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1 Introduction

Beginning with the investigations of Hurst (1951) into river water levels, phenomena
fundamentally invariant to changes in scale have been discovered empirically in di-
verse fields such as medicine, economics, and physics. Mathematically, a related class
of random processes were introduced in Lamperti (1962). These processes, referred
to as semi-stable processes, arose in the following way: if an infinite sequence of con-
tractions of the time and space scales of a random process yields a limit process, then
that limit process must be semi-stable. Mandelbrot referred to the same processes by
the now pervasive term self-similar, and was a pioneer in applying self-similar models
to understanding scale-invariant phenomena (see e.g. Mandelbrot 1982). Most re-
cently, these processes have received renewed interest due to empirical observations of
self-similarity in measurements of ethernet traffic [Leland et al. (1994)] and financial
data [Willinger et al. (1999)].

In his original paper, Lamperti pointed out a simple isometry between self-similar
processes and stationary processes. Some recent articles demonstrate that this map-
ping can be an important tool, allowing researchers to apply the extensive body of
knowledge about stationary processes to examine the structure of the associated self-
similar processes. In Yazici and Kashyap (1997), the authors construct a framework
for analyzing second-order self-similar processes and linear scale-invariant systems
based on well-known tools for working with second-order stationary processes and
time-invariant systems. Similar ideas were also noted briefly in Chapter 7 of Wornell
(1991). Burnecki et al (1997) use the transformation to study self-similar a-stable
processes, and Albin (1998) provides a connection between the extremal behavior of
self-similar processes and that of their stationary counterparts.

In this paper, we show how the connection with stationary processes can be ex-
ploited to solve certain problems of linear whitening and prediction of self-similar
processes. In all of the problems treated, the index sets are real intervals having
the origin as an endpoint; the principle insight is that a self-similar process on such
an interval is isometric to a stationary process on a semi-infinite interval. Applying

these results to the specific case of fractional Brownian motion (fBm), we obtain inno-



vations representations, whitening filters, and prediction and interpolation formulae
which, due to the stationary increments property of the fBm, hold for arbitrary real
intervals. The interpolation results and some of the other representations for fBm
have not been given explicitly before. In Section 2 we introduce Lamperti’s transfor-
mation, and highlight pertinent properties of self-similar processes. In Section 3 we
lay the groundwork for mean-square integration of such processes and give our main
results on prediction and whitening. Section 4 develops the case of fBm in detail, and

we end with some conclusions.

2 Self-Similar Random Processes

In this section we examine self-similar random processes from the point of view of
Lamperti’s transformation, generally following the discussion in Yazici and Kashyap

(1997).

2.1 Lamperti’s Transformation

Recall that a stochastic process {X (t),—oo < t < oo} is called stationary (or shift-

stationary) if it satisfies
{X(t - )}ier = {X()}ier

for all & € R. That is, the finite-dimensional probability distributions of the process
are unchanged by time shifts.
By analogy, a process {Y (¢),t > 0} is called scale-stationary if its distributions are

invariant to scaling of the time axis, i.e. if

{Y(at)}is0o = {Y(#) }+>0, a>0.

Lastly, an H-self-similar (or H-ss) process is one whose distributions are almost
invariant to scaling of the time axis. More precisely, scaling by a factor @ > 0 has the

same effect as multiplying the process by a factor a’’:

(1) {Y(at)}ts0 = a™{Y () }+50, a>0,



where H is referred to as the self-similarity parameter of the process. Note that a
scale-stationary process is self-similar with parameter H = 0.
We note some properties of self-similar processes; see Vervaat (1987) for a compre-

hensive discussion. If Y'(¢) is H-ss, then its second moment
E{Y ()} =t*"E{Y(1)*}

is a power of ¢, if finite. For the important case H > 0, Y (t) converges in distribution
to zero as t — 0, and hence it makes sense to define Y (0) = 0.

If Y(t) is H'-ss, then tY(t) is (H 4+ H')-ss. Note also that if Y (¢) is 0-ss on
R* = {t:t > 0}, then X(7) =Y (e") is a stationary process on R. Combining these
observations, we see that for each H there is a one-to-one mapping between H-ss

processes and shift-stationary processes.

Definition 2.1 Let X be a set admitting multiplication by positive real numbers, and
I C (0,00) a positive real index set. For each H € R, the Lamperti transformation
with parameter H, denoted Ly, is an invertible map between X -valued functions on
I and X -valued functions on Inl. For each y: I — X, the function Lgy : Inl — X
is given by

(Lgy)(t) =e HTy(e™), 7 €InlI.

For each x :In1 — X, the inverse transformation is given by
(Ly'z)(t) = ta(lnt), tel.

As is clear from the definition, the transformation can be applied to ordinary func-
tions. For example, it is easy to see that L_,,, is an isomorphism between LP(I)
and LP(In I). The main utility of this transformation, however, is the property noted
in Lamperti (1962) that for an H-ss process Y (t), the process LgY (1) is stationary.
Such a process is referred to as the stationary generator or generating process of Y.
Similarly, one can define a second-order notion of self-similarity by applying L;il to
the wide-sense stationary processes. This leads to the following definition, from Yazici

(1997):

Definition 2.2 A random process {Y (t),t € R*} is called wide-sense H-self-similar
if it satisfies:



(i) E{Y(#)?} < 00
(i) E{Y (at)} = a" E{Y ()}
(iii) E{Y (at1)Y (at2)} = a* 2 E{Y (t1)Y (t2)}
for some H > 0 and each a > 0.

In the rest of this paper, stationarity and self-similarity will be taken to hold in this
second-order sense, and we will assume that all processes have zero mean. Equiva-
lently, we focus on properties of self-similar covariance matrices. Of course, Gaussian
self-similar processes inherit from their shift-stationary generators the property that
the strict and wide-sense definitions are equivalent.

Thus far we have only discussed H-ss processes on Rt. When H > 0, we can
define Y (0) = 0, and consider processes on R which satisfy (1). Such a process Y (¢)
is really the concatenation of two H-ss processes on IRt, namely the future process
{Y(t),t > 0} and the past process {Y(—t),t > 0}. The processes are jointly H-ss,
meaning that their joint distributions satisfy the usual scaling law. Applying L
to the pair produces a pair of jointly stationary processes, say Xr = LgY (t) and

Xp = LY (—t), which we refer to as the future and past generating processes.

2.2 Fractional Brownian Motion

In modeling many empirical phenomena, it is natural to require that a model have
stationary increments. If this condition is applied to an H-self-similar process Y (t),
it follows that the increments Y (s +t) — Y (s) form a stationary process in s and an

H-ss process in t. To see the latter point, note that

{Y(s+at) - Y(s)}y,en = a"{Y(s/a+1t)-Y(s/a)}, ,cr

a {Y(s+1t) - Y(s)}t,sER :

The added requirement of stationary increments in fact determines that 0 < H <1,

E{Y(t)} =0 (unless H = 1), and

E{Y(s)Y ()} = E{Y(1)*} - 5 (Is[""" + [t*7 s — ¢[*").

N | =



In the degenerate case H = 1, this process is a line with random slope Y (1), i.e.
Y(t) = tY(1). Excluding this case, and restricting attention to the processes with
finite variance, we see that the second-order properties of an H-ss si process are
unique, up to a scale factor [Vervaat (1987)].

The Gaussian processes having the specified second-order structure, known col-
lectively as fractional Brownian motion (fBm), are among the most important and
widely used H-ss processes. As noted in Mandelbrot and Van Ness (1968), fBm
divides naturally into three quite different classes, depending on the value of H.
When H > 1/2, {Bm is said to be persistent: disjoint increments are positively cor-
related. When H < 1/2, the increments have negative correlation and are called
anti-persistent. When H = 1/2, fBm becomes the ordinary Brownian motion with
independent increments.

If H # 1/2, the correlation between disjoint increments falls off hyperbolically as

the distance between them approaches infinity:
E{Y(1)(Y(s+1) - Y(s))} ~2H(2H — 1)s*72,

Processes exhibiting hyperbolic correlations are typically called long-memory or long-
term correlated processes, although these terms are sometimes reserved for processes

whose correlations are unsummable, true for fBm with H > 1/2.

3 Linear Operations on Self-Similar Processes

The simple mapping between self-similar and shift-stationary processes suggests the
theoretical utility of working with self-similar processes by applying Lamperti’s trans-
formation, using stationary methods on the generating processes, and then applying
the inverse transformation. In this section, we show how this technique applies in the
cases of linear prediction and whitening. We first lay the groundwork by examining

mean-square integration of self-similar processes and their stationary generators.



3.1 Mean-Square Integration

The basic tool which we will use for linear operations on wide-sense H-ss processes
is the mean-square integral as presented, for example, in [Loéve (1955)]. For our

purposes, only deterministic integrands are required. The m-s integrals

(2) / f@Y (t)dt and / f(H)ay (t

exist if and only if the deterministic integrals

3) //f $)Ry (t,s)dtds and /f dt/f (s)dsRy (t,s),

respectively, exist. Each deterministic integral gives the variance of the corresponding
m-s integral.

For fBm, the first requirement of (3) is

//f ) [E2H + [sPH — |t — s"M] dt ds < oo,

satisfied for a wide class of integrands f for H € (0,1). Mean-square integration
with respect to the increments of fBm, however, is defined only for H > 1/2. The

integrands must satisfy
(4) 2H(2H — 1) //f(t)f(s)|t — s 2dtds < 0o, H>1/2
Jr
(5) /f(t)2 dt < oo, H=1/2
I

in this case.
Mean-square integrals of self-similar processes are simply related to m-s integrals
with respect to their stationary generators. For example, for Y H-ss and X = LygY,
b b Inb
(6) / (Y (D)dt = / 9(H)" X (In t)dt = /IM 9(€)e BT X () dr
where the limits of integration a and b are non-negative. The existence of the trans-
formed integral is assured by performing the analogous change of variables in (3).
The following lemma gives the corresponding formula for integrating the increments

of a self-similar process.



Lemma 3.1 Let {Y(t),t > 0} be H-ss with stationary generator X (7). Let g(t)
be a function bounded on the finite, positive interval [a,b]. Suppose further that the

autocorrelation rx (t) of X (7) satisfies the local Lipschitz condition
rx(0) —rx (1) < Ll7|, || <e
for some € > 0 and some L > 0. Then

b Inb In b
/ g(B)dY () = /1 g ax (D) + H [ glen)e® X (r)dr

na Ina

whenever the above three mean-square integrals exist.

A proof is provided in Appendix A. In essence, a rule analogous to the product rule

for differentiation gives
dY (e7) = d(e"" X (1)) = "7 [dX (1) + HX (7)dr1]

We think of dX (7)+H X (7)dr as the stationary generator of the (H —1)-ss increments

process dY (t). In general, Y (t) need not be mean-square differentiable, so that the
term “increments process” is heuristic. The above lemma extends immediately to the
cases a = 0 and b = oo as long as ¢(t) is bounded for each finite interval as a — 0
and b — oo.

Stationary processes are commonly modeled as the result of passing other processes
through stable, time-invariant linear filters. Let Z(7) = ffooc fr —0)X(0)do be a
stationary process with spectral density ¢z(w) = |F(w)|?¢x (w) obtained by filtering
the generator X (1) = LgY (7). Then the 0-ss process Z(Int) can be expressed as

Z(lnt) = /_00 f(nt—o0)X(o)do

(1) /0 ~ fnt/s)s~H-1Y (s)ds.

Similarly, if the generalized process dX (1) + H X (1) is passed through the filter, then
¢z(w) = |[F(w)|*(H? + w?)¢x (w) and

Z(lnt) = /_00 f(nt—o0)[dX (o) + HX (0)do]

(8) - /O  fnt/s)s Ty (s).

9



3.2 Linear Prediction of Self-Similar Processes

The problem of linear prediction of any second-order random process is in principle
straightforward; the crux of the problem is solving the associated Wiener-Hopf inte-
gral equation. When the process is stationary, the special structure of the problem
can be exploited to solve the equation in the frequency domain. We show in this
section that self-similar processes have structure which can be exploited in exactly
the same way, via Lamperti’s transformation.

In general, we are interested in linearly predicting a random variable Z after ob-
serving an H-ss process {Y (¢),t € I}. That is, we seek the random variable Z in the
linear space L2 (Y, I) of Y that minimizes the mean-square distance E {(Z -Z )2}

The linear spaces L? (Y,I) and L? (X = LyY,InI) are identical, since for example
applying Ly to a finite sum of the form Y a;Y (¢;) yields a finite sum of X (Int;).
Hence, the optimum linear predictor Z based on {Y(t),t € I} is the same as the
optimum linear predictor based on {X (7),7 € InI}. Since X (7) is stationary, we can

apply well-known results on the prediction of stationary processes.
Example 3.1 : Infinite-interval Prediction

Consider for H > 0 a H-ss process Y (t) defined on the whole real line, and suppose
that we wish to predict Y(a), a > 0 from observations of Y (¢) on the semi-infinite
interval I = (—00,0). Letting Xp = LY (t) and Xp = LyY (—t), we equivalently
seek to predict Xp(lna) after observing Xp(7) on I' = R. That is, given the entire
evolution of one stationary process on IR, we wish to predict a jointly stationary
process. The solution to this problem is given by a non-causal Wiener filter (see e.g.
Poor (1994)). We denote by ¢p(w) and ¢pp(w) the spectrum of the past process
and the cross-spectrum of the forward and past processes, respectively. If the filter

response
_ ¢rp(w)
op(w)

has inverse Fourier transform f(7), then the optimum linear predictor is

F(w)

Xp(lna) = /_00 f(na—7)Xp(r)dr.

10



Rewriting this solution in terms of Y'(¢) via (7) gives

V(a) = a"Xp(na)
= / T f(In(a/t) - T1Y (—t)dt

(9) o [0 k(@Y (o

The time-invariance of the stationary-domain integral implies self-similarity of the

prediction kernel k. (a, t):

koo(a,t) a” ' (a/t)"* £ (In(a/t))
= a7 '(1/(t/a)"™ " f(In(1/(t/a)))

(10) = 0 'koo(1,t/a)

The minimum mean squared error (MMSE) of linear prediction follows immediately

from the well-known result for the Wiener filter. Denoting by

the MMSE for predicting the random variable Z, we have
2H oS}

(11)  D?>(Y(a)) = a*"D* (Xp(Ina)) = ‘;—W [¢F(w) - % du

Because D? (X (o)) is independent of a, D? (Y (a)) is proportional to a?#. Intuitive-

— 00

ly, one might expect that the ability to predict a process should improve as the time
step a gets smaller. This is true here in the sense that the prediction error becomes

arbitrarily small as a — 0. However, the normalized MMSE

aor D?(V(@) _ @"D* (V1) _ o 3y,

& (Y(a) = E{Y(a)?} a2HE{Y(1)?}

is independent of a. In this relative sense, it is just as difficult to predict the next
millisecond of a self-similar process, based on the infinite past, as it is to predict the

next millenium.

Example 3.2 : Finite-interval Prediction

11



Now consider prediction of Y(a), a > 0 as in the previous example, but with ob-
servations restricted to the finite past, I = [-T,0). In terms of the generators,
we are predicting Xp(Ina) from observations of Xp(7) on the semi-infinite interval
I' = (—o00,InT]. The solution to this problem is the non-causal Weiner filter. It is
convenient to define ¢ = a/T. We get

. Ina—Inc
(12) Xr(na) = / fo(lna — ) Xp(r)dr
—o0
where f.(t) is the inverse transform of

(13) F(w) = 1 [¢Fp(w)]lnc.

$pw) Lep(-w) ],

Here, the function ¢}(w) is the causal spectral factorization of ¢p(w) satisfying

¢p(w) = |¢5(w)|?, which exists if ¢pp(w) satisfies the Paley-Wiener condition

(14) /°° nép@) 0 oo

R R
If (t) <+ X (w) are a Fourier transform pair, the notation [X (w)]} denotes the Fourier
transform of z(t)u(t — a), where throughout this work u(¢) is the indicator function
of RT.
Transforming back to the stationary domain, we get

V() = (a)"Xr(na)

(15) = (D) /fc (In(eT/4) 1Y (—t)dt

/ mr(c, t)Y (—t)dt.

Similar results hold when the observation interval and prediction time are both

positive. In that case,

Inc
(16) Fe(w) = e )[¢F( 2] I
and
(17) V() = (cT) /fclncT/t))t_H Y (¢) dt

/mTct t)dt

12



In either of these filtering problems, it may occur that F.(w) has no inverse trans-
form, but that the frequency response G.(w) = F.(w)/(H + jw) is invertible. In
view of (8), the solution can then be expressed in terms of the increments of Y (¢) as

V(a) = Ji Mr(c,t)dY (£t) with
Mr(c,t) = (cT)" ge(In(cT /1)) t~H,

provided that the integral is well-defined, and that the conditions of Lemma 3.1 are
satisfied.

From (13) and (16), the impulse response f.(7) depends on a and T only through
the ratio ¢ = a/T. It follows that the prediction kernels satisfy the self-similarity
properties

(18) mr(c,t) = T 'my(c,t/T), My(c,t) = Mi(c,t/T).

It is straightforward to show that the best linear estimate of Y (a) based on [T, 0]
converges in the mean-square sense to the infinite-interval estimate, as ' — oco. Then

the infinite-observation kernel is available as the limit
kw(a,t) = lim mr(a/T,t),
T—o0

in the sense that o o
/ / e(t)e(s)Ry (t, ) dtds = 0

where e(t) = koo (a,t) — limy oo my(a/T, t).

3.3 Whitening and Innovations Representation

In this section we seek to represent causal linear operators connecting the process
Y (t) on [0, 00) with another process W (¢) having the same second order structure as
the Wiener process. We assume that the stationary generator X (1) of Y (t) satisfies
the Paley-Wiener condition.

The stationary generator Z(r) = e~"/2W (e”) of W (t) has autocorrelation function
rz(1) = e~!71/2 and spectral density ¢z(w) = 1/(1/4 + w?). Then Z(7) can be
obtained by passing X (7) through a causal filter with frequency response
B _ 1

Px W) (1/2+iw)px (W)

13
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The process X(7) can be recovered causally by passing the increment generator

dW (1) + 1/2W (1) through a causal filter

_ $x (W) _
Gi(w) = m = ¢ (W)
If fu,(t) and g;(t) are the corresponding filter responses, we have:
(19) W(t) = $1/2 / *u(in(t/s)s~ T (s) ds
0
and .
(20) V(1) = ¥ / gi(In(t/s))s /%AW (s).
0

The examples of prediction, whitening, and innovations representation illustrate
the utility of Lamperti’s transformation, and the significance of the time origin in
the structure of self-similar processes. In particular, the information contained in a
self-similar process on a positive or negative neighborhood of the origin is equivalent
to the information contained in a stationary process on a semi-infinite interval.

A limitation of this approach is that it does not provide solutions for arbitrary
observation intervals. For example, a finite observation interval away from the origin
maps to a finite interval in the stationary domain, a case which is not handled by
the Wiener-Kolmogorov technique. A finite interval including a neighborhood of the
origin corresponds to observing semi-infinite intervals of the future and past gener-
ators. This can be solved by a spectral factorization technique, but it involves the

factorization of the spectral matrix

¢r(w)  ¢rp(w)

¢rp(w) op(w)
which is in general much more difficult than factorization of ¢r(w) or ¢p(w) only
[Wong, (1971), p. 125].

In the case of a self-similar process with stationary increments, the time-origin
no longer plays such a crucial role. Observation of the H-ss si process Y (¢) on
[To,To + T, for example, is equivalent to observation of the H-ss si process Z(t) =
Y(t+To) — Y (To) on [0,T]. The case of self-similar, stationary increments processes

is examined in detail below.

14



4 Linear Processing of fBm

In this section, we use the techniques described in the above examples to develop ex-
plicit whitening, and innovation, prediction, and interpolation formulae for fractional
Brownian motion. The prediction and interpolation formulae obtained are also opti-
mal linear filters for non-Gaussian, self-similar, stationary increments processes, and
the whitening formulae hold for non-Gaussian processes in the second-order sense.

We first give the spectral factorization of the stationary generators of fBm.

4.1 Stationary Generators of fBm

Throughout the rest of this paper, we adopt the common convention that fBm is
normalized with Vi = E{Wg(1)?} =1/ (sinwH['(2H + 1)).
The stationary generators Xp(7) and X p(7) of fBm were introduced in Yazici and

Kashyap (1997). They are statistically identical, with autocorrelation
rr(r) = rp(1) = Vg cosh(Hr) — (Vir/2) |2sinh(r/2)*"
and cross-correlation
rpp(r) = Vig cosh(HT) — (Vi /2) (2 cosh(7/2))*7 .
For 7 near 0, rp(7)/Vi ~ 1 — 1/2|7|?#; by virtue of Lemma 3.1 the relation
AWy (") = "7 [dXp (1) + HXp(7)]

is valid for H > 1/2.

The corresponding power spectral densities have not been given in previous work,
and are derived in Appendix B. They are
I'Nl-H+iw)['(1 - H—iw)

(21) pr(w) = T(1/2 +iw) T(1/2 — iw) (H? + w?)
and
#2) peplw) = A DO = H +iw) T~ H — iw)

T H? + w?
The spectrum ¢ (w) satisfies the Paley-Wiener condition and is factorable as ¢ (w) =
¢F (w)¢~ (w) where

3 (1 — H +iw)
(23) P = T i) (B 4 i)

15



When H > 1/2, the inverse transform of the causal factor is

1

(24) r(t) = TH-1/2)

e By, (H —1/2,1—2H)u(t).
Here and in the following,

¢
By(a,b) = / w11 —u)du, 0<t<1,a>0
0

denotes the incomplete beta functions. When H < 1/2, we get

rt(t) = m [e(H—l)t(l — e H)H-1/2
(25) +(1/2 - H)e ™ By_—(H +1/2,1 - 2H)] u(t).

In the special case H = 1/2, we have r(t) = e [!1/2 r¥(t) = e t/?u(t), and d(w) =
1/(1/4 + w?).

4.2 Whitening Filter and Innovations Representation of fBm

One of the most common representations for fBm is based on fractional integration
of white noise from the infinite past, as given in Mandelbrot and Van Ness (1968).
Explicitly, we have the causal filter

1

R TS VE)

/ b [(t — ) HY 2yt — ) — (—x)H_1/2u(—a:)] AW (z)

—o0
where W (z) is a Wiener process on R.

Using the method of Section 3.3, It is also possible to represent fBm on a a finite
interval [0, T] using a finite interval of a white noise process, as the following theorem

demonstrates.

Theorem 4.1 The fBm Wg(t) on [0,T] with H > 1/2 can be obtained from a Brow-

nian motion W (t) on [0,T] as

tH t
(6) Walt) = gy [, (/0" Broaa =1/2,1 = 200) 5~ 2aW ()
Conversely W (t) can be obtained from Wg(t) as
WO = Fa—g |, (/0 Wy
_ t
(27) %/0 s27H B, _,(3/2— H,0) dWg(s)

16



When H < 1/2, Wg(t) can be represented as

t
Wa(t) = m [ e sz aw )
_ t
(28) %/0 s"V2B i (H +1/2,1 - 2H) dW (s).

Conversely, W (t) can be obtained from Wg(t) as

1 t
W(t) m /) (S/t)_H_1/2(t - S)_H_1/2WH(S) ds
(29) %/0 s H12B,_,,,(1/2 — H,0) W (s) ds

Although proving this theorem via Lamperti’s transformation is a new technique,
most of the theorem has been given in some form in previous work. The case H > 1/2
was given in Barton and Poor (1988). In Decreusefond and Ustiinel (1999), the

authors gave (26) and (28) in the comprehensive form

t
(30) Wialt) = [ Kut.)aw (s
where
B (t—s)H71/2 B B ‘ L
KH(t,S)—ir(H+1/2)F(1/2 HH-1/2;H+1/2;1 t/s)l[g’t)(s)

and F(-,-,-,-) is Gauss’ hypergeometric function. The authors use this representation
extensively in developing a stochastic calculus for fBm. Coutin and Decreusefond
(1999) also shows that (30) can be inverted, although (27) and (29) are not given
explicitly. Finally, we note that Molchan and Golosov (1969) gave an analogous
representation of fBm in terms of a white process 7(t) having independent but not
stationary increments. Because 7(t) is (1 — H)-self-similar, and the spectrum of
its generating function is simply 1/((1 — H)? + w?), it turns out that Molchan and
Golosov’s representation can also be easily derived using the method of section 3.3.
It is also straightforward, for example, to obtain a representation of Wg (t) in terms
of Wgr (t) for arbitrary H and H'.

Proof of Theorem 4.1: The innovations representations (26) and (28) are immediate

after inserting (24) and (25), respectively, into (20) of Example 3.3.
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To obtain the whitening filter (29) for H < 1/2, note that

T(1/2 + iw) (H + iw) T(1/2 + iw) {1 (H—1/2)]

Fulo) = 0 H i) @2 i) - TO - F + iw) 1/2+ 4w

The transform pairs (44) and (45) give the inverse transform f,(7) of (19).

—1/2
T(1/2— H)
+(H = 1/2)Bi_1/¢(1/2 = H,0)] u(Int),

(31) fu(int) (- 1/p -

which we insert into (19) to obtain (29).
For H > 1/2, F,,(w) has no inverse transform. As in the discussion following (17)

we instead invert the freqency response

() = L(1/2 + iw) (/2 +iw) [1 (1/2—H)]
W T PA—H +iw) (1/2+iw) T2 - H + iw) 1/2+iw |’
obtaining
gu(Int) = m [t*1/2(1 — 1) /2 - Ht*By 4 ,(3/2 - H, 0)] u(lnt).

(32)
and hence (27) via (8).

4.3 Prediction of fBm

Before giving prediction formulae for fBm, we note that various aspects of the prob-
lem have been treated previously by Jaglom (1955), Grigorev (1965), and Molchan
(1969), and independently by Gripenburg and Norros (1996). Of particular inter-
est is Molchan (1969), which treats the derivative of fBm as a generalized random
process in the sense of Gel’fand. Molchan gives an elegant formula for prediction of
this generalized process, from which the prediction formulae collected here can be
derived. Gripenberg and Norros give a clear and complete exposition of prediction
for fBm with H > 1/2. As far as we are aware, the finite-interval prediction formula
for H < 1/2 has not been given explicitly before, although Grigorev (1965) gives the
essential elements. Theorems 4.2, 4.3, and 4.4 collect these prediction results. We

sketch proofs based on Examples 3.1 and 3.2, and highlight some ideas suggested by

18



the framework of Lamperti’s transformation. Further results on conditional expec-
tations of functionals of fBm, using the stochastic calculus of variations rather than

mean-square integration, are given in Decreusefond and Ustiinel (1999).

Theorem 4.2 Let Y (t) be a fractional Brownian motion with parameter H € (0,1).
For each a > 0 and Ty € R, the predictor Y (To+a) = E{ Y (T +a) | Y (t),t < T },

can be expressed as a m-s integral

A cos(mH) gi1s0 [ Y(To—1t)—Y(To)
33 Y (Tt =Y (T) + ——= +1/2/ dt.
( ) ( (]+(l) ( 0)+ T a 0 tH+1/2(t+a)
Alternate forms include, for H < 1/2
N cos(mH) pi1/o /°° Y(To —t)
4 Y (T, = —" ——
(34) (To +a) p— . TR0 a)
and for H > 1/2
. cos(mH) p_1/9 /°° aY (To —t) — (t + @)Y (Tp)
Y (T, = —
(35) Y(To +a) — o tHH1/2(t + q) dt
cos(mH) [ [osH-1/2
= Y(To) + ——~ ds t'2~Hdy (Ty — t).
(36) @)+ ST [ [y (@ -

Theorem 4.3 Let Y (t) be fBm with H > 1/2. For each ¢ >0 and 0 < T < oo, and
Ty € R, the predictor Y (¢T +Tp) = E{ Y (¢T +Tp) | Y(t),t € [To — T, To] }, can be
expressed as V(Ty + ¢T) =Y (Tp) + fOT Mr(c,t)dY (Ty — t) where

1/2—H 1/2-H ,c H-1/2 H-1/2
(37) Mr(e,t) = <XH) (1 -t / A Ch )
T T T 0 s+t/T

Theorem 4.4 Let Y (t) be fBm with H < 1/2. For each ¢ >0 and 0 < T < co and
To € R, the predictor Y (To + ¢T) = E{Y (To + ¢T) | Y(t),t € [To — T, To] }, can be
ezpressed as an integral Y (Ty + ¢T') = fOT mr(c,t)Y (To — t)dt where

mr(c,t) = T~ Yt/T)"H-Y2(1 —t/T)~H-1/2
cH+1/2(1 + C)H—1/2(1 —t/T)

(38) (1/2 = H)B,j(cq41)(H +1/2,1 - 2H) + e+ /T

19



Proof: The solutions are obtained by examining the increments process
Z(t) =Y (To + 1) — Y(To),
using the equations developed in Examples 3.1 and 3.2.

For the infinite observation interval,

_ orp(w) _ cos(wH)F
¢p(w)

which has [Erdélyi (1954), 1.9.1] inverse transform

F(w)

(1/2 +iw)T(1/2 — iw) = cos(wH)sech(mw)

_ cos(nH)
27

(@) sech(t/2).

The prediction kernel is

koo(a,—t) = a~'(a/t)"*! f(In(a/?))
cos(nH)  2aft—H-!

2 (@)1 + (t/a)' /2
cos(mH) a"+1/2¢—H-1/2

™ a+t

?

leading to (33). Further simplification is possible, due to the identity

—ar

*®  ds
/ ————=a"*B(l-a,a) = 0<ax<l,
o s*(s+a)

sinwa’

which can be used with @ = H +1/2 to obtain expressions (34) and (35). Equation
(36) is obtained from (33) using integration by parts, or directly by inverting G(w) =
F(w)/(H + iw).

In proving (4.4) and (4.3), we must invert the frequency responses

_ cos(rH) T(1/2 +iw) (H +iw) [T(1 — H +iw) T(1/2 —iw) |™°
Felw) == I(1- H +iw) (H + iw) L H<1/2

and G.(w) = F.(w)/(H + iw). Both functions can be put into the form
Z(w) = (a +iw) X (w) [Y (w)]}

where z(t) < X (w) is causal but not differentiable and y(¢t) + Y (w) is noncausal and

differentiable.
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The inverse transform of Z(w) is

2(t) = aw(t)*y(t)U(t—v)+%(w(t)*y(t)U(t—7))
= az(t) xy(t)ult —7) +y(M=z(t — ) + 2(t) xy' (Du(t — )

= y(a(t =) + (@) * (mB)u(t — 7))

where m(t) ¢ (a + iw)Y (w).
Using the transforms in Appendix C and considerable manipulation of integrals,

the inverse transforms turn out to be

7r cH=1/2(1 4 ¢)H-1/2(1 — ce™?)

) = |(1/2= H)B, jorny(H +1/2,1— 2H
f(t)cos(qu) 1/ )Be(e+1y(H +1/ )+ R
x ¢ 2= He=t/2(1 — ce=t)~H=1/24(t —Inc)
and
w M2 H g tf2(] _ e ty1/2-H /c H-1/2(1 H-3/2 -
gc(t)icos(wH) c e (1 =ce™) ; u (14w) du u(t —Inc)

H—1/2(1 +U)H—3/2
u+cet
¢ yH=1/2(1 4 )H-1/2

c
+ /2 Hemt2(1 ce_t)l/Q_H/ 4 du u(t —Inc)
0

_ 61/27Heft/2(1_Ceft)1/2fH/ —
o u+ ce~”

du u(t —Inc).

Then (37) is immediate from (8), while (38) follows after writing ¥ (T + ¢T') =
Y (Ty) +f0T mr(c,t)(Y (To—t)—Y (Tp))dt and noting that in this case fOT mr(c,t)dt =
1.

The impulse responses f.(t) and g.(t) are plotted in Figure 1 for H = 0.2 and
H = 0.8, respectively, and various values of ¢. The prediction time a is fixed at
unity, so that ¢ = 1/T. Note that as T — oo, fi/r(t) and g1,7(t) approach the
corresponding infinite observation impulse responses, which are plotted as solid lines.
The agreement quickly becomes very close for ¢ < 1. Figure 2 plots examples of the
prediction kernels my(1/T,t) and M7(1/T,t) as dashed lines, and the corresponding
limits koo (1,t) and K (1,%) as solid lines.

When T = oo, the normalized MMSE of prediction d? (-) can be obtained from (11)
in Example 3.1. Evaluation of this expression gives

2 _ sin(rH)L(2H +1) [ |[(1/2 +iw) |2
4> (Wr(a)) = o /m IT(1+ H + iw) |2
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Figure 1: Prediction filter impulse responses for the stationary generator of fBm.
The positive dashed functions are f.(—7) for H = 0.2, T = ¢! = e7%,e%,e*. The
negative dashed functions are g.(—7) for H = 0.8, T = ¢~ = e™*,€°, e*. The solid

functions are the corresponding infinite observation responses.
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Figure 2: Prediction kernels for unit prediction of fBm. The positive dashed functions
depict mr(1/T,t) for H = 0.2, and the negative dashed functions depict Mr(1/T,t)
for H = 0.8. The solid functions are the corresponding infinite observation kernels

koo (1,t) and Koo (1,1).
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sin(nH)T'(2H)
r(1/2+ H)’
sin(w(H — 1/2))['(3/2 — H)*
n(H —1/2)['(2 — 2H)
'(3/2 — H)
['(2—-2H)T(H +1/2)°
where the integral is evaluated using [Gradshteyn and Ryzhik (1965), 6.413.2]. The

last two equivalent forms were given in Gripenberg and Norros (1996) and Jaglom
(1955), respectively.

The normalized MMSE d? (Wg(a)) is plotted as the solid line in Figure 3. When
H = 1/2, of course, prediction is impossible. As fBm becomes increasingly persistent,
H — 1, the relative error goes to zero, albeit slowly. Prediction also improves as fBm
becomes more anti-persistent; however, in the limit H — 0, observation of the infinite

past can only account for half of the variance in the fBm.

4.4 Discrete Prediction of fBm

In practice, discrete samples of fBm would likely be used for prediction. The above
discussion of continuous-time prediction sheds light on the discrete problem by pro-
viding a lower bound on the achievable MMSE, and by suggesting which discrete
samples would be most relevant to a given prediction problem. It turns out that it is
possible to approach the lower bound with a small, finite number of discrete samples.

Optimal prediction of X = Wx(a) based on the jointly Gaussian n-vector of obser-

vations
T
Y= Wat) - Walt) ]

is solved by the standard formula
(39) X=E{X|Y=y}=Sxv%3"y,

with normalized MMSE of prediction given by
SxySy Sy
Yx ’
where ¥y = F {YYT}, Yx =FE {Xz}, and ¥xy = F {XYT}. As the self-similarity

P (X)=1-

of the fBm immediately results in the scale-invariance of the normalized MMSE, we

restrict attention to the case of unit prediction, a = 1.
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If we have the freedom to choose the sampling instants {¢;} C I, where I is some
subset of the real line not including a, then we are faced with the problem of maxi-
mizing the term m(t) Sy %' 57, considered as a function of t € I", which can
be done by numerical techniques. However, insight into appropriate sampling designs
can be obtained by examining the prediction filter in the stationary domain.

Consider the case I = {t < 0}, where we predict Xp(a) from the entire evolution
of Xp(7), t € R. The optimal filter f(¢), shown as a solid line in Figure 1, integrates
the observation weighted by a hyperbolic secant centered at Xp(a). We clearly see
that Xp(a) and nearby observations are of greatest importance in predicting Xr(a);
other observations are exponentially damped. The problem is symmetric forward and
backward in time in the stationary domain. Note that this symmetry and the special
weight given to observations near « are not directly apparent in Figure 2.

Mentally returning to the self-similar domain, we see that Wy (—a) and its logarith-
mic neighborhood carry the most information about Wy (a), given that all observation
times are negative. Equivalently, for observations on [Ty — T, Tg], the most crucial
observation is Wg (Tp). Conditioned on that observation, Wg (To —a) carries the most
information about Wg (To + a). This sheds further light on the observation made in
Gripenberg and Norros (1996) that roughly speaking, only the last second is needed
to predict ahead one second, the last minute to predict the next minute and so on.

Fix a = 1 and I = {t < 0}. If we are allowed only one observation, then it is
easy to show that, as expected, the most effective sample is Wy (—1) = Xp(0). The
optimizing function in this case is a function of one variable m(e”) = rpp(7)?, which
has a unique maximum at 7 = 0. For multiple observations, the optimum sampling
designs depend on H and are difficult to obtain analytically. When the number of
observations is sufficiently small, it is a simple matter to numerically seek sampling
designs that provide very good prediction. Although the optimal sampling designs
depend on H, the dependence on H is not very strong, and suboptimal fixed designs
appear to work quite well.

As one would expect in the case of three samples, the best designs in the stationary
domain are symmetric and centered at the peak of the corresponding continuous

filter impulse response. Back in the ordinary time domain, the samples are spaced
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Figure 3: Normalized Minimum Mean-Square Error d (Wg (a)) for prediction of fBm
at time a > 0, as a function of H. The solid line is obtained using the entire obser-

vation interval (co,0], while the dashed lines are obtained with N discrete samples.

exponentially, and geometrically centered about the prediction time. In Figure 3 we
compare the normalized MMSE of prediction obtainable by discrete prediction with
the continuous prediction lower bound. With just one sample, much of the work is
already done. Adding two more samples brings the normalized error very close to its
lower bound, particularly for H > 1/2. Prediction of {Bm is difficult, in the sense that
the lower bound is quite high for most values of H. On the other hand, prediction
is easy, in the sense that we can achieve nearly optimal performance with extremely

low complexity.

4.5 Interpolation of fBm

In addition to being self-similar, the covariance structure of fBm is also time-reversible,

so that fBm satisfies {Wg (at) }er = |a|® {Wk(t)}icr for any non-zero a. Equivalent-
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ly, the cross-correlation between the future and past generators satisfies the symmetry
rrp(t) = rrp(—t). When this condition is satisfied, it turns out that interpolation of
a self-similar random process on (0, T") based on observations in IR\ (0, T) is equivalent
to prediction on (1/T,00), T' > 0, based on observations of (—oo,1/T]. In the sta-
tionary domain, the first problem amounts to predicting the future of X (7) based on
the infinite past of Xz (7) and the entire evolution of Xp(7). The second problem is
just the time-reversal of the first, in which we observe Xp(7) and the future of Xp(7)
and predict the past of Xp(7). When rpp(t) is symmetric, these linear prediction
problems are identical.

Application of these ideas yields interpolation formulae for fBm.

Theorem 4.5 Let Y(t) be an fBm with parameter 0 < H < 1. For each 0 <b< T
the estimate Y (b) = E{ Y (b) | Y'(t),t € R\(0,T) } can be expressed by m-s integrals
as described below. When H > 1/2,

. H
Y = G/THY() + b7y ST
1/2—H 1/2—H 1-b/T , H-1/2(1 _ ,\—H—1/2
t t u (1—u)
40 / — 1—-—— / du dY ().
(40) romn | T ‘ T o lu+t/T —1] (®)
When H < 1/2,

N H —H-1/2)p _ ¢|-H-1/2
(41)Y(b) _ COS(Tr )bH+1/2(T _ b)H+1/2 / |t| | — t| Y(t) dt,
@ R\(0,T) [t — 0|

and when H = 1/2,
(42) Y (b) = (b/T)Y(T).

Proof:

For H < 1/2, we set b = a+T and rewrite (34) in terms of self-similar convolutions
R o o
Y (b) =b" / foyr(Ind/t)t 7Y (2) dt + b7 / gy r(Ind/t)t= 1Y (—t) dt.
0 0
Letting f =Inb and 7 = InT, we have equivalently
Xp(B) = fos—r(v) ¥ Xp(v)|g + ges—- (v) ¥ Xp(v)|5

for the best estimate of Xz (8) from {Xp(v),v € R} and {XFr(v),v < 7}. Then by the
symmetry of rgp P(t), rp(t), and rp(t) the predictor of X (8) from {Xp(v),v € R}
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and {Xp(v),v > 7} is
Xp(B) = fo-str(—0) * Xp(0)|g + ge-s+- (—0) * Xp(v)]5.
Now applying L;II gives

V(b) = b /0 b frpp(nt/b)t~ -1y (2) dt + b™ /0 h grp(Int/b)t~ 71y (—t) dt.

as the predictor of Y'(b) from IR\(0, T). Inspection of (34) shows that

1/2(, _ 1\H+1/2
_cazP(y—1)

and
cpzt/2(y — 1)H+1/2

(x +y)H+1/2(z + 1)

where c¢g = cos(mH) /m, from which (41) can be determined.

gy(lnz) =

The case H > 1/2 is proved similarly, using (36), and the trivial case H = 1/2 is
included for comparison.

The optimal mean-squared error of interpolation can also be deduced directly from
the prediction results. For prediction from observations up to time 7', recall that
D? (Wg (b)) = Mg(b— T)* where My = T(3/2— H) /(T(2—2H)T(H +1/2)).
Then for 8 > 7 the prediction error for Xp(8) given {Xp(t),t < 7} and {Xp(¢),t €
R} is D? (Xp(B)) = Mu(1 — €™ P)2H. The time-reversed case, with 8 < 7 gives
D? (Xr(B)) = Mu(1 — e~ 7)?H 50 that

D (Wi () = M (
when the observation set is R\ (0, T).

The normalized interpolation error D2 (Wg (b)) /b*H depends on b and T only
through their ratio, and is plotted for two values of H in Figure 4. For any val-
ue of H, the normalized error begins at My and decreases with b/T, although the
drop is much swifter for larger values of H. The dashed line in the figure depict the
interpolation error when only the endpoints Wg(0) and Wy (T') are observed. Such
discrete observations come close to the lower bound when b/T is not too small. In

the case of the Weiner process (H = 1/2), the solid and dashed lines coincide in the
line 1 — b/T.
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Figure 4: Normalized Minimum Mean-Square Error d? (W (b)) for interpolation of
fBm at time 0 < b < T. The solid lines are obtained using the entire observation

interval R\ (0, T), while the dashed lines are obtained using only Wx(0) and W (T).
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5 Conclusions

This paper demonstrates the utility of Lamperti’s transformation for linear estima-
tion of continuous-time self-similar processes, and for fractional Brownian motion in
particular. This approach has the advantage of making available well-known tools and
results developed for shift-stationary processes. The approach also naturally brings
out many consequences of self-similarity, including self-similarity of the prediction
kernels, scale-invariance of the normalized MMSE, and some underlying symmetries.

We expect that are many others problems involving self-similar processes for which
Lamperti’s transformation could play a useful role. For example, work is currently in
progress which uses the approach of this paper to characterize the reproducing kernel

Hilbert spaces associated with self-similar random processes.

A Lemmas

Before proving Lemma 3.1, we give sufficient conditions for the product rule of dif-

ferentiation to hold for mean-square Stieltjes integrals.

Lemma A.1 Let G(t), W(t), and Z(t) be mutually independent second-order random
processes on a finite interval I = [a,b], and let Y (t) = Z(t)W (t). Suppose further
that E {G(t)*} < M on I, and that W (t) and Z(t) satisfy the Lipschitz conditions

E{(W(t) - W(s))*} < LIt —s|*

and

B{(2() - 25} < Llt— sl
for some L >0, a>1, and 8 > 1, and for all t,s € I. Then
(43) /IG(t)dY(t) = /IG(t)W(t)dZ(t) +/IG(t)Z(t)dW(t)
whenever any two of the above mean-square integrals exist.

Proof: Let T,, = {t;} be a partition of [a,b]. Replacing each of the integrals in (43)
with the a finite sum over T}, the difference between the left and right sides of (43)
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is
Ry = 37 G(t:) [W(t:) = W (e 0] Z(t:) = Z(t:-1)].

Using the Schwarz inequality, and independence of G,W, and Z, we have

E{R.} <M (Z E {[W(ti) - W(ti_l)]Z}) (Z E {[Z(ti) - Z(ti—l)]2}> )

The Lipschitz conditions ensure that as the maximum partition interval goes to zero,
the sum involving W (¢) is bounded and the sum involving Z(t) vanishes, so that

E{R2} —0.

Proof of Lemma 3.1: The change of variables 7 = Int gives

Inb

LZ@M@=/ glen)dY (€7),

Ina

We apply Lemma A.1 with G(1) = g(e7), Z(r) = efI7, and W (1) = X (7). The dif-
ferentiability of Z(7) ensures that it satisfies the Lipschitz condition with 8 = 2, and
since E {(X(t) — X(s))?} = 2(rx(0) — rx(t — s)), the condition on W (¢) is satisfied
for |t — s| < e. Since rp(0) — rx (1) < 2rx(0), choosing L' = 2max(L,2rx (0)/e)

ensures that the condition is satisfied for all ¢ and s.

B Spectra of the Generators of fBm

We wish to find the Fourier transforms of
rp(7) = Vi cosh(HT) — (Vi /2) |2sinh(7/2)|*H

and

rpp(t) = Vi cosh(HT) — (Vi /2) (2 cosh(r/2))*"

and the spectral factorization of 77 (7), when V' = sin(H)T'(2H + 1). Both rp(t)
and rpp(t) are bounded above and are O(e7!*l) for large |t|, where v = min(H,1 —
H) > 0. Thus the region of convergence for the corresponding two-sided Laplace
transforms is —y < s < 7.

We denote the two-sided Laplace transform of rg(t) by ¢r(s) and the one-sided

transform by ¢%(s). Taking the one-sided Laplace transform of both components of
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rr(t) gives (see Gradshteyn and Ryzhik (1965), 3.541.1):

1 _ s 1
¢F(5)/VH—m_§B(3_H,2H+1); s>H

which extends analytically to the region of convergence s > —7v.

The two-sided Laplace transform on —y < s < 7y is

¢r(s) = ¢p(s)+ dp(—s)
= —(Vyg/2)[B(s— H,2H +1) + B(—s — H,2H +1)]
I(1-H+s)T(1-H-—s)
D(1/2+s)T(1/2 —s) (H? — s2)

where B(a,b) = I'(a)T'(b) /T(a+b) and we have made repeated used of common
gamma function identities.

To calculate the cross-spectrum, we first express the one-sided Laplace transform

of g(t) = (2cosht/2)2H as

g'(s)

/ (2cosht/2)?Hestqt
0

1
/ 1+ T)ZHTS_H_ldT.
0

Then the two-sided transform on —y < s < 7y is

¢rp(s) = ¢pp(s) + dpp(—s)
_ Vu ! 1 2Hys—H-1 4 Vu ! 2H—s—H-14
= 5 ) DT -5 | @+ t
1 oo
= _V_2I-I/ (1+t)2HtsfH71dt_ VTH/ (1+7_)2H7_37H71d7_
0 1

= —(Vi/2)B(s— H,—s — H)
cos(rH)I'(1 - H +s)T'(1—H —s)

m(H? — s2)
whence (22).
The spectral factor
Shw) = 'l-H+4+iw)  T'(l1-H+iw) 1/2—H
EYTTT(/2 +4w) (H +iw) — T(3/2 4 dw) H +iw

clearly satisfies ¢ (w) = |} (w)[>. The transform pairs in Appendix C give the the

causal inverse transforms (24) and (25).
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C Useful Transform Pairs

The following Fourier transform pairs occur frequently while working with the sta-

tionary generators of fBm. In each case, we require ¢ > a > 0 and b > 0. Note that

Mellin transform pairs are obained by the change of variables z = e~?.

(44) Il:iccl 1— Z:; = ]."‘(cl— a) e (1= eT) T ult)

. o= bt
(45) NG i(fw; (’b“’i 5 S gl aa=bul)
(46) T(a+jw)T(b—jw) <= T(a+be @A +et)7a?b

Both (44) and (46) follow from the usual integral representation of the beta function
[Gradshteyn and Ryzhik (1965), 8.380.1]. The right side of (45) is the convolution of
the right side of (44) by e~ u(t).
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