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Abstract

Packet loss is examined in an optical switch which uses a shared pool of wave-
length converters to reduce contention. A key component of packet loss arises
from wavelength converter pool exhaustion. Since loss probablilities of the order
of 10710 are desired, conventional simulation methods are impractical. However, a
recent large deviations analysis enables efficient and accurate estimates of this loss
component via importance sampling. The analysis identifies a family of extremal
trajectories, which give the least cost paths (in exponent) to pool exhaustion. Pro-
cess level changes of measure based on these extremals then drive the importance
sampling simulation. These changes of measure can be independent of simula-
tion state, or may be adapted as the simulation progresses. Our results confirm
an approximate bound which was previously derived and also agree with refined
Bahadur-Rao approximations to the loss probability.

1 Introduction

Wavelength division multiplexed (WDM) transmission on optical fibre has enabled the
link capacities of voice and data networks to grow quickly and economically. So far,
switching of data streams at network nodes has been performed electronically, with banks
of processors scaled and speeded up to keep pace with the new bandwidths. In recent
years, technologies have been developed which allow switching to be performed in the
optical domain, without electronic processing. An even more radical change being ex-
plored is to perform this switching at a packet or burst level, enabling all-optical packet
neworks. All-optical switching has the potential for large cost and power savings, if the
associated technical challenges can be met [1].

A basic all-optical switch can direct signals from each incoming fibre to each outgoing
fibre, but cannot change a signal’s modulating wavelength. Wavelength blocking occurs
when multiple signals using the same wavelength on different fibres require the same
output fibre. This problem can be eliminated by adding a bank of wavelength converters
to the output ports of the switch. A potentially less expensive approach is to use a
relatively small, shared pool of wavelength converters (see e. g. [2] for connection-based
and [3] for packet-based networks).

This paper studies the blocking performance of a switch with shared wavelength con-
verters, under a synchronous packet traffic model. It extends [4, 5], which used large
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Figure 1: Optical switch with shared wavelength converters.

deviations analysis of the classical occupancy problem to estimate the probability of
packet loss for a given number of shared wavelength converters. This work shows two
complementary ways of computing the wavelength blocking more precisely. An analytic
approach combines combinatorial expressions for the classical occupancy problem with
the Bahadur-Rao approximation for the sum of independent variables. A simulation
based approach uses importance sampling driven by the previous large deviations analy-
sis. The importance sampling method is motivated in part by ongoing work (not reported
here) on generalizations of the switch problem in which the switch may choose to route
packets to any one of a set of output fibres.

Section 2 introduces the switch and traffic model, and the next section briefly describes
the analytic approach. Section 4 reviews the large deviations analysis of [4] and describes
the new importance sampling approach. Finally, some numerical results are presented
and discussed.

2 Switch Model

The switch, depicted schematically in Figure 1, is connected to n neighboring nodes, with
n input fibres and n output fibres carrying packets from and to the neighbors. Each fibre
contains F' wavelength channels, and the switch has W tunable wavelength converters
(TWC) in a shareable pool. Packets arriving on wavelength channel f may be connected
directly to channel f on any output fibre, or may be connected to any channel on any
output fibre after passing through a wavelength converter. During each time slot, as(v)
packets of wavelength f arrive from node v. The {af(v)} are modeled as independent
and identical Bernoulli random variables with success probability a, where a is referred
to as the traffic intensity. In the present model, each packet must go out on a particular
fibre, chosen at random independently of all other packets. (In generalizations under
investigation, each packet has a set of acceptable output fibres.) We denote by z;(v) the
number of packets of wavelength f with intended destination v. The number of packets



of a wavelength f, >, ar(v) = X, 2¢(v), is a binomial Bin(n,a) random variable. The
fixed-wavelength arrival processes {z;(-)} are identically and independently distributed,
and each is equivalent to an urn occupancy problem. Specifically, z¢(-) could be obtained
by throwing a Bin(n, a) number of balls (the packets) at random into n urns (representing
the output fibres), and counting the number of balls in each bin.

2.1 Blocking Analysis

When the number of packets needing a switch resource exceeds the capacity of that
resource, packets need to be dropped. Packets are lost in two ways.

e Capacity Blocking The number of packets requiring destination v is >, z(v).
Jr

Only F' channels lead to a given destination, hence B.(v) = ((fo:l zf(z/)) - F)
packets must be discarded due to capacity constraints at destination v, and B, =
>, B.(v) are lost across the switch.

e Wavelength Blocking Ignoring capacity blocking for a moment, the number of
packets of a given f, v pair that would require wavelength conversion is (z(v) — 1)7.
The total number of packets headed for destination v which would require conver-
sion would be @w(v) = Y (24(v) — 1)". Note that by Jensens inequality, @(v) >
B.(v). Thus in the capacity blocking step, we can always choose to drop packets
which would overflow anyway in the wavelength blocking step, and every packet
dropped in the capacity blocking step reduces the blocking in the wavelength block-
ing step. Since w = Y., w(v) is the number of converters that would be needed,
ignoring capacity blocking, the number actually needed is w = w — B.. Since W
converters are available, (w — W)™ packets are lost due to wavelength blocking.

The minimum number of blocked packets overall is
B=B.4 (w—-W)" =max{ B., (w—-W)"}

The packet loss probability P, = E[B]/(anF) is defined to be the expected number of
blocked packets divided by the expected number of arriving packets.

2.2 Upper Bound and Lower Bounds
In [4], the number of blocked packets was upper bounded by the expression

B' =B+ (0 —-W)" > B.

This bound is tight when B. is much smaller than (w — W)* (the converter-limited
regime) or conversely when B, dominates (w0 — W)™ (the capacity limited regime). The
approximation is loosest when the two components are approximately equal, in which
casen the error is bounded by a factor of two. For packet loss probability, we have the
upper bound
E[B]+E[(w—W)")]

ankF'
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and the lower bound

max{ E[B¢] , E[(w — W)+]}

Py, >
b= ankF




These bounds are convenient because the two expectation terms can be computed sep-
arately. The expected capacity blocking E[B.] can be computed from the binomial
distribution of the traffic, either directly or via a Poisson approximation. The next two
sections below focus on computing the wavelength blocking term

p(W) =B |(@ - W)"]

using Bahadur-Rao approximation and importance sampling. As Figure 5 in Section 5
illustrates, the upper and lower bounds agree closely except in the transition between
capacity-dominated and converter-dominated packet loss.

3 Analytic Computation of Wavelength Blocking

Denote by

n

QI)f = Z (Zf(l/) — 1)+

v=1
the packets of a given wavelength f which are lost due to insufficient wavelength conver-
sion (ignoring capacity blocking). The @y are i. i. d. random variables, whose distribution
may be computed using the inclusion-exclusion principle [6, Chapter 4].

The total number of blocked packets w is the sum of F'i. i. d. random variables, and
for large F', excursions above the mean of the form P{w > a} can be estimated using
large deviations estimates of the form P{w > a} ~ e F/(@/F) Denoting by u?;F) the
blocked packets of a given wavelength in an F' wavelength system, the exponent function
is given by

J(a) = sup ta— lim ~logE [ 1
(a)—sgp a— lim —-log [e ] (1)

The Bahadur-Rao approximation refines this approach with correction terms, leading to

very accurate results even for relatively small values of F' [7]. The approximation is given
by

e—FJ(a/F)

- V2rFo? {1l —eta}

where t}, is the maximizing argument in (1), and where ¢ is the corresponding twisted
variance. The desired expectation can finally be expressed

P{w > o}

(n—1)F
E|@-W)"= Y P{o>k}

k=W+1

where in practice only the first few terms of the sum are significant.

4 Importance Sampling of Wavelength Blocking

We are interested in computing (W) = E [(’JJ — W)ﬂ in a regime in which packets loss
is a rare event, for example when 1 in 10'° packets are lost. Straightforward Monte Carlo
simulation is out of the question in this regime, because billions of realizations without
loss must be generated for each lost packet. Importance sampling offers an efficient
simulation technique [8, 9], which in this case provides accurate answers using only a few
thousand realizations.



Denote the probability measure governing z;(v) in our model by P, and let () repre-
sent some other measure (referred to as the twisted measure). After generating N realiza-
tion of the process under the twisted measure and computing the associated {w(i)}Y,,
we form the unbiased estimate

P(i)
Q(7)

where P(i) and Q(i) are the probabilities of the i-th realization under the two measures.
The crux of the problem is to choose a measure () which is easy to compute for any
particular realization, and for which the estimate (/') has small variance. For analytical
as well as intuitive reasons, good twist measures typically give emphasis to realizations
which are the most likely paths to the rare events in question. In a number of examples,
most likely paths determined by large deviations analysis have been successfully used for
importance sampling (see e. g. [10]).

V) = 5 36 — W) )

4.1 Review of Large Deviations Analysis

To set the stage for our choice of twisted measure (), we briefly review some large de-
viations results from [4]. As mentioned earlier, the process z;(v) is equivalent to F
independent urn occupancy subproblems, where a random number of balls are thrown
into n urns in each subproblem. Fixing attention on a single wavelength f, note that if r¢
balls are thrown into n bins, occupying m¢ bins, then wy = r¢ —my balls enter previously
occupied cells. The total number of wavelength converters required is w = > ¢ wy. The
large deviations analysis give asymptotically sharp (in n) estimates of

%logP(tD/n >=W/n).

when this is a rare event. Conditioned on the occurence of this rare event, the analysis
shows that for large n it is likely that an unusually large number of balls 7y were thrown
in each subproblem, that the balls piled up into a small number of bins my in each sub-
problem, and that degree of unusual piling up is roughly equal among the subproblems.
The conditional excess traffic is characterized by a twist parameter 5 > a, and the excess
piling up of the packets is described by a twist parameter p > 1, such that ry/n ~ § and
mg/n & (1 — e_Pﬁ) /p.

The analysis also gave sample path results for the pattern in which the balls enter
the urns when m is unusually small. Let 7 (x) represent the fraction of occupied urns
after xn balls have been thrown into n urns. Conditioned on the terminal condition
1(B) =m/n <1 —e P it is likely that

1 e
vi(z) ~ Ty(z) = S (1=er)

where p > 1 is (uniquely) chosen so that I'1(3) = m/n.

4.2 Importance Sampling procedure

The above analysis suggests the following procedure for importance sampling with twist
Q. In the i-th of N iterations, a random variable 7’3} and sequence 7{'7 #(+) is generated from
a distribution Q for each wavelength f, and the number of packets requiring conversion



W' = Y5y = ;(8) is computed. The likelihood ratio L(r’,v1?) = P(r',y")/Q(r', v1")
is also computed, and finally one forms the estimate (2). Under the twisted distribution
@, the number of arriving packets 7 is chosen from a binomial distribution with increased
traffic intensity 3 > a. The realizations of 7, ; are generated conditioned on particular
realizations of r¢, as described below.

The occupancy values are generated using a Markov chain tracking the process state
v (x) as balls are thrown in one at a time. The chain begins with all urns empty,
71(0) = 0, and each ball thrown increments “time” by 1/n. The probability of entering
an unoccupied (resp. occupied) urn is denoted my (resp. 7). Under the true distribution
P, the probability of hitting a set of urns is proportional to the size of the set and does
not otherwise depend on time. That is, 77 (71, ) = 7. In the conditional minimum-cost
trajectory I'y (x) arising in the large deviations analysis, the rate of increase Fl(:zr) of the
number of occupied urns is the instantaneous, twisted probability of throwing the next
ball into an empty urn. Hence, if the twisted probability is emphasize the large deviations
behavior v, (z) = I'1(x), it should satisfy

e (1 (1 — e”””) ,a:) =1-Ty(z)=1—e".

p

There are a number of choices of W? which satisfy this constraint. An appealingly sim-
ple choice which preserves the state-dependence of P is is W? (71,2) = py1. To avoid
arbitrarily large values of 7f’/ 7T[jQ as ;1 — 1/p, in practice we used

Q _ 2801 T < wi
S (7171') = { 1 — (1 _ ,yl>1—ﬂw1 o> wp (3)

1—wq

where wy = 3 — W/(nF) = (1 — e ) /p is the targeted fraction of occupied urns in the
large deviations analysis. Another option is to ignore state dependence altogether for
0<v <1, as

0 =0
)= 1—e 0<my <1 . (4)
1 n=1

Although the state-based twist (3) appears to be more natural than the time-based
twist in this case, (4) turns out to be easier to generalize to the multi-dimensional state
variables that occur when packets may be routed within sets of output fibres. Both
twisted measures make it likely that approximately nw; bins are eventually occupied.

Twisted sequences {7,(i/n)}*, are generated one ball at a time, using 7. Let
u(i) € {0, 1} indicate whether or not the (i 4+ 1)-st ball entered an occupied urn. Then
the complete likelihood ratio for each traffic realization is

L) — 1 Lol Plorlry]

f=1 [rp] Qs |rs]

RGP [

5 Results

The importance sampling technique and Bahadur-Rao analysis proved to be extremely
accurate, and the computational complexity of the simulation was largely independent



of the blocking level being estimated. Figure 2 depicts the expected number of lost
packets per timeslot (W) as a function of the traffic intensity a for a switch with 25
fibres, 20 wavelengths per fibre, and a pool 30 wavelength converters. In the importance
sampling simulations, 5000 simulation runs were used to calculate each data point. The
simulation and analysis agree closely in the range of probabilities depicted. The plot also
shows for comparison an estimate computed directly from large deviations as in [4]. The
large deviations analysis is accurate to within a couple of orders of magnitude, but does
not provide the precision of the other two techniques. The need for this extra precision
depends on the intended application and on the accuracy of the model.

In (naive or importance sampled) simulation, it is desirable for the individual sum-
mands in (2) to have a reasonably small coeficient of variation ¢, defined as the ratio of
the standard deviation s to the mean p. The coefficient of variation C of the final esti-
mate j1(WW) decreases with the number of independent samples N as C' = ¢/+/N, so that
the number of samples needed to meet a desired level of accuracy is proportional to c?.
An importance sampling estimator is said to be asymptotically optimal if ¢ is bounded by
a constant, regardless of how small ;2 becomes. Figure 3 depicts the importance sampled
estimate of blocking probability as a function of traffic intensity a. The estimates used
N = 5000 simulated realizations for each data point, for a switch with n = 25 fibres,
F = 20 wavelengths, and W = 50 converters. The estimate computed using (3) is labeled
“state-based”, while the estimate from (4) is labeled “time-based”, and the two agree
closely. The standard deviation s, computed empirically from the 5000 samples, is shown
to track the probability being estimated within a roughly constant factor in both cases.
For the same switch scenario, Figure 4 directly illustrates the (empirically estimated)
variation c¢ as a function of traffic level for the two importance sampling techniques. The
state based method has slightly lower variance than the time based method, and for both
methods the coefficient of variation increases only slightly for small blocking probabili-
ties. In naive simulation (Q=P), each summand in (2) is a non-negative, integer-valued
random variable with mean . When p < 1, the variance is lower bounded by the vari-
ance (1 — p) of a Bernoulli random variable, so that ¢ > /(1/u) — 1 as p — 0. This
bound is depicted in Figure 4 for comparison with the importance sampling.

To compute overall packet loss probabilities, the wavelength blocking terms com-
puted via the methods of Section 3 or 4 are combined with the capacity blocking term
E [Py] /(anF'). Overall packet loss for a switch with 25 fibres, 20 wavelengths, and vari-
ous pool sizes is depicted in Figure 5. The upper and lower bounds coincide except at the
transition point between capacity dominated and wavelength dominated blocking. Given
a desired loss threshold such as Py, < 1078, the capacity blocking curve can be used to
determine a maximum acceptable traffic intensity, in this case a < 0.2. The wavelength
blocking analysis can then be used to determine a minimum acceptable converter pool
size, in this case roughly W > 30.

6 Discussion

Large deviations analysis is a useful technique for computing packet loss on switches of
the type studied here. As shown in previous work, the large deviations exponent itself
provides a reasonable approximation. Sample-path level analysis gives intuition into how
rare events occur and forms the basis of twisted measures for efficient importance sam-
pling. Ongoing work is extending the importance sampling approach to generalizations
of the switch, for which the associated models are general overflow problems, rather than
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Figure 2: Average number of blocked packet per timeslot as a function of traffic intensity,
computed by three methods: Bahadur-Rao approximation, importance sampling, and
large deviations exponent. The switch has n = 25 fibres, F' = 20 wavelengths, and
W = 30 TWCs.
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deviation s of the estimate summands from (2). The switch has n = 25 fibres, F' = 20
wavelengths, and W = 50 TWCs.
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the classical occupancy problem. The twisted measures for these problems are suggested
by general sample-path large deviations analysis developed in [11]. Although the present
importance sampling techniques have worked well, it would be worthwhile to analytically
establish good properties such as asymptotic optimality. Extensions of the occupancy
theory which would permit the direct estimation of Py, without resorting to the upper
and lower bounds are also of interest.
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