then ps; =
loga < 6.

o The case y > x follows by a symmetric argument.
e Suppose that x ¥ y, y # x. Then 6 = a + 3 where
e Py <x <e%yand e Pu(y) < v(x) < e“v(y). Then

hZ(X) B I/(y) maxﬁ _ V(y) &
i (hxy)) T My T vt T

ensuring that h(y) » h(x). Similarly, considering
max; h;(y)/hi(x) shows that h(x) % h(y).

IV. UPLINK POWER CONTROL WITH OUTAGES

The model and much of the discussion in this section is
based on [9], which considers power control in a system with
outages. The resulting interference function is non-monotonic,
reflecting the fact that excessive interference can cause a
mobile to become inactive. In practice, there is usually a
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maximum power, say p, at which a mobile is allowed to
transmit. A number of choices are possible when the required
power is higher than allowed, i.e. when f,,(p) > p. One
option is to transmit at power min (p, f,(p)), effectively
getting as close to the target SINR as possible under the
constraint. The convergence properties of such a scheme can
be studied using the results above, because for any fixed b > 0
and MSS function f, the function min (b, f(-)) is again MSS
[1].

Another possibility is that a mobile that is not able to
achieve its target SINR will block its communication session
and become inactive, so that its transmitted power goes to
zero. Define the function h : RT — RT by

hi(x) = { ag

For a given interference function f, one obtains a dynamical
system g = h o f. It can readily be shown that such a system
need not have a fixed point (because of the discontinuities),
or it can have multiple fixed points.

In designing and optimizing cellular networks, it is useful
to simulate the performance of a given configuration under
realistic conditions, including realistic power control. In this
application, one is not exactly interested in the dynamics of
a power control scheme, but in its expected behavior, where
the expectation is taken over random quantities including
mobile positions and fading coefficients. One is interested in
computing equilibria of a smoothed dynamical system involv-
ing expected power and interference levels. The smoothing
implied by randomization typically ensures that fixed points
exist (via Brouwer’s theorem), but when outages are modeled,
the interference function is non-monotonic, and fixed points
no longer need to be unique in general.

In a model with random fading, let z,,, = Zm&m JrenPn+1k
represent expected noise plus interference for for mobile
m € M. If the random gain from m to k is denoted Fi, Grm.,
where F},,, is a random fading coefficient, then under a simple
outage model, mobile m would respond by choosing transmit
power P, = h(YZm/(Fim9km)). The expectation of the
transmit power would be

x; < by
$i>bi

VLm

5 = E[P,] = E|h

>:| = (YT /Gkm)-

The function ¢ is a smoothed version of h, which we will refer
to as the smoothed mobile behavior function. The solid curve
in Figure 1 depicts the graph of h (with b; = 2), and the dashed
curves represent the smoothed function ¢ under various fading
models. Here the log of the fading coefficient was taken to be
a double exponential random variable with pdf A/ 2e= A=l for
A = {2,4,8,16}. For this and other fading models such as log-
normal, the smoothed function increases monotonically (and
subhomogeneously) before saturating and decreasing to zero
at some rate. As A increases and the variance of the fading
decreases, the smoothed curves approximate » more and more
closely. In the network design application, one is interested in

N
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Fig. 1.  Outage function h (solid curve) and smoothed mobile behavior
functions ¢ (dashed curves).

finding equilibria (fixed points) of the smoothed function

g(p) = o(f(p)), (2)

where ¢ represents the componentwise application of the
smoothed mobile behavior function ¢.

Our contribution to this problem is to observe that if ¢ does
not decrease too quickly, then the contraction approach can
still be used to demonstrate the existence of a unique fixed
point. Say that a function f is absolutely subhomogeneous it

e~ l9lf(x) < fe?x) < el?lf(x)

for every x > 0 and scalar a. A subhomogeneous function can
not increase by more than a factor o when the input is scaled
by a factor . For an absolutely subhomogeneous function,
relative changes to the output, up or down, cannot be larger
than relative changes to the input. Such a function cannot grow
more than linearly, nor decay faster than an inverse law.
Lemma 4.1: Suppose that ¢ : Rj\_f — Rf is such that
1) Each component function ¢; of ¢ is a scalar function,
depending on at most one input variable.
2) Each component function ¢; is absolutely subhomoge-
neous.
Then ¢ is non-expansive with respect to p,.
Proof: Take x,y > 0 with p,(x,y) = ¢ > 0 so that
the values \; = logx;/y; for i = 1,... n satisfy |\;| < 4.
Suppose that the component function ¢; depends on input ¢.
Since z; = eMiy;, we have

™65 (y:) < ¢s (i) < ™o (ys)

and p1q(¢(x), P(y)) < 0. u
Theorem 4.2: Suppose that g = ¢of, where the component

functions ¢,, are bounded, absolutely subhomogeneous, and
univariate, and where f is MSS. Then g has a unique fixed
point v, and g"(p) — v globally on RY.

Proof: Since f is shrinking with respect to p,, and ¢ is
non-expansive, g is shrinking. It only remains to show that
g™ eventually enters a finite, positive rectangle that is closed
under g, so that Theorem 2.1 can be applied.
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Let Rg = Rf, and for n > 1 let R, = g(R,—1) be
the range of g”. If b denotes the vector of componentwise
bounds on ¢, then Ry C R(0,b), and by monotonicity,
f(R1) C R(f(0),f(b)). This last rectangle is bounded away
from the origin. If any smoothed mobile behavior function ¢,,,
is identically zero, the corresponding user can be ignored and
the system dimension reduced. Otherwise, ¢, (o) = 8 > 0
for some o > 0, and absolute subhomogeneity implies

G (t) > Bmin (t/a, aft)

for all ¢ > 0. Thus ¢,,(t) is bounded away from zero for
t in any finite interval away from zero, and we may find a
positive vector a such that Ry = ¢ (f(R1)) C R(a,b). Since
R1 C Ry, the sets R,, form a nonincreasing sequence, and
R, C R(a,b) for n > 2. [ |

While subhomogeneity is a natural condition, it is not
expected that absolutely subhomogeneous mobile behavior
functions will be encountered in practice. As suggested by
Figure 1, under an outage model with typical random fading,
the mobile transmit power eventually falls off faster than hy-
perbolically with increasing interference. However, absolutely
subhomogeneous functions are interesting in that they provide
models with unique fixed points which are qualitatively similar
to more realistic behavior functions. Of particular interest is
the least absolutely subhomogeneous upper bound. For a given
non-negative scalar function ¢ : [a,b] — R, there is a
well-defined absolutely subhomogeneous least upper bound
q: [a,b] — R, given by

sup ¢(t) min (z/t,t/x).
t€(a,b]

q(z) =

The reader can verify that ¢ is absolutely subhomogeneous,
satisfies g(x) > ¢(x), and is dominated by every other
absolutely subhomogeneous upper bound on ¢. Thus ¢(x) (or
another absolutely subhomogeneous approximation) could be
used in computations where it is desired to guarantee a unique
fixed point.

This approach can be more quantitatively accurate in the
reduced dimension power control model focused on in [9].
Here, it is the signal power to total received power ratio
(SRPR) that is tracked, rather than the SINR. If 7, is the
expected total received power at station k, then the target
power for mobile m € My is yri/grm, and the expected
transmit power is ¢(yrk/grm ). Then the total received power
in turn can be expressed

Tk:Z Zglm¢<;rj> "‘nk:ZAkj(Tj)-l-??k,
in 7

7 TLEM]'

resulting in a fixed point equation in the K-dimensional
vector r. Each interaction function Ay is the result of adding
together multiple scaled copies of the mobile behavior function
¢. Due to averaging effects, Aj; tends to be much smoother
than the constituent pieces, and in realistic scenarios such a
function is approximated reasonably well by its absolutely

N w » o (o2}
T T T T T

Resulting Interference at Station k

—_

5
Expected Interference at Station j

Fig. 2. A representative interaction function Ag; (solid curve) and its least
absolutely subhomogeneous upper bound (dashed curve).

subhomogeneous least upper bound. Figure 2 depicts a repre-
sentative interaction function Aj; and its least absolutely sub-
homogeneous upper bound, taken from a simulation with thirty
base stations and 400 active mobiles, with log-exponential
fading with parameter A = 10. The upper bound is a
reasonable approximation to the function, particularly in the
lower ranges of r; where significant numbers of mobiles
are not in outage. Replacing each interaction function by an
absolutely subhomogeneous approximation results in a model
that is guaranteed to converge to a unique fixed point. In
[9], there are a large number of “mobiles”, used to represent
expected mobile density at points on a geographic grid, and
the functions Ay; are correspondingly smoother and better
approximated by absolutely subhomogeneous functions.
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