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Abstract
The recent emergence of heavily-optimized modal decision procedures has highlighted the key

role of empirical testing in this domain. Unfortunately, the introduction of extensive empirical tests
for modal logics is recent, and so far none of the proposed test generators is very satisfactory. To
cope with this fact, we present a new random generation method that provides benefits over pre-
vious methods for generating empirical tests. It fixes and much generalizes one of the best-known
methods, the random CNF ��� test, allowing for generating a much wider variety of problems, cov-
ering in principle the whole input space. Our new method produces much more suitable test sets for
the current generation of modal decision procedures. We analyze the features of the new method
by means of an extensive collection of empirical tests.

1. Motivation and goals

Heavily-optimized systems for determining satisfiability of formulae in propositional modal logics
are now available. These systems, including DLP (Patel-Schneider, 1998), FaCT (Horrocks, 1998),
*SAT (Giunchiglia, Giunchiglia, & Tacchella, 2002), MSPASS (Hustadt, Schmidt, & Weidenbach,
1999), and RACER (Haarslev & Möller, 2001), have more optimizations and are much faster than
the previous generation of modal decision procedures, such as leanK (Beckert & Goré, 1997), Log-
ics Workbench (Heuerding, Jäger, Schwendimann, & Seyfreid, 1995),

� KE (Pitt & Cunningham,
1996) and KSAT (Giunchiglia & Sebastiani, 2000).1

As with most theorem proving problems, neither computational complexity nor asymptotic al-
gorithmic complexity is very useful in determining the effectiveness of optimizations, so that their
effectiveness has to be determined by empirical testing (Horrocks, Patel-Schneider, & Sebastiani,
2000). Empirical testing directly gives resource consumption in terms of compute time and memory
use; it factors in all the pieces of the system, not just the basic algorithm itself. Empirical testing
can be used not only to compare different systems, but also to tune a system with parameters that
can be used to modify its performance; moreover, it can be used to show what sort of inputs the
system handles well, and what sort of inputs the system handles poorly.

Unfortunately, the introduction of extensive empirical tests for modal logics is recent, and so
far none of the proposed test methodologies are very satisfactory. Some methods contain many
formulae that are too easy for current heavily-optimized procedures. Some contain high rates of
trivial or insignificant tests. Some generate problems that are too artificial and/or are not a significant

1. For a more complete list see Renate Schmidt’s Web page listing theorem provers for modal logics at
http://www.cs.man.ac.uk/˜schmidt/tools/.

c
�

2003 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



PATEL-SCHNEIDER AND SEBASTIANI

sample of the input space. Finally, some methods generate formulae that are too big to be parsed
and/or handled.

For the reasons described above, we presented (Horrocks et al., 2000) an analytical survey of
the state-of-the art of empirical testing for modal decision procedures. Here instead we present a
new random generation method that provides benefits over previous methods for generating empir-
ical tests, built on some preliminary work (Horrocks et al., 2000). Our new method fixes and much
generalizes the 3CNF ��� methodology for randomly generating clausal formulae in modal logics
(Giunchiglia & Sebastiani, 1996; Hustadt & Schmidt, 1999; Giunchiglia, Giunchiglia, Sebastiani,
& Tacchella, 2000) used in many previous empirical tests of modal decision procedures. It elimi-
nates or drastically reduces the influence of a major flaw of the previous method,2 and allows for
generating a much wider variety of problems.

In Section 2 we recall a list of desirable features for good test sets. In Section 3 we briefly
survey the state-of-the-art test methods. In Sections 4 and 5 we present and discuss the basic and
the advanced versions of our new test method respectively, and evaluate their features by presenting
a large amount of empirical results. In Section 6 we provide a theoretical result showing how
the advanced version of our method, in principle, can cover the whole input space. In Section 7
we discuss the features of our new method, and compare it wrt. the state-of-the-art methods. In
Section 8 we conclude and indicate possible future research directions.

A 5-page system description of our random generator has been presented at IJCAR’2001 (Patel-
Schneider & Sebastiani, 2001).

2. Desirable features for good test sets

The benefits of empirical testing depend on the characteristics of the inputs provided for the testing,
as empirical testing only provides data on these particular inputs. If the inputs are not typical or
suitable, then the results of the empirical testing will not be useful. This means that the inputs
for empirical testing must be carefully chosen. With Horrocks (Horrocks et al., 2000) we have
previously proposed and motivated the following key criteria for creating good test sets.

Representativeness: The ideal test set should represent a significant sample of the whole input
space. A good empirical test set should at least cover a large area of inputs.

Difficulty: A good empirical test set should provide a sufficient level of difficulty for the system(s)
being tested. (Some problems should be too hard even for state-of-the-art systems, so as to
be a good benchmark for forthcoming systems.)

Termination: To be of practical use, the tests should terminate and provide information within a
reasonable amount of time. If the inputs are too hard, then the system may not be able to
provide answers within the established time. This inability of the system is of interest, but
can make system comparison impossible or insignificant.

Scalability: The difficulty of problems should scale up, as comparing absolute performances may
be less significant than comparing how performances scale up with problems of increasing
difficulty.

2. That is, a significant amount of inadvertently trivial problems are generated unless the parameter p is set to 0 (Hor-
rocks et al., 2000). See Section 4.1 for a full discussion of this point.
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Valid vs. not-valid balance: In a good test set, valid and not-valid problems should be more or
less equal both in number and in difficulty. Moreover, the maximum uncertainty regarding the
solution of the problems is desirable.

Reproducibility: A good test set should allow for easily reproducing the results.

The following criteria derive from or are significant sub-cases of the main criteria above.

Parameterization: Parameterized inputs with sufficient parameters and degrees of freedom allow
the inputs to range over a large portion of the input space.

Control: In particular, it is very useful to have parameters that control monotonically the key fea-
tures of the input test set, like the average difficulty and the “valid vs. non-valid” rate.

Modal vs. propositional balance: Reasoning in modal logics involves alternating between two or-
thogonal search efforts: pure modal reasoning and pure propositional reasoning. A good test
set should be challenging from both viewpoints.

Data organization: The data should be summarizable —so as to make a comparison possible with
a limited effort— and plottable —so as to enable the qualitative behavior of the system(s) to
be highlighted.

Finally, particular care must be taken to avoid the following problems.

Redundancy: Empirical test sets must be carefully chosen so as not to include inadvertent redun-
dancy. They should also be chosen so as not to include small sub-inputs that dictate the result
of the entire input.

Triviality: A good test set should be flawless, that is, it should not contain significant subsets of
inadvertent trivial problems.

Artificiality: A good empirical test set should correspond closely to inputs from applications.

Over-size: The single problems should not be too big w.r.t. their difficulty, so that the resources
required for parsing and data managing do not seriously influence total performance.

These criteria, which are described and motivated in detail by Horrocks et al. (2000), have been
proposed after a five-year debate on empirical testing in modal logics (Giunchiglia & Sebastiani,
1996; Heuerding & Schwendimann, 1996; Hustadt & Schmidt, 1999; Giunchiglia et al., 2000;
Horrocks & Patel-Schneider, 2002). (Notice that some of these criteria are identical or similar to
those suggested by Heuerding and Schwendimann (1996).)

The above criteria are general, and in some cases they require some interpretation. First, some
of them have to be implicitly interpreted as “unless the user deliberately wants the contrary for some
reason”. For instance, it might be the case that one wants to deliberately generate easy problems,
e.g., to be sure that the tested procedure does not take too much time to solve them, or redundant
problems, e.g., to test the effectiveness of some redundancy elimination technique, or satisfiable
problems only, e.g., to test incomplete procedures. To this extent, the key issue here is having a
reasonable form of control over these features, so that one can address not only general-purpose
criteria, but also specific desiderata.
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Second, in some cases, there may be a tradeoff between two distinct criteria, so that it may
be necessary to choose only one of them, or to make a compromise. One example is given by
redundancy and artificiality: in some real-world problems large parts of the knowledge base are
irrelevant for the query, whose result is determined by a small subpart of the input; in this sense
eliminating such “redundancies” may make problems more “artificial”.

Particular attention must be paid to the problem of triviality, as it has claimed victims in many
areas of AI. In fact, flaws (i.e., inadvertent trivial problems) have been detected in random generators
for SAT (Mitchell, Selman, & Levesque, 1992), CSP (Achlioptas, Kirousis, Kranakis, Krizanc, Mol-
loy, & Stamatiou, 1997; Gent, MacIntyre, Prosser, Smith, & Walsh, 2001), modal reasoning (Hus-
tadt & Schmidt, 1999) and QBF (Gent & Walsh, 1999). Thus, the notion of “trivial” (and thus
“flawed”) deserves more comment.

In the work by Achlioptas et al. (1997) flawed problems are those solvable in linear time by
standard CSP procedures, due to the undesired presence of implicit unary constraints causing some
variable’s value to be inadmissible. A similar notion holds for SAT (Mitchell et al., 1992) and QBF
(Gent & Walsh, 1999). In the literature of modal reasoning, instead, the typical flawed problems
are those whose (un)satisfiability can be verified directly at propositional level, that is, without
investigating any modal successors; this kind of problems are typically solved in negligible time
w.r.t. other problems of similar size and depth (Hustadt & Schmidt, 1999; Giunchiglia et al., 2000;
Horrocks et al., 2000).3 Thus, with a little abuse of notation and when not otherwise specified, in
this paper we will call trivially (un)satisfiable the problems of this kind.4

3. An overview of the state-of-the-art

Previous empirical tests have mostly been generated by three methods: hand-generated formulae
(Heuerding & Schwendimann, 1996), randomly-generated clausal modal formulae (Giunchiglia &
Sebastiani, 1996; Hustadt & Schmidt, 1999; Giunchiglia et al., 2000), and randomly-generated
quantified boolean formulae that are then translated into modal formulae (Massacci, 1999).

We have already presented a detailed analysis of these three methods (Horrocks et al., 2000).
Here we present only a quick overview of the latter two methods, as we will refer to them in follow-
ing sections.5

3.1 The 3CNF ��� Random Tests

In the 3CNF � � test methodology (Giunchiglia & Sebastiani, 1996; Hustadt & Schmidt, 1999;
Giunchiglia et al., 2000), the performance of a system is evaluated on sets of randomly gener-
ated 3CNF � � formulae. A CNF � � formula is a conjunction of CNF � � clauses, where each clause
is a disjunction of either propositional or modal literals. A literal is either an atom or its negation.
Modal atoms are formulae of the form

�	��

, where



is a CNF � � clause. A 3CNF � � formula is a

CNF ��� formula where all clauses have exactly 3 literals.

3. Of course here by “modal” we implicitly assume the modal depth be strictly greater than zero, that is, we do not
consider purely propositional formulas.

4. Notice that we do not use the more suitable expression “propositionally (un)satisfiable” because the latter has been
used with a different meaning in the literature of modal reasoning (see, e.g., (Giunchiglia & Sebastiani, 1996, 2000)).

5. The first method (Heuerding & Schwendimann, 1996) is obsolete, as the formulae generated are too easy for current
state-of-the-art deciders (Horrocks et al., 2000).
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3.1.1 THE RANDOM GENERATOR

A 3CNF � � formula is randomly generated according to five parameters: the (maximum) modal
depth � ; the number of clauses in the top-level conjunction 
 ; the number of propositional variables�

; the number of distinct box symbols � ; and the probability � of an atom occurring in a clause at
depth ��� being purely propositional.

The random 3CNF � � generator, in its final version (Giunchiglia et al., 2000), works as follows:

� a 3CNF � � formula of depth � is produced by randomly generating 
 3CNF � � clauses of
depth � , and forming their conjunction;

� a 3CNF � � clause of depth � is produced by randomly generating three distinct, under com-
mutativity of disjunction, 3CNF ��� atoms of depth � , negating each of them with probability
0.5, and forming their disjunction;

� a propositional atom is produced by picking randomly an element of ����������������� �"! with
uniform probability;

� a 3CNF � � atom of depth �$#&% is produced by generating with probability � a random
propositional atom, and with probability ')(*� a 3CNF ��� atom

�,+�

, where

�,+
is picked

randomly in � � � ��������� �,- ! and



is a randomly generated 3CNF � � clause of depth �.(/' .
Recently Horrocks and Patel-Schneider (2002) have proposed a variant of the 3CNF ��� random

generator of Giunchiglia et al. (2000). They added four extra parameters: 021 and 0 - , representing
respectively the probability that a propositional and modal atom is negated, and 3 - �54 and 3 -,6�7 ,
representing respectively the minimum and maximum number of modal literals in a clause, with
equal probability for each number in the range. For their experiments, they always set 081:9;%<�>=
and 3 - �54 9?3 -,6@7 9?A . To this extent, 3CNF � � formulas can be generated as in the generator of
Giunchiglia et al. (2000) by setting 0B1.9C0 - 9D%<�>= and 3 - �54 9E3 -,6@7 9DA .
3.1.2 TEST METHOD & DATA ANALYSIS

The 3CNF ��� test method works as follows. A typical problem set is characterized by a fixed�
, � , � and � : 
 is varied in such a way as to empirically cover the “100% satisfiable—100%

unsatisfiable” transition. Then, for each tuple of the parameters’ values (data point from now on)
in a problem set, a certain number of 3CNF ��� formulae are randomly generated, and the resulting
formulae are given in input to the procedure under test, with a maximum time bound. Satisfiability
rates, median/percentile values of the CPU times, and median/percentile values of other parameters,
e.g., number of steps, memory, etc., are plotted against the number of clauses 
 or the ratio of
clauses to propositional variables 
GF � .

3.2 The Random QBF Tests

In QBF-based benchmarks (such as part of the TANCS’99 benchmarks (Massacci, 1999)), sys-
tem performances are evaluated on sets of random quantified boolean formulae, which are gener-
ated according to the method described by Cadoli, Giovanardi, and Schaerf (1998) and Gent and
Walsh (1999) and then converted into modal logic by using a variant of the conversion by Halpern
and Moses (1992).
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3.2.1 THE RANDOM GENERATOR

Random QBF formulae are generated with alternation depth H and at most I variables at each
alternation. The matrix is a random propositional CNF formula with



clauses of length J , with

some constraints on the number of universally and existentially quantified variables within each
clause. (This avoids the problem of generating flawed random QBF formulae highlighted by Gent
and Walsh (1999).) For instance, a random QBF formula with HK9DA , IL9DM looks like:NBOQPSRTOUP ���WV OURSRXOUR ��� NYO � RTO �S���WV OQZSRTOUZ ���\[ ] OUPSR ���^�^�^� OUZ ��_`� (1)

Here [ is a random CNF formula with parameters



, I and H . We will denote with a and b
the total number of universally and existentially quantified variables respectively. Clearly, both a
and b are c�deHgfhIji . Moreover, k is the modal formula resulting from Halpern and Moses’ l
conversion, so both the depth � and the number of propositional variables

�
of k are also cmdeH�fnIoi .

3.2.2 TEST METHOD & DATA ANALYSIS

The test method, as it was used in the TANCS competition(s) (Massacci, 1999), works as follows.
The tests are performed on single data points. For each data point, a certain number of QBF
formulae are randomly generated, converted into modal logics and the resulting formulae are given
as input to the procedure being tested, with a maximum time bound. The number of tests which
have been solved within the time-limit and the geometrical mean time for successful solutions are
then reported. Data are rescaled to abstract away machine and run-dependent characteristics. This
results typically in a collection of tables presenting a data pair for each system under test, one data
point per row.

4. A new CNF ��� generation method: basic version

From our previous analysis (Horrocks et al., 2000) we have that none of the current methods are
completely satisfactory. To cope with this fact, we propose here what we believe is a much more sat-
isfactory method for randomly generating modal formulae. The new method can be seen as an im-
proved and much more general version of the random 3CNF �p� generation method by Giunchiglia
et al. (2000).

We present our new method by introducing incrementally its new features in two main steps. In
this section we introduce a basic version of the method, wherein� we provide a new interpretation for the parameter � (Section 4.1) that allows for varying �

without causing the flaws described in Horrocks et al. (2000); and� we extend the interpretation for the parameter



(Section 4.3), providing a more fine-grained
way for tuning the difficulty of the generated formulae.

In Section 5, we present the full, advanced version of the method, wherein� we further extend the parameters � and



, allowing for shaping explicitly the probability
distribution of the propositional/modal rate and the clause length respectively (Section 5.1);
and� we allow � and



vary with the nesting depth of the subformulae (Section 5.2), allowing for

different distributions at different depths.
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To investigate the properties of our CNF ��� generator we also present a series of experiments with
appropriate settings either to mimic previous generation methodologies or to produce improved or
new kinds of tests.

In all tests we have adopted the testing criteria of the 3CNF � � method. For each test set, we
fixed all parameters except 
 , which was varied to span at least the satisfiability transition area.
(Because of the “Valid vs. non-valid balance” feature of Section 2, we consider the transition area
to be the interesting portion of the test set.) For almost all test sets we varied 
 from

�
to '�MQ% � ,'�=Q% � , or MQ%U% � , resulting in integral values for 
qF � ranging from ' to '�MQ% , '�=Q% , or MQ%U% . For each

value of 
 we generated 100 formulae, a sufficient number to produce reasonably reliable data. A
time limit of 1000 seconds was imposed on each attempt to determine the satisfiability status of a
formula. As it is common practice, we set the number of boxes � to ' throughout our testing. This
setting for � produces the hardest formulae (Giunchiglia & Sebastiani, 1996; Hustadt & Schmidt,
1999; Giunchiglia et al., 2000). We performed several test sets with similar parameters, often, but
not always, varying only

�
.

We tested our formulae against two systems, DLP version 4.1 (Patel-Schneider, 1998) and *SAT
version 1.3 (Tacchella, 1999), two of the fastest modal decision procedures. They are available re-
spectively under http://www.bell-labs.com/usr/pfps/dlp and http://www.mrg.dist.unige.it/˜tac.
All the code used to generate the tests is available under http://www.bell-labs.com/usr/pfps/dlp.

We plotted the results of our test groups (test sets with similar parameters) on six or four plots.
Two plots were devoted to the performance of DLP, one showing the median and one showing the
90th percentile time taken to solve the formulae at each value of 
 , plotted against 
GF � . For those
test groups were we ran *SAT we also plotted the median and 90th percentile for *SAT.

We also plotted the fraction of the formulae that are determined to be satisfiable or unsatisfiable
by DLP within the time limit.6 To save space, satisfiability and unsatisfiability fractions are plotted
together on a single plot. Satisfiability fractions are higher on the left side of the plot while unsat-
isfiability fractions are higher on the right. This multiple plotting does obscure some of the details,
but the only information that we are interested in here is the general behavior of the fractions, which
is not obscured. In fact, the multiple plotting serves to highlight the crossover regions, where the
satisfiability and unsatisfiability fractions are roughly equal.

Finally, we plotted the fraction of the formulae where DLP finds a model or determines that
the formula is unsatisfiable without investigating any modal successors. We call these fractions
the trivial satisfiability and trivial unsatisfiability fractions. These last fractions are an estimate
of the number of formulae that are satisfiable in a Kripke structure with no successors —like, e.g.,de�.�2r � ��� R i — and that have no propositional valuations —like, e.g., d � �@�"�2sut � ���.�Ti — respec-
tively. For various reasons, discussed below, they are better indicators of triviality than the more
formal measures used in previous papers. Again, trivial satisfiability and unsatisfiability fractions
are plotted together on a single plot.

To reduce clutter on the plots, we used a line to show the results for each value of 
 we tested.
To distinguish between the various lines on a plot, we plotted every five or 10 data points with a
symbol, identified in the legend of the plot.

Running the tests presented in this paper required some months of CPU time. Because of this,
we ran our tests on a variety of machines. These machines range in speed from a 296MHz SPARC

6. Notice that the two curves are symmetric with respect to 0.5 if and only if no test exceeds the time limit. E.g., if at
some point 40% of the tests are determined to be satisfiable by DLP, 10% are determined to be unsatisfiable and 50%
are not solved within the time limit, then the two curves are not symmetric at that point, as v�w xTv)yz|{~} v�w { v .
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Ultra 2 to a 400MHz SPARC Ultra 4 and had between 256MB and 512MB of main memory. No
machines were completely dedicated to our tests, but they were otherwise lightly loaded. Each test
set was run on machines with the same speed and memory. Direct comparison between different
groups of tests thus has to take into account the differences between the various test machines.

4.1 Reinterpreting the parameter �
One problem with the previous methods for generating CNF ��� formulae is that the generated for-
mulae can contain pieces that make the entire formula easy to solve. This mostly results from the
presence of strictly-propositional top-level clauses. With the small number of propositional vari-
ables in most tests (required to produce reasonable difficulty levels for current systems), only a
few strictly-propositional top-level clauses are needed to cover all the combinations of the proposi-
tional literals and make the entire formula unsatisfiable. Previous attempts to eliminate this “trivial
unsatisfiability” have concentrated on eliminating top-level propositional literals by setting ��9?%
(Hustadt & Schmidt, 1999; Giunchiglia et al., 2000). (Unfortunately this choice forces ����' ,
as for �E#�' such formulae are too hard for all state-of-the-art systems.) When each atom in a
clause is generated independently from the other atoms of the clause an approach that modifies the
probability of propositional atoms is necessary to eliminate these problematic clauses.

The first new idea of our approach, suggested previously (Horrocks et al., 2000), works as
follows. Instead of forbidding strictly-propositional clauses except at the maximum modal depth, � ,
by setting ��9L% , we instead require that the ratio between propositional atoms in a clause and the
clause size be as close as possible to the propositional probability � for clauses not at the maximum
modal depth � . 7

For clauses of size



, if � is ��F 
 for some integral � , this results in all clauses not at modal
depth � having � propositional atoms and


 (E� modal atoms. For other values of � , we allow
either �>� 
�� or �>� 
)� propositional atoms in each clause not at modal depth � , with probability�>� 
)� (|� 
 and � 
 (��>� 
�� , respectively.8 For instance, if ��9�%<�>� and


 9�A , then each clause
contains 1 propositional and 1 modal literal, and the third is propositional with probability 0.8, asA�fU%<�>�.(��eA)f�%<�>� � 9g'Q�>�.(�'m9�%<�>� . If ����d 
 (�'�iSF 
 , this eliminates the possibility of strictly
propositional clauses, which are the main cause of trivial unsatisfiability, except at modal depth � .
4.1.1 MODAL DEPTH '
Our first experiments were a direct comparison to previous tests. We generated CNF �p� formulae
with


 9;A , ��9�' , �*9�' , and ��9�%<�>= , a setting that has been used in the past, and one that
exhibits some problematic behavior. We used both our new method and the old 3CNF ��� generation
method by Giunchiglia et al. (2000) briefly described in Section 3.1 (the “old method” from now
on). We also generated CNF � � formulae with


 9;A , ��9�' , �*9�' , and �/9�% , the standard
method for eliminating trivially unsatisfiable formulae. (At �*9�% our new method is the same as
the old 3CNF � � generation method.) The results of the tests are given in Figures 1, 2, and 3.

7. Other approaches to eliminating propositional unsatisfiability are possible. For example, it would be possible to
simply remove any strictly-propositional clauses after generation. However, this technique would alter the meaning
of the parameter � , that is, the actual probability for a literal to be propositional would become strictly smaller than� , and it will be out of the control of the user.

8. Remember that �5�Q� z��n���¡  ¢ �¤£�¥"¦	§|¨ ¥.©�ª.« and ¬5�Q­ z��n���¡  ® ¥p£�¥.¦	§�¨ ¥.¯°ª"« .
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Figure 1: Results for

 9�A , �±9L' , �²9L' , and �³9E%<�>= (old method)

One aspect of this set of tests is that all three collections have many trivially unsatisfiable formu-
lae out of the satisfiability transition area, even the collection with no top-level propositional atoms.
The trivial unsatisfiability occurs in the collection with no top-level propositional atoms because
there are only a few top-level modal atoms (e.g., � for

� 9�A ) and both DLP and *SAT detect
clashes between complementary modal literals without investigating any modal successors.

The presence of this large number of trivially unsatisfiable formulae is not actually a serious
problem with these tests. The trivial unsatisfiability only shows up after the formulae are almost
all unsatisfiable already and easy to solve. The only exception is for

� 9´A , which is trivial to
solve anyway. However, our new generation method considerably reduces the number of trivially
unsatisfiable formulae and almost entirely removes them from the satisfiable/unsatisfiable transition
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Figure 2: Results for

 9DA , �±9L' , �o9L' , and �u9E%<�>= (our new method)

area. There are some trivially satisfiable formulae in this set of tests, but only a few, and only for
the smallest clause sizes. Their presence does not affect the difficulty of the generated formulae.

The two methods with �u9E%<�>= are relatively close in maximum difficulty, with our new method
generating somewhat harder formulae. However, our method produces difficult formulae, for both
DLP and *SAT, over a much broader range of 
GF � than does the original method.

Changing to �µ9¶% results in formulae that are orders of magnitude harder. This is not good,
previous arguments to the contrary notwithstanding, as we would like to have a significant number
of reasonable test sets to work with, and �·9�% allows only consideration of a very few values for�

before the formulae are totally impossible to solve with current systems, resulting in very few
reasonable test sets.
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Figure 3: Results for

 9DA , �±9L' , �j9L' , and �u9E% (either method).

So, at a maximum modal depth of ��9¸' our method results in formulae that are of similar
difficulty to the previously-generated formulae and still have trivially unsatisfiable formulae, but
ones that do not seriously affect the difficulty of the test sets.

4.1.2 MODAL DEPTH M
Restricting attention to a maximum modal depth of �u9K' is not very useful. Formulae with max-
imum modal depth of ' are not representative of modal formulae in general, particularly as they
have no nested modal operators. Sticking to a maximum modal depth of ' seriously limits the
significance of the generated tests.
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We would thus like to be able to perform interesting experiments with larger maximum modal
depths. So we performed a set of experiments with a maximum modal depth of �¹9LM . We started
with a set of tests that corresponds to previously-performed experiments.

At depth �m9ºM , in the old method for �³9�%<�>= the time curves are dominated by a “half-dome”
shape, whose steep side shows up where the number of trivially unsatisfiable formulae becomes
large before the formulae become otherwise easy to solve, as shown in Figure 4. In fact, nearly all
the unsatisfiable formulae here are trivially unsatisfiable.

This is an extremely serious flaw, as the difficulty of the test set is being drastically affected
by these trivially unsatisfiable formulae. Changing to �»9�% is not a viable solution because at
depth �m9»M such formulae are much too difficult to solve, as shown in Figure 5, where the median
percentile exceeds the timeout before any formulae can be determined to be unsatisfiable, even for
3 propositional variables.

With our new method, as shown in Figure 6, the formulae are much more difficult to solve than
the old method, because there is no abrupt drop-off from propositional unsatisfiability, but they are
much easier to solve than those generated with �*9�% . Further, trivially unsatisfiable formulae do
not appear at all in the interesting portion of the test sets.

Nevertheless this choice of parameters ( �u9¼M , �·9L%<�>= ) is not entirely suitable. The formulae
are becoming too hard much too early. In particular, there are no unsatisfiable formulae that can
be solved for

� #�A , and thus the unsatisfiability plots cannot be distinguished from the x axis
(recall Footnote 6). However, our new method does provide some advantages already, providing an
interesting new set of tests, albeit one of limited size.

4.2 Increasing �
We would like to be able to produce better test sets for depth �D9½M and greater. One way of
doing this is to increase the propositional probability � from %<�>= to something like %<�>� , increasing
the number of propositional atoms and thus decreasing the difficulty of the generated formulae.
This would be very problematic with previous generation methods as it would result in the trivially
unsatisfiable formulae determining the results for even smaller numbers of clauses 
 , but with our
method here it is not much of a problem.

To investigate the increasing of the the propositional probability, we ran a collection of tests with
maximum modal depth �°9LM and propositional probability �|9$%<�>� with both the old method and
our new method. The results of these tests are given in Figures 7 and 8. As before, the asymmetries
between the satisfiability and unsatisfiability curves in Figure 8 for

� 9D=p�@� are due to the fact that
many tests are not solved by DLP within the time limit (c.f., Footnote 6).

As expected, the old method produces large numbers of trivially unsatisfiable formulae. These
trivially unsatisfiable formulae show up much earlier than with �¾9D%<�>= , making the tests consider-
ably easier, especially for *SAT.

Our new method produces hard formulae, but ones that are quite a bit easier than for �·9¼%<�>= .
In particular, DLP solved all instances within the time limit for

� 9&¿ . Trivially unsatisfiable
formulae do show up, but only well after the formulae are already unsatisfiable, and they do not
significantly affect the difficulty of the tests.

So our method allows the creation of more-interesting tests at modal depths greater than ' ,
simply by adjusting � to a value where the level of difficulty is appropriate. Trivial unsatisfiability
is not a problem, whereas in the old method it was the most important feature of the test.
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Figure 4: Results for

 9�A , �±9L' , �²9DM , and �³9E%<�>= (old method)

4.3 Changing the Size of Clauses

A problem with increasing the propositional probability is that formulae become “too propositional”
—that is, the source of difficulty becomes more and more the propositional component of the prob-
lem, and not the modal component. As we are interested in modal decision procedures, we do not
want the main (or only) source of difficulty to be propositional reasoning.

We decided, therefore, to investigate a different method for modifying the difficulty of the gen-
erated formulae. We instead allow the number of literals in a clause



to vary in a manner similar to

the number of propositional atoms. If



is an integer then each clause has that many literals. Oth-
erwise, we allow either � 
)� or � 
�� literals in each clause, with probability � 
)� ( 
 and


 (�� 
)� ,
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Figure 5: Results for

 9�A , �±9L' , �²9DM , and �³9C% (either method)

respectively. We then determine the number of propositional atoms in each clause based on the
number of literals in that clause.

We generated CNF � � formulae with

 9ÀMp�>= , �Á9¶' , �¹9K' , and �·9L%<�>= . The change from
 9;A to


 9�Mp�>= produces fewer disjunctive choices and should result in easier formulae. The
results of these tests are given in Figure 9.

These formulae are much easier than those generated with

 9ÀA , although they are still quite

hard and form a reasonable source of testing data. Trivially unsatisfiable formulae appear in large
numbers only well after the formulae are all unsatisfiable and relatively easy.

To further illustrate the reduction in difficulty with smaller values of



we generated formulae
using


 9DMp�>MU= , �±9L' , �²9L' , and �u9E%<�>= . As shown in Figure 10, these formulae are even easier
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Figure 6: Results for

 9DA , �±9L' , �o9DM , and �u9E%<�>= (our new method)

than for

 9&Mp�>= . Trivially unsatisfiable formulae do appear, but again only after the formulae

become all unsatisfiable, and not until the formulae become easy, particularly for *SAT.
At

 9ÁMp�>MU= we now have a reasonable set of formulae for maximum modal depth ��9�M .

With a maximum modal depth of M , the formulae are much more representative than formulae with
maximum modal depth of ' . The formulae are neither too easy nor too hard for current modal
decision procedures so the satisfiability transition can be investigated for significant numbers of
propositional variables.

Further, with this new method we can provide a collection of test sets that vary in difficulty
by varying



. Most previous comparative test sets varied

�
, which is problematic because most

interesting parameter sets become too hard for small values of
�

, in the range of � to '�% .
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Figure 7: Results for

 9�A , �±9L' , �²9DM , and �³9E%<�>� (old method)

To illustrate the effects of varying



we generated formulae using
� 9»¿ , ��9K' , �u9?' , and�u9E%<�>= , varying



from Mp�>M to Mp�>� . As shown in Figure 11, this produces an interesting set of tests.

The difficulty levels can be set appropriately. Trivially unsatisfiable formulae do appear, but only
after the formulae become unsatisfiable anyway. Trivially unsatisfiable formulae do not influence
the difficulty of the test.
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Figure 8: Results for

 9DA , �±9L' , �o9DM , and �u9E%<�>� (our new method)

4.3.1 MODAL DEPTH A
Our method can be used to generate interesting test sets with modal depth �m9ºA . This depth is not
at all interesting with previous methods—either the formulae are immensely difficult, such as for�u9E% , or the behavior is dominated by trivial unsatisfiability, such as for �u9E%<�>= .

For interesting levels of difficulty, we do have to reduce



to values below Mp�>= . If



is much
larger, the formulae are too hard. However, with


 �¼Mp�>= we can produce interesting test sets, as
shown in Figure 12. (The relevant asymmetry between the satisfiable and unsatisfiable rates curves
for
�ÁÂ = is due to the high amount of tests exceeding the time limit.) Here the problems are hard

even for
� ��= but doable, and there are no problems with trivially (un)satisfiable formulas.
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Figure 9: Results for

 9EMp�>= , �±9L' , �²9DM , and �u9E%<�>= (our new method)

Our method now allows us fine control of the difficulty of tests. To make a test easier, we can
just reduce the size of clauses by reducing the value(s) of



, or increase the propositional probability� . This control was missing with the previous method, as



was restricted to integral value, and,
anyway, was always set to A and making � much different from %<�Ã% resulted in problems with trivial
unsatisfiability for maximum modal depths greater than 1.

5. A new CNF � � generation method: advanced version

Actually, our generator is much more general than what we have described so far. We allow direct
specification of the probability distribution of the number of propositional atoms in a clause, and
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Figure 10: Results for

 9EMp�>MU= , �±9L' , �²9DM , and �u9E%<�>= (our new method)

allow the distribution to be different for each modal depth from the top level to �q(�' . We also allow
direct specification of the probability distribution for the number of literals in a clause at each modal
depth. Thus, the probability distribution for the number of propositional atoms depends on both the
modal depth and the number of literals in the clause.

5.1 Generalization: shaping the probability distributions.

The generator has two parameters to control the shape of formulae. The first parameter,



, is a
list of lists (e.g., [[0,0,1]]) telling it how many disjuncts to put in each disjunction at each
modal level. Each internal list represents a finite discrete probability distribution. For instance, the
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Figure 11: Results for
� 9E¿ , �±9L' , �²9DM , and �u9D%<�>= (our new method)

“[0,0,1]” says “ %¤Fp' of the disjunctions have ' disjunct, %¤Fp' have M disjuncts, and '�Fp' have A
disjunctions” (fixed length 3). Because there is only one element of the list, this frequency is used at
each modal depth, until the last. Other possibilities are, e.g., [[1,1,1,1]] (maximum length 4
with uniform distribution), [[16,8,4,2,1]] (maximum length 5 with exponential distribution),
and so on.

The second parameter, � , is a list of lists of lists (e.g., [[[],[],[0,3,3,0]]]) that con-
trols the propositional/modal rate. The top-level elements are for each modal depth (here all the
same). The second-level elements are for disjunctions with 1,2,3,... disjunctions (here only the third
matters as all disjunctions have three disjuncts). For instance, the “[0,3,3,0]” says “ %¤FQ� of the
disjunctions have % propositional atoms, AÄFQ� have ' propositional atom, AÄFQ� have M propositional
atoms, and %¤FQ� have A propositional atoms” (that is, our new scheme discussed in the paper with��9$%<�>= ; the old scheme with ��9$%<�>= is represented by [[[],[],[1,3,3,1]]]). Notice that
the first element of the distributions in



represents the value ' , whilst the first element of the dis-

tributions in � represents the value % . Setting the last element of each distribution to zero [...,0]
eliminates all strictly propositional clauses, which are the main cause of trivial unsatisfiability; this
is the way we implement the constraint �¾�»d 
 (/'�iSF 
 of Section 4.1.
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Figure 12: Results for

 9DMp�>MU= , �g9$' , �o9DA , and �u9E%<�>=

For instance, the plots of Figures 1-12 can be obtained with the following choices of C and p:
Fig. C p C (advanced version) p (advanced version)
1, 4 3 0.5 (old) [[0,0,1]] [[[],[],[1,3,3,1]]
2, 6 3 0.5 (new) [[0,0,1]] [[[],[],[0,3,3,0]]
3, 5 3 0 [[0,0,1]] [[[],[],[1,0,0,0]]
7 3 0.6 (old) [[0,0,1]] [[[],[],[8,36,54,27]]
8 3 0.6 (new) [[0,0,1]] [[[],[],[0,1,4,0]]
9 2.5 0.5 (new) [[0,1,1]] [[[],[0,3,0],[0,3,3,0]]
10, 12 2.25 0.5 (new) [[0,2,1]] [[[],[0,3,0],[0,3,3,0]]
11 2.2, 2.4, 0.5 (new) [[0,4,1]], [[0,3,2]] [[[],[0,3,0],[0,3,3,0]]

2.6, 2.8 [[0,2,3]], [[0,1,4]]
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1 function rnd CNF ��� (d,m,L,N,p,C)
2 for i := 1 to 
 do /* generate 
 distinct random clauses */
3 repeat
4


)Å �
:= rnd clause(d,m,N,p,C);

5 until is new(Cl
�
); /* discards


"Å
if it already occurs */

6 return ÆjÇ�ÉÈ � 
)ÅÊ� ;
7 function rnd clause(d,m,N,p,C)
8 J := rnd length(d,C); /* select randomly the clause length */
9 Ë := rnd propnum(d,p,K); /* select randomly the prop/modal rate */
10 repeat
11 for j := 1 to Ë do /* generate P distinct random prop. literals */
12

ÅWÌ
:= rnd sign() f rnd atom(0,m,N,p,C);

13 for j := P+1 to J do /* generate K-P distinct random modal literals */
14

Å Ì
:= rnd sign() f rnd atom(d,m,N,p,C);

15

"Å2Í 9ºÎ²ÏÌÐÈ � ÅÑÌ ;

16 until no repeated atoms in(Cl); /* discards Cl if contains repeated atoms */
17 return ÒÔÓ�ÕQÖ�d 
)Å i ;
18 function rnd atom(d,m,N,p,C)
19 if d=0
20 then return rnd propositional atom(N); /* select randomly a prop. atom */
21 else
22

� +
:= rand box(m); /* select randomly an indexed box */

23

"Å

:= rand clause(d-1,m,N,p,C);
24 return �,+�
)Å ;

Figure 13: Schema of the new CNF �p� random generator.

Our generator works as described in Figure 13. The function is new(Cl
�
) checks if


)Å �Ø×9
)ÅÑÌ � NuÙ �KÚ ; rnd length(d,C) selects randomly the clause length according to the �²ÛÀ' -th dis-
tribution in



(e.g, if � is ' and



is [[0,1,1][1,2][1]], it returns ' with probability '�FQA

and M with probability MÄFQA ); rnd propnum(d,p,K) selects randomly the number of propositional
atoms per clause Ë according to the ] �oÛ$'Q��J¾_ -th distribution in � (e.g, if � is ' , J is M and � is
[[[],[0,1,0],[0,1,0,0]] [[1,0][0,1,0]]], it returns ' deterministically); rnd sign
selects randomly either the positive or negative sign with equal probability; no repeated atoms in(Cl)
checks if the clause


)Å
contains no repeated atom; Sort(Cl) returns the clause


)Å
sorted according

to some criterium; rnd propositional atom(N) selects with uniform probability one of the
�

propo-
sitional atoms � � ; rnd box(m) selects with uniform probability one of the � indexed boxes

�Ü+
.

When eliminating duplicated atoms in a clause, we take care not to disturb these probabilities
by first determining the “shape” of a clause (rows 8-9 in Figure 13), and only then instantiating that
with propositional variables (rows 10-16 in Figure 13). If a clause has repeated atoms, either propo-
sitional or modal, the instantiation is rejected and another instantiation of the shape is performed.
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If we did not take care in this way we would generate too few “small” atoms because there are
fewer small atoms than large atoms, resulting in a greater chance of rejecting small atoms because
of repetition.

The elimination of duplicated atoms in a clause is not only a matter of elimination of redundan-
cies, but also of elimination of a source of flaws. In fact, one might generate top-level clauses like�^�^�Ðs³d`t � ��de�.�Brmt¡�.�@ihr�t � R de� R rmt¡� R iSihs¹�^�^� , which would make the whole formula inconsistent.

Example 5.1 We try to guess a parameter set by which the new random generator can potentially
generate the following CNF � � formula k :

d�t¡� P r � ��d`tÔ�ÞÝ,rßt � �S�"�Ti2r � ��d`t¡�.��r³t � ��� R iài8sd�t¡�.��r � ��de� P rßt � ��� R i~r¾t � ��d � �Tt¡�ÜÝ�i i8sd�t¡�ÜÝ,rßt � ��de� R r � �Ðt¡�.�@i i8sdÁ�.��rßt � ��d`t � ���ÜÝ�i iÐ�
(2)

After a quick look we set �±9À' , �o9�M , � 9C¿ , 
µ9C¿ . At top level we have 0 unary, 2 binary and
2 ternary clauses; at depth 1 we have 2 unary and 4 binary clauses; at depth 2 we have only 6 unary
clauses. Thus, we can set

C = [[0,2,2],[2,4],[6]]. (3)

At top level there are no unary clauses (we represent this fact by the empty list “[]”), the 2 bi-
nary clauses have 1 propositional literal, and the 2 ternary clauses have 1 propositional literal; at
depth 1, the 2 unary clauses have 0 propositional literals, while the 4 binary clauses have 1 propo-
sitional literal. (There is no need to provide any information for depth 2, as all clauses are purely
propositional.) Thus, we can set

p = [[[],[0,2,0],[0,2,0,0]] [[2,0],[0,4,0]]]. (4)

The two expressions can then be normalized into:

C = [[0,1,1],[1,2],[1]]
p = [[[],[0,1,0],[0,1,0,0]] [[1,0],[0,1,0]]].

(5)

Notice that any other setting of



, � obtained by changing the non-zero values in (5) into other
non-zero values, or turning zeros into non-zeros (but not vice versa!), will do the work, just with a
different probability. For instance, turning the first list in



into [1,1,1] allows for generating

also unary clauses at top level; anyway, with probability d�MÄFQAÄi Ç the generator may still produce
formulae with only binary and ternary clauses at top level.

�
As an illustration of our general method, we present a set of tests with � 9á' , �º9âAp�S¿ ,� 9;Ap�S¿h� , 
 9 [[1,8,1]], and ��9 [[[1,0],[0,1,0],[0,1,1,0]]]. This set of tests

introduces a small fraction of single-literal clauses that contain a modal literal (except at the greatest
modal depth, where they contain, of course, a single propositional literal). The results of tests are
given in Figure 14. Again, trivial instances occur only out the interesting zone. Here we can generate
interesting test sets even with modal depth ¿ .
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Figure 14: Results for DLP with �o9DAp�S¿ , � 9DAp�S¿ , 
 9 [[1,8,1]],�³9 [[[1,0],[0,1,0],[0,1,1,0]]].

5.2 Varying the probability distributions with the depth

Our new method provides the ability to fine-tune the distribution of both the size and the propo-
sitional/modal rate of the clauses at every depth. This fine tuning results in a very large number
of parameters, and so far in this paper we have only investigated distributions that conform to the
scheme described above or ones that correspond to the 3CNF �p� generation method previously used.

To give an example of how to vary the probability distributions with the nesting depth of the
clauses, we consider the case with ��9�¿h�@= , �ã9â' , � 9ÁAp�S¿h�@= , 
 9 [[1,8,1],[1,2]],�À9 [[[1,0],[0,1,0],[0,1,1,0]],[[1,0],[0,1,0]]]. The results of the tests are
given in Figure 15.

The



parameter says that the probability distributions of the length of the clauses occurring at
nesting depth % and

Â ' are [1,8,1] and [1,2] respectively. (When not explicitly specified, it is
considered the last distribution by default, as in the case of depth #À' .) Thus, the top-level clauses
are on average '�Fp'�% unary, �ÄFp'�% binary '�Fp'�% ternary, while the clauses occurring at depth

Â ' are
on average '�FQA unary and MÄFQA binary.

The � parameter says that the lists of probability distributions of the propositional/modal ratio
at nesting depth % and

Â ' are [[1,0],[0,1,0],[0,1,1,0]] and [[1,0],[0,1,0]] re-
spectively. Thus, at every depth, unary clauses have no propositional literal and binary clauses have
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Figure 15: Results for DLP with �L9â¿h�@= , � 9ä' , � 9åAp�S¿h�@= , 
 9 [[1,8,1],[1,2]],�³9 [[[1,0],[0,1,0],[0,1,1,0]],[[1,0],[0,1,0]]].

' propositional and ' modal literal. The top-level ternary clauses have either ' or M propositional
literals, with equal probability.

Notice that at top level the distributions are identical to those of Figure 14, whilst at depth
Â '

there are no more ternary clauses and a higher fraction of unary clauses. These slight modifica-
tions allow reasonable test sets with ��9æ= and

� 9æ= . Moreover, trivial instances have nearly
disappeared.

6. Generality of the method

We have already observed (Horrocks et al., 2000) that for normal modal logics, from l/ç5è�é upward,
there is no loss in the restriction to CNF ��� formulae, as there is an equivalence between arbitrary
normal modal formulae and CNF � � formulae9 . We may wonder how well our generation tech-
nique covers the whole space of CNF �p� formulae, and how well we can approximate a restricted

9. This holds for all modal normal logics from ê�ë>ì8í upward, as the conversion works recursively on the depth of the
formula, from the leaves to the root, each time applying to sub-formulae the propositional CNF conversion and the
transformation îYï�ð ñoò`ó ô ó ñ z¤õ ð ñ îYï ò`óÜô ó ñ�ö
which preserves validity in such logics.
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subclass of this space. Example 5.1 represents an instance of a very general property of our random
generation technique, which we present and discuss below.

Now we assume that the rnd CNF � � of Figure 13 is a “purely random” generator, i.e., it per-
forms all non-deterministic choices independently and in a pure random way. (Of course pseudo-
random generators only approximate this feature.) Moreover, with no loss of generality, we restrict
our discussion to CNF ��� formulae which have no repeated clauses at top level and no repeated
atoms inside any clause at any level, and in which atoms are sorted within each clause, accord-
ing to the generic function Sort() of Figure 13. The former allows for considering only formulae
which are already simplified out; the latter allows for considering only one representative for each
class of formulae which are equivalent modulo order permutations. As discussed by Giunchiglia
et al. (2000), the latter allows for further simplifying subformulae like, e.g.,

� de�°�Xr÷� R i�r � de� R rÔ�.�Ti
or
� de�.�¡r¹� R i~r³t � de� R ru�.�Ði .
Let k be a sorted CNF � � formula of depth � and with 
 top-level clauses built on all the

propositional atoms ���j�����^�^�Ã� �"! and on all the modal boxes � � �����^�^� � - ! , which has no repeated
clause at top level and no repeated atoms inside any clause at any level. Then we can construct



and � so that, for each Ú , Ù , Õ :
(a) the

Ù
-th element of the Ú -th sublist in



is non-zero if and only if there is a clause of length

Ù
occurring at depth Ú in k , and

(b) the Õ)Û»' -the element of the
Ù
-th sub-sublist of the Ú -th sublist in � is non-zero if and only if

there is a clause of length
Ù

occurring at depth Ú which contains Õ propositional literals.

One possible operative technique to build



and � works as follows. Initialize



as a list of �)Ûº'
sublists. Then, for every depth level Úùø·��%<���^�^�^����! , set the Ú -th sublist of



as follows:

(i) set the size J of the sublist as the maximum size of clauses occurring in k at depth Ú ;
(ii) for all

Ù øE�¤'Q���^�^��JØ! , count the number of clauses of length
Ù

occurring in k at depth Ú , and
append the result to the sublist.

Initialize � as a list of � sublists of sub-sublists. Then, for every depth level Úúøµ��%<���^�^�^���m(E'�! , set
the Ú -th sublist of � as follows:

(i) look at



: set the size J of the sublist as the maximum size of clauses occurring in k at depthÚ ;
(ii) for all

Ù ø��¤'Q���^�^��J*! , generate the
Ù
-th sub-sublist as follows:� look at



: if the number of clauses of length

Ù
occurring at depth Ú is non-zero, then set

the length
Å

of the sub-sublist to
Ù ÛC' , else set

Å
to 0;� for all Õmø���%<���^�^� Å (C'�! , count the number of clauses of length

Ù
occurring in k at depthÚ which have Õ propositional literals, and append the result to the sub-sublist.

Example 5.1 represents an instance of application of the above technique for construction



and �
from k . Notice that the



and � parameters not only verify points deûhi and d�ü�i above, but are such

that the probability distributions mimic the actual number of occurrences of the different kinds of
clauses.
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Theorem 6.1 Let rnd CNF ��� be a purely random generator as in Figure 13. Let k be a sorted
CNF � � formula of depth � and with 
 top-level clauses built on all the propositional atoms in���.�����^�^�Ã� �.! and on all the modal boxes in � � �����^�^� � - ! , which has no repeated clause at top level
and no repeated atoms inside any clause at any level. Let



and � be built from k so that to verify

points deûhi and d�ü�i above. Let

"ý

and � ý be obtained from



and � respectively by substituting some
zero-values with some non-zero values. Then we have:

(i) rnd CNF � � (d,m,L,N,p,C) returns k with some non-zero probability þ ;
(ii) rnd CNF ��� (d,m,L,N,p’,C’) returns k with some non-zero probability þ ý ��þ .

Proof The fully-detailed proof is reported in Appendix. Here we sketch the main steps.
The following facts come straightforwardly by induction on the structure of k :

1. every propositional atom occurring in k at some depth Ú is returned with the same non-zero
probability þm� by both rnd atom(0,m,N,p,C) and rnd atom(0,m,N,p’,C’);

2. every modal atom
�Gÿ�
"Å

occurring in k at some depth Ú is returned with some non-zero proba-
bility þ R by rnd atom(d-i,m,N,p,C), and is returned with some non-zero probability þ ý R ��þ R
by rnd atom(d-i,m,N,p’,C’);

3. every clause

)Å

occurring in k at some depth Ú is returned with some non-zero probabilityþ P by rnd clause(d-i,m,N,p,C), and is returned with some non-zero probability þ ý P ��þ P by
rnd clause(d-i,m,N,p’,C’).

Thus, every top level clause

"Å��

is returned by rnd clause(d,m,N,p,C) and rnd clause(d,m,N,p’,C’)
with some non-zero probabilities þ �

and þ ý�� respectively, being þ ý�� �/þ �
. From this fact, it comes

straightforwardly that k is returned by rnd CNF � � (d,m,L,N,p,C) and rnd CNF � � (d,m,L,N,p’,C’)
with some non-zero probabilities þ and þ ý respectively, being þ ý ��þ . Q.E.D.

Q.E.D.
From a theoretical viewpoint, Theorem 6.1 d Ú i shows that our generation technique is very

general, because, for every CNF � � formula k , there exists a choice for the parameters s.t. a purely
random generator returns k with some non-zero probability þ .

Of course, the choice criterium for



and � suggested by points deûhi and d�ü�i is not unique as,
for example, any other setting obtained from it by turning zeros into non-zeros would match the
requirements. As an extreme case, we might think to do very general choices like

C = [[1,1,1,...],...] p = [[[[1,1],[1,1,1],[1,1,1,1]...]]]. (6)

which guarantee to have every possible CNF ��� formula within a given bound in clause size with
non-zero probability. Anyway, Theorem 6.1 d Ú`Ú i shows that, extending the number of non-zeros
values, the probability of generating k decreases.

For instance, consider Example 5.1. Turning the first list in



of (5) into [1,1,1] would still
allow for generating the formula (2), but it would allow for generating also unary clauses at top level
with probability '	(�d�MÄFQAÄi Ç , which converges quickly to ' with 
 .

Usually we are not interested in randomly generating one precise formula with some non-zero
probability —which would be rather small anyway— but rather to randomly generate a class of for-
mulae which are as similar as possible a given target class of formulae. Adding redundant non-zeros
would extend the range of shapes for formulae, extending the variance and lowering the resemblance
to the target class of formulae.
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7. Discussion

7.1 The basic and the advanced method

Our new testing method can be used at two different levels, depending on the attitude —and on the
skills and experience— of the user.

In the basic usage the clause length



is represented by lists with either only one non-zero
element (e.g., [[0,0,1]], meaning “clause length M ”) or only two adjacent non-zero elements
(e.g., [[0,2,1]], meaning “clause length M or A , with probability MÄFQA and '�FQA respectively”);
similarly, the propositional/modal rate � is represented by lists with either only one non-zero element
(e.g., [[[],[],[0,1,0,0]]], meaning “ ' propositional literal per clause”) or only two non-
zero adjacent elements (e.g., [[[],[],[0,3,2,0]]], meaning “either ' or M propositional
literals per clause, with probability AÄFQ= and MÄFQ= respectively”); the distributions do not vary with
the depth.

In the basic way the random generator is used as a “flawless”10 extension of the 3CNF �p�
method of Giunchiglia and Sebastiani (1996), which allows for setting the clause length to either
fixed integer values or to non-integer average values. The number of parameters is kept relatively
small, so that to allow a coarse-grained coverage of a significant subspace with an affordable number
of tests.

In the advanced usage, it is possible to apply any finite probability distributions to both



and � ;
moreover, it is possible to use different distributions at different depths. This opens a huge amount
of possibilities, but requires some skills and experience from the user: the representation of sophis-
ticated multi-level distributions may be rather complicated, and may thus require some practice;
moreover, the usage of complex distributions requires some care, as the presence non-constant dis-
tributions in both clause length and propositional/modal rate may significantly enlarge the variance
of the features of the generated formulae, making the effects of the tests more unpredictable and
instance-dependent.

In order to guide the user, we provide some general suggestions for choosing the parameter sets
in a testing session. They come from both theoretical issues and our practical experience in using
the generator.� Avoid generating purely propositional top-level clauses, that is, set p = [[...,0],...].

See Sections 4.1 and 5.1. If possible, avoid generating unary top-level clause, that is, set C
= [[0,...],...]). See also Section 7.5.� In organizing a testing session, fix the parameter sets according to the following order and
directives.

(i) Fix d. With d=1 the search is mostly dominated by its propositional component, with
d>2 it tends to be dominated by its modal component. d=2 is typically a good start.

(ii) Fix m. m substantially partitions the problem into m independent problems. Increasing m,
the samples tend to be more likely-satisfiable. m=1 is typically a good start.

(iii) Set C. Increasing the top level values of C, the samples tend to be more likely-satisfiable
and the propositional component of search increases, so that the transition area moves

10. In the sense of “free from the flaw highlighted in the work by Hustadt and Schmidt (1999) and Giunchiglia
et al. (2000)”.
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to the right and the hardness peaks grow. Average values in ]\Mp�Ã%<�@Ap�Ã%�_ for the top level
distributions of C are typically a good start.

(iv) Set p. Decreasing the top level values of p, the modal component of search increases.
For the the top level distributions of p, having on average half of top-level atoms propo-
sitional (that is, the �u9E%<�>= of Section 4) is typically a good start.

(v) For each choice of the above parameters, increase N, starting from (at least) the maxi-
mum length in C, until the desired level of hardness is reached.

(vi) Make L vary within the satisfiability transition area.

� When dealing with C and p, focus on top-level clause distributions first. Small variations
of C and p at top level may cause big variations in hardness and satisfiability probability.
Variations at lower levels typically cause much smaller effects.

� Use convex distributions: e.g., [1,5,1] and [5,1,5] have the same mean value, but the
variance of the former is much smaller than that of the latter.

� Do keep L ranging in the satisfiability transition area: increasing L out of it, the fraction of
trivially unsatisfiable samples can become relevant. To determine the satisfiability transition
area, make a preliminary check with few samples per point (say, 10) using dichotomic search.

� Unlike N (and m), the parameters d, C, p make the formulas vary their shape. Thus, we
suggest to group together plots with the same d, C and p values and increasing N’s.

On the whole, the large number of parameters makes it impossible to cover the parameter space
in a reasonable amount of testing. However, just about any CNF � � formula shape can be generated
so that the method described in Section 6 can be used to produce random formulae reasonably
similar to some formula(e) of interest.

7.2 Comparison with the old 3CNF �p� method

On the whole, the new method inherits all the features of the old 3CNF � � method.

Scalability: Increasing
�

, � (and also the average clause length in



) the difficulty of the generated
problems scales up at will. Thus it is possible to compare how the performance of different
systems scale up with problems of increasing difficulty, for each source of difficulty (e.g.,
size, depth, etc.).

Valid vs. not-valid balance: The parameter 
 allows for tuning the satisfiability rate of the formula
at will. Moreover, it is always possible to choose 
 to generate testbeds with about a 50%-
satisfiable rate, which allows for the maximum uncertainty.

Termination: The new method allows for generating test sets of up to depth 3-4 which are run by
state-of-the-art systems in a reasonable amount of time.

Reproducibility: The results of each testbed are easy to reproduce because the generator’s code
and all the parameters’ values are made publicly available.

Parameterization: The random generation of CNF � � formulae is fully parametric.
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Data organization: The most natural way to use the new random generator is to generate tests and
plot data by increasing values of one or two parameters. This allows for easy, quantitative and
qualitative evaluations of the performances of the different procedures under test.

Moreover, the new method improves the 3CNF � � method for the following features.

Representativeness: As stated in Section 6, CNF � � formulae represent all formulae in the normal
modal logics from l*ç5è�é upward, as there is an equivalence-preserving way of converting all
modal formulae into CNF � � . From Theorem 6.1, the new method allows for a very fine-
grained sampling of the class of CNF � � formulae.

Difficulty: The random CNF ��� formulae with � Â M and
�¸Â ¿ provide challenging test sets for

state-of-the art procedures. CNF � � formulae with � Â ¿ and
��Â��

can be well considered
as challenges for next-generation systems. (Of course, it is not a problem to generate easy
problems too.)

Control: The parameters
�

, � and



allow for controlling monotonically the difficulty of the test
set. (E.g., if you increase

�
, you are reasonably sure that your mean/median CPU time plots

will increase.) The parameter 
 allows for controlling the satisfiability rate. Monotonicity
allows for controlling one feature by simply increasing or decreasing one value, and thus for
eliminating uninteresting areas of the input space.

Modal vs. propositional balance: The size of the Kripke models spanned by the decision proce-
dures has increased exponentially with the higher modal depths reached by the new test sets;
moreover, the probability of repeated top-level atoms has dramatically reduced.11 Conse-
quently, unlike the tests by Hustadt and Schmidt (1999) and Giunchiglia et al. (2000) the
search is no longer dominated by the pure propositional component of reasoning, and the
empirical results show that a large number of modal successors are explored.

Finally, the new method completely removes or drastically reduces the effects of the following
problems.

Redundancy: Propositional and modal redundancy had already been eliminated in the last versions
of the 3CNF � � method (Giunchiglia et al., 2000). Moreover, the new method allows for
eliminating all strictly propositional clauses.

Triviality: The main cause of trivial unsatisfiability has been removed, so that trivially unsatisfiable
formulae have been relegated out of the transition areas in our experiments.

Artificiality: Our method allows the user to shape the test formulae so that to maximize the re-
semblance to the expected typical inputs of his/her system(s). Of course, this is done within
the limits imposed by randomness: the more irregular the typical input formulas, the higher
the variance of the randomly generated formulas, the lower their average resemblance to the
typical input formulas.

11. The number of possible distinct modal atoms increases hyper-exponentially with � (Horrocks et al., 2000).
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Over-size: The new method allows for generating extremely hard problems with reasonable size.
It comes from the analysis of the resulting data that hard problems require very big amounts
of both search branches and modal successors generated, so that the search is not dominated
by parsing and data managing.

The generator presented by Horrocks and Patel-Schneider (2002), extends the 3CNF ��� gener-
ator of Giunchiglia et al. (2000) too. However, our new generator allows for shaping the probability
distributions of both C and p, and for using different distributions at every depth level. In principle,
the generator of Horrocks and Patel-Schneider (2002) allows also for setting the probabilities 0�1
and 0 - by which propositional and modal atoms are negated. However, this feature is not used
very much—in the experiments by Horrocks and Patel-Schneider (2002) 0 1 is always %<�>= and 0 -
is different from %<�>= only in one experiment— and adds nothing to the generality of the generator,
so that in our new generator we decided not to re-introduce it.

7.3 Comparison with QBF-based method

Before comparing our new CNF ��� generation method with the QBF-based generation method, we
must notice that, so far, they have been used in different ways, corresponding to the two different
test techniques briefly summarized in Section 3.

� In the TANCS competition(s) (Massacci, 1999), the tests have been performed on single
data points, and the results are presented in the form of big tables, each entry consisting
of the number of successful solutions and in the rescaled geometrical mean CPU time for
such solutions. Two or more systems are compared according to their number of successful
solutions, considering the geometrical mean CPU time value only when the result is even.
This is due to the fact that a comparison between geometrical means is possible only if they
are computed on the same number of successful values, or, for a more accurate comparison,
on the same successful values.12 This method was chosen to guarantee the fairness of the
comparison between the competitors, which is the key requirement in a competition.

� In this paper instead, we have focused on highlighting both the qualitative and quantitative
behavior of the system(s). Thus we have preferred plots to tables, and we have preferred
representing percentiles CPU times rather than the number of successful solutions and their
geometrical mean times. In fact, the former does not require to distinguish between successful
and non-successful solutions.13 Thus, they are much more suitable for plotting, because
a comparison on geometrical means makes sense only for those data points with the same
number of successful solutions, which is very hard to follow in a plot.

Of course, both generators can be used in both ways. (See Heguiabehere and de Rijke (2001)
for some plots with the random QBF-based method.) Comparing the two approaches above in
organizing and presenting data is not one of the goals of this paper, so we restrict our analysis to the
generation methods, independently from how they have been used so far.

12. In case of tests exceeding the timeout, geometrical means are altered by the truncation introduced by the unsuccessful
solutions. Thus the geometrical mean makes sense only if calculated only on successful results.

13. If the percentage of successful solutions is greater or equal than � , then the value � -th percentile is not influenced
by the truncation of values introduced by timeouts, otherwise it is equal to the timeout value.
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The QBF-based generation method of Massacci (1999) shares with our new CNF ��� generation
method several features —in particular Scalability, Valid vs. not-valid balance, Termination, Re-
producibility, Parameterization, Data Organization, Difficulty, Modal vs. propositional bal-
ance, Redundancy and Triviality— for which considerations which are identical or analogous to
those for our new method hold, once we consider parameters I , H and



instead of parameters

�
,� and 
 . The following features instead deserve more discussion.

Control: The parameters I and H allow for controlling monotonically the difficulty of the test set.
The parameter



allows for controlling the satisfiability rate. However, unlike the CNF ���

case, the main parameters of the QBF generator (e.g., H and I ) do not have a direct meaning
wrt. the main characteristics of the resulting modal formulae like, e.g., the modal depth and
the number of propositional variables.

Representativeness: In general QBF formulae are good representatives for the whole class of
quantified boolean formulae, as there is a way to convert a generic quantified boolean formula
into QBF.14 (The randomly generated QBF formulae used by Massacci (1999) restrict to
those having a fixed amount of variables per alternation.) Nevertheless, the class of modal-
encoded QBF formulae restrict to those having candidate Kripke structures with the very
regular structure imposed by the QBF and/or binary search trees.

Artificiality: Unlike the CNF � � case, the main parameters of the QBF generator (e.g., H and I )
do not have a direct meaning wrt. the main characteristics of the resulting modal formulae.
Thus, it is hard to choose the parameters for the random QBF generator so that to resemble
expected typical inputs of the system(s).

Over-size: One final problem with random modal-encoded QBF formulae is size. Initial versions
of the translation method produced test sets in the 1GB range, which stressed too much the
data-storage and retrieval portion of the provers. (For example, running DLP on these formu-
lae resulted in a 1000s timeout without any significant search.) Although the encoding has
been significantly improved in this sense, the current versions still produce very large modal
formulae, mostly to constrain the Kripke structures.

Similar considerations have been very recently presented by Heguiabehere and de Rijke (2001).
On the whole, we believe that the QBF generation method is still appealing, and that the two

methods can co-exist in any empirical test session.

7.4 Complexity issues

From a purely theoretical viewpoint, it is remarked that modal-encoded QBF formulae can capture
the problems in �	�
 , while CNF ��� formulae are “stuck at NP” (Massacci, 1999)15 . This statement
requires some clarification.

14. Notice that by “QBF” here we denote the class of prenex CNF QBF formulae, given by an alternation of quantification
variables ending with an existential one followed by a CNF propositional formula. The conversion works by lifting
quantifiers outside the formula and then converting into k-CNF [k-DNF] the matrix if the innest quantifier is an � [a � ,
negating the result and pushing down the negation recursively]. The conversion is truth-preserving [truth-inverting].

15. More precisely, Massacci (1999) referred to the 3CNF 
 � formulae of Giunchiglia et al. (2000). The statement holds
also for all the CNF 
 � formulae.
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First, test sets are necessarily finite, therefore it makes no sense to attribute to them a complexity
class. Thus, when speaking of complexity classes for test problems, we do not refer to test sets, but
rather to the infinite sets of formulae we could generate if we could have unbounded values for (at
least one of) the generation parameters. In particular, the statement above means that the infinite set
of QBF formulae with unbounded number of variables per alternation I and bounded alternation
depth H is complete for ���
 (Garey & Johnson, 1979), while the infinite set of CNF � � formulae
with bounded depth and unbounded number of propositional variables is in NP (Halpern, 1995).

Secondly, the alternation depth H and the variable number per alternation I are not the “QBF-
analogous” of l*ç5è�é ’s modal depth and variable number respectively, as both the latter values for
the resulting modal formulae grow as cmdeH�f�Ioi .16 In fact, QBF formulae with bounded alternation
depth H and unbounded number of variables per alternation I give rise to modal formulae of both
unbounded depth and unbounded number of variables.

Finally, the “ �	�
 vs. NP” issue of Massacci (1999) is not a matter of generators, but rather a
matter of how such generators are used, and of how results are organized and presented. In fact,
so far random CNF ��� testbeds have always been organized by fixing all the parameters except 

(modal depth � included!) and making 
 vary. This choice, whose goal is to produce data plots
covering the satisfiability transition area, is what causes the testbed formulae to be “stuck at NP”.
To avoid this fact, one may want to make � vary and to fix all the other parameters, as l/ç5è�é
satisfiability with unbounded depth and bounded number of propositional variables is PSPACE-
complete (Halpern, 1995).

7.5 Asymptotic behavior

Achlioptas et al. (1997) presented a study on the asymptotic behavior of random CSP problems.
They showed that, for most well-known random generation models (which did not reveal flaws in
empirical tests) the probability that problems are trivially unsatisfiable tends to 1 with

��� (���� ,�
being the number of variables. Gent et al. (2001) lately explained this discrepancy between

theoretical and empirical results by showing that the above phenomenon happens with significant
probability only for values of

�
which are out of the reach of current CSP solvers.

The problem is due to the possible presence of (implicit) unary constraints causing some vari-
able’s value to be inadmissible. If this occurs with some non-zero probability, then with non-zero
probability some variable may have all its values inadmissible. This causes a “local” inconsistency
of the whole problem, which is very easily revealed by the solver. When

��� (���� , the probability
of not having such situation tends to zero. Analogous problems have been revealed with random
SAT problems generated with the constant probability generation model, as unary clauses are gen-
erated with non-zero probability (Mitchell et al., 1992), and with random QBF problems, as implicit
unit clauses, —i.e., clauses containing only one existential variable— are generated with non-zero
probability (Gent & Walsh, 1999). For the random k-SAT model, � Â M , such problem does not
occur (Friedgut, 1998; Achlioptas et al., 1997).

Our generation model is far more complicated to analyze than the models above. First, CNF ���
formulas have a much more complicated structure than random SAT, CSP and QBF formulas, in-

16. As we have already noticed (Horrocks et al., 2000), a better “QBF-analogous” of the modal depth is the total number
of universally quantified variables � ( � z���� ����� ��� in our case). In fact, like modal êjë>ì8í with bounded depth,
the class of QBF formulae with bounded � is only complete in NP, as it is possible to “guess” a tree-like witness
with !#"$� � �&%(' nodes.
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volving a much wider number of parameters. Second, unlike with the models discussed above, the
(constraints described by) CNF � � clauses are not picked in a uniform way, as the probability of
generating a given CNF �p� atom

�,+*)
varies strongly with its depth and shape, and it is typically

much smaller than that of generating a propositional atom � � .17 Thus, developing a formal proba-
bilistic analysis for the asymptotic behavior of our model is out of the reach (and of the scope) of
this paper. However, we provide here some heuristic considerations.

The simplest case is when we do not allow the generation of unary clauses at top level, that is,
when C = [[0,...],...], so that we do not have explicit unary constraints. We may still have
implicit unary constraints like, e.g., de� � r � + ) i s�de� � r³t � + ) i or d � � [�r � + ) i s�d � � [�r³t � + ) i .
Anyway, a simple heuristic consideration suggests that, given the big numbers of distinct CNF � �
modal atoms which may potentially be generated, such situations are more unlikely than that of
having implicit unit constraints like de� � ro� Ì i�s¾de� � r�t¡� Ì i in the standard 2-SAT model, which is
free from the asymptotic local inconsistency problem.

A more critical case is when we allow for the generation of unary clauses at top level, that
is, when C = [[x,...],...], +/#�% . In this case we can generate unary clauses, and thus
local inconsistencies, with non-zero probability. Thus, a simple way to avoid this problem is to
restrict the values of



so that not to allow unary top-level clauses, that is, to always set C =

[[0,...],...]. Notice, however, that this hardly becomes a problem in practice if we re-
spect the condition described in Sections 4.1 and 5.1 of avoiding purely propositional top-level
clauses (that is, always set p = [[...,0],...]). In fact, given the big numbers of distinct
CNF ��� modal atoms which may potentially be generated, the probability of having two contradic-
tory modal unit clauses

�G+,)
, t �,+,) within the same formula becomes quickly negligible even with

small depths.
Notice that here we have intentionally not considered “modal” implicit unary constraints like,

e.g., de� � r ) i÷s�de� � r�[	i , )
and [ being mutually inconsistent modal literals (e.g.,

) 9 �Þ+ k÷� ,[»9?t �ù+ d�kù�÷r|k R i ). In fact, detecting such inconsistencies requires investigating recursively the
modal successors, and therefore it is not “trivial”.

8. Conclusions and future work

As shown by the test sets above our new method, in its basic form, allows us to generate a wider
variety of problems covering more of the input space. We can better-tune the difficulty of problems
for various parameter values, including the first reasonable test sets for maximum modal depths
of M and A . We can produce interesting scaling dimensions, varying more than just the number of
propositional variables

�
. For example, we can now vary the propositional probability � or the

size of clauses



to vary the difficulty of interesting problems. As neither � nor



are restricted to
integral values, we have extremely fine control over the difficulty of test sets. Thus we can create
more interesting test sets where the satisfiable/unsatisfiable transition is explorable with current
decision procedures.

We have drastically reduced the influence of trivial unsatisfiability, which flawed the previous
CNF � � methodologies when �¾#/% . We retain the desirable features of the previous CNF � � methodo-
logies. Our test sets are easy to reproduce and are not too large.

17. Again, we recall that the number of possible distinct CNF 
 � atoms increases hyper-exponentially with the modal
depth � (Horrocks et al., 2000).
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In our full methodology we have introduced the possibility of shaping the distribution of both
the size and the propositional/modal rate of the clauses. This can be done at each level of modal
depth. This allows for generating a much wider variety of problems, covering in principle the whole
input space. For instance, we have produced a full test set with �j9�= and

� 9D= (Figure 15).
We have not moved closer to application data, as there are no significant direct applications

of modal decision procedures and thus no guidance for the sorts of inputs that would be close to
application inputs. In any case, we believe we have moved closer than ever to the possibility of
approximating given classes of input formulae.

There is still much work to be done using our generation methodology. We can produce more
test sets and try these test sets out on various modal decision procedures. We may also want to
uncover parameter settings where the full generality of our generation method is needed to produce
reasonable test sets.
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Appendix: Fully-detailed proof of Theorem 6.1

Theorem 6.1 Let rnd CNF � � be a purely random generator as in Figure 13. Let k be a sorted
CNF ��� formula of depth � and with 
 top-level clauses built on all the propositional atoms in���.�����^�^�Ã� �.! and on all the modal boxes in � � �����^�^� � - ! , which has no repeated clause at top level
and no repeated atoms inside any clause at any level. Let



and � be built from k so that to verify

points deûhi and d�üXi of Section 6. Let

.ý

and � ý be obtained from



and � respectively by substituting
some zero-values with some non-zero values. Then we have:

(i) rnd CNF � � (d,m,L,N,p,C) returns k with some non-zero probability þ ;
(ii) rnd CNF � � (d,m,L,N,p’,C’) returns k with some non-zero probability þ ý ��þ .

Proof The proof works by induction on the structure of k . First, we prove that:

1. every propositional atom occurring in k at some depth Ú is returned with the same non-zero
probability þm� by both rnd atom(0,m,N,p,C) and rnd atom(0,m,N,p’,C’);

2. every modal atom
�Gÿ�
"Å

occurring in k at some depth Ú is returned with some non-zero proba-
bility þ R by rnd atom(d-i,m,N,p,C), and is returned with some non-zero probability þ ý R ��þ R
by rnd atom(d-i,m,N,p’,C’);

3. every clause

)Å

occurring in k at some depth Ú is returned with some non-zero probabilityþ P by rnd clause(d-i,m,N,p,C), and is returned with some non-zero probability þ ý P ��þ P by
rnd clause(d-i,m,N,p’,C’).

From point 3. we have that every top level clause

)Å-�

is returned by rnd clause(d,m,N,p,C) and
rnd clause(d,m,N,p’,C’) with some probabilities þ �

and þ ý � respectively, being þ ý � �»þ �
. As k
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has no repeated clause, recalling a property of probabilities we have:

þ 9
þ � fd þ R Û�þo��þ R Û�þ R � þ R ÛE�����ÑiÐfd þ P ÛDd þ²�8Û�þ R inþ P ÛDd þ²��ÛØþ R i R þ P ÛC�����5iÐf�����d þ Ç Û�d þ²��ÛC������Û�þ Ç/. �Ðinþ Ç ÛDd þ²��ÛC������Û þ Ç/. �Ði R þ Ç ÛC�����Ñi

(7)

9 Ç0� È � 1�23 �ÉÈ Z d � . �3 4 È � þ
4
i � f�þ �65

(8)

9 Ç0� È � þ �
'	(87 � . �4 È � þ 4 � (9)

Notice that (8) is strictly monotonic in all its components. Thus, þ ý ��þ .
Now we need to prove points 1, 2 and 3.

1. Let � �
be a propositional atom in ���j�����^�^�^��� �.! occurring in k at depth Ú , for some Ú"��� .

Then both rnd atom(0,m,N,p,C) and rnd atom(0,m,N,p’,C’) invoke rnd propositional atom(N),
which returns � �

with probability þ��ù9À'�F � .

2. Let
� ÿ 
"Å

be a boxed clause occurring in k at depth Ú , for some Úú��� and
O �D� . Then the

clause

)Å

occurs in k at depth Ú ÛE' . (Notice that Ú,�/� instead of Ú÷��� : �úÿ�
)Å cannot occur
in k at depth � , because � is the maximum depth of k .)

(i) By inductive hypothesis, it follows from point 3. that

)Å

is returned with some non-zero
probability þ P by rnd clause(d-i-1,m,N,p,C). As ÚÜ�º� , rnd atom(d-i,m,N,p,C) invokes
rand box(m) f rand clause(d-i-1,m,N,p,C), which returns

�Þÿ�
)Å
with the non-zero prob-

ability þ R 9L'�F��Kf�þ P .
(ii) By inductive hypothesis, it follows from point 3. that


"Å
is returned with some non-

zero probability þ ý P �Dþ P by rnd clause(d-i-1,m,N,p’,C’). rnd atom(d-i,m,N,p’,C’) in-
vokes rand box(m) f rand clause(d-i-1,m,N,p’,C’), which returns

�Þÿ�
"Å
with the non-

zero probability þ ý R 9L'�F���f�þ ý P . Thus, þ ý R ��þ R .
3. Let


)Å
be a clause with length

Ù
and Õ�� Ù propositional literals, which occurs in k at depthÚ , for some Úù�/� . As k is sorted,

)Å

is represented as ÒÔÓ�ÕQÖ�d [ú��r:�^�^�Qr¹[ + r ) �8r|�^�^��r )pÌ . + i ,
where [G�����^�^�^�S[ + denote propositional literals and

) �����^�^�^� )pÌ . + denote modal literals.

(i) By inductive hypothesis, it follows from point 1. that each propositional literal [ �
is

returned with some non-zero probability %<�>=	fSþ �:9 � by rnd sign() f rnd atom(0,m,N,p,C),
and it follows from point 2. that each modal literals

)<;
is returned with the non-zero

probability %<�>=�f�þ R 9 ; by rnd sign() f rnd atom(d-i,m,N,p,C).
By construction of



, the

Ù
-th element of the Ú -th sublist in



is non-zero; thus,

Ù
is

returned with some non-zero probability þ Ì by rnd length(d-i,C).
By construction of � , the Õ Û³' -the element of the

Ù
-th sub-sublist of the Ú -th sublist in � is

non-zero; thus, Õ is returned with some non-zero probability þ +,= Ì by rnd propnum(d,p,j).18

18. Notice that > ï:? ñ is a conditioned probability, that is, the probability of having @ propositional literal provided the
clause has A literals. This matches the fact that A is an input in rnd propnum(d,p,j).
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Similarly to (9), k has no repeated atoms inside any clause, so that

)Å

is returned by
rnd clause(d-i,m,N,p,C) with the non-zero probability

þ P 9�þ Ì f�þ +*= Ì f�de%<�>=Äi Ì f +0� È � þ �:9 �'q(B7 � . �4 È � þ²�:9 4 f
Ì . +0; È � þ R 9 ;'ú(B7 ; . �C È � þ R 9 C � (10)

As with (9), the expression on the right in (10) is strictly monotonic in all its terms þ Ì ,þ +*= Ì , þ �:9 � ’s, þ R 9 ; ’s within the domain of definition.
(ii) By inductive hypothesis, it follows from point 1. that each propositional literal [ �

is returned with some non-zero probability %<�>=ßfhþ ý �:9 � �â%<�>=uf�þ �:9 � by rnd sign() f
rnd atom(0,m,N,p’,C’), and it follows from point 2. that each modal literals

)D;
is re-

turned with some non-zero probability %<�>=�f�þ ý R 9 ; �/%<�>=�f�þ R 9 ; by rnd sign() f rnd atom(d-
i,m,N,p’,C’).
By construction of



and


 ý
, the

Ù
-th element of the Ú -th sublist in


 ý
is non-zero; thus,Ù

is returned with some non-zero probability þ ýÃÌ by rnd length(d-i,C’). By construction
of

 ý

from



, þ ý Ì �/þ Ì .
By construction of � and � ý , the ÕjÛ�' -the element of the

Ù
-th sub-sublist of the Ú -th

sublist in � is non-zero; thus, Õ is returned with some non-zero probability þ ý +*= Ì by
rnd propnum(d,p,j). By construction of � ý from � , þ ý +*= Ì ��þ +,= Ì .
As k has no repeated atoms inside any clause, it follows that


"Å
is returned by rnd clause(d-

i,m,N,p’,C’) with the non-zero probability

þ ý P 9�þ ý Ì f�þ ý +*= Ì f�de%<�>=Äi Ì f +0� È � þ ý �:9 �'q(B7 � . �4 È � þ ý �:9 4 f
Ì . +0; È � þ ý R 9 ;'q(87 ; . �C È � þ ý R 9 C � (11)

Because of the strict monotonicity of (10) and (11), we have that þ ý P ��þ P .
Q.E.D.
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