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Abstract. We show how to reduce ontology entailment for the OWL DL and
OWL Lite ontology languages to knowledge base satisfiability in (respectively)
the

�����
	���
����
and

����	���
����
description logics. This is done by first estab-

lishing a correspondence between OWL ontologies and description logic knowl-
edge bases and then by showing how knowledge base entailment can be reduced
to knowledge base satisfiability.

1 Introduction

The aim of the Semantic Web is to make web resources (not just HTML pages, but a
wide range of web accessible data and services) more readily accessible to automated
processes. This is to be done by augmenting existing presentation markup with semantic
markup, i.e., meta-data annotations that describe their content [2]. According to widely
known proposals for a Semantic Web architecture, ontologies will play a key role as
they will be used as a source of shared and precisely defined terms that can be used in
such metadata [15].

The importance of ontologies in semantic markup has prompted the development
of several ontology languages specifically designed for this purpose. These include
OIL [7], DAML+OIL [13] and OWL [4]. OWL is of particular significance as it has
been developed by the W3C Web Ontology working group, and is set to become a
W3C recommendation.

The proposed OWL recommendation actually consists of three languages of in-
creasing expressive power: OWL Lite, OWL DL and OWL Full. Like OWL’s prede-
cessor DAML+OIL, OWL Lite and OWL DL are basically very expressive description
logics with an RDF syntax. They can therefore exploit the considerable existing body
of description logic research, e.g., to define the semantics of the language and to un-
derstand its formal properties, in particular the decidability and complexity of key in-
ference problems [6]. OWL Full provides a more complete integration with RDF, but
its formal properties are less well understood, and key inference problems would cer-



tainly be much harder to compute.3 In this paper we will, therefore, concentrate on the
provision of reasoning services for OWL Lite and OWL DL.

1.1 OWL Reasoning

Reasoning with ontology languages will be important in the Semantic Web if appli-
cations are to exploit the semantics of ontology based metadata annotations, e.g., if
semantic search engines are to find pages based on the semantics of their annotations
rather than their syntax. As well as providing insights into OWL’s formal properties,
OWL’s relationship to expressive description logics provides a source of algorithms for
solving key inference problems, in particular satisfiability. Moreover, in spite of the
high worst case complexity of reasoning in such description logics, highly optimised
implementations of these algorithms are available and have been shown to work well
with realistic problems. Two difficulties arise, however, when attempting to use such
implementations to provide reasoning services for OWL:

1. OWL’s RDF syntax uses frame-like constructs that do not correspond directly to
description logic axioms; and

2. as in RDF, OWL inference is defined in terms of ontology entailment rather than
ontology satisfiability.

The obvious solution to the first problem is to define a mapping that decomposes
OWL frames into one or more description logic axioms. It turns out, however, that the
RDF syntax used in OWL cannot be directly translated into any “standard” description
logic because it allows the use of anonymous individuals in axioms asserting the types
of and relationships between individuals. The obvious solution to the second problem
is to reduce entailment to satisfiability. Doing this naively would, however, require role
negation, and this is not supported in any implemented description logic reasoner.

In this paper we will show that, in spite of these difficulties, ontology entailment
in OWL DL and OWL Lite can be reduced to knowledge base satisfiability in the������� �"!$#&%

and
���'�)(*!$#&%

description logics respectively. This is achieved by map-
ping OWL to an intermediate description logic that includes a novel axiom asserting the
non-emptiness of a class, and by using a more sophisticated reduction to satisfiability
that both eliminates this constructor and avoids the use of role negation.

This is a significant result from both a theoretical and a practical perspective:
it demonstrates that computing ontology entailment in OWL DL (resp. OWL Lite)
has the same complexity as computing knowledge base satisfiability in

������� �+!,#�%
(
�����)(&!$#&%

), and that description logic algorithms and implementations (such as
RACER [8]) can be used to provide reasoning services for OWL Lite. Unfortunately,
the design of “practical” algorithms for

�-�����.�+!,#�%
is still an open problem—the

search for such algorithms must obviously be a high priority within the Semantic Web
research community.

3 Inference in OWL Full is clearly undecidable as OWL Full does not include restrictions on the
use of transitive properties which are required in order to maintain decidability [11].



2 The OWL Web Ontology Language

As mentioned in Section 1, OWL [4] is an ontology language that has recently been
developed by the W3C Web Ontology Working Group. OWL is defined as an extension
to RDF in the form of a vocabulary entailment [9], i.e., the syntax of OWL is the syntax
of RDF and the semantics of OWL are an extension of the semantics of RDF.

OWL has many features in common with description logics, but also has some sig-
nificant differences. The first difference between OWL and description logics is that the
syntax of OWL is the syntax of RDF. OWL information is thus encoded in RDF/XML
documents [1] and parsed into RDF Graphs [14] composed of triples. Because RDF
Graphs are such an impoverished syntax, many description logic constructs in OWL
are encoded into several triples. Because RDF Graphs are graphs, however, it is possi-
ble to create circular syntactic structures in OWL, which are not possible in description
logics. This would allow, e.g., infinitely recursive syntactic structures, the semantics of
which would not be well defined in a description logic.

The second difference between OWL and description logics is that OWL contains
features that do not fit within the description logic framework. For example, OWL
classes are objects in the domain of discourse and can be made instances of other con-
cepts, including themselves. These two features, also present in RDF, make a semantic
treatment of OWL quite different from the semantic treatment of description logics.

2.1 OWL DL and OWL Lite

Fortunately for our purpose, there are officially-defined subsets of OWL that are much
closer to description logics. The larger of these subsets, called OWL DL, restricts OWL
in two ways. First, unusual syntactic constructs, such as descriptions with syntactic
cycles in them, are not allowed in OWL DL. Second, classes, properties, and individuals
(usually called concepts, roles and individuals in description logics) must be disjoint in
the semantics for OWL DL.

Because of the syntactic restrictions in OWL DL, it is possible to develop an abstract
syntax for OWL DL [16] that looks much like an abstract syntax for a powerful frame
language, and is not very different from description logic syntaxes. This is very similar
to the approach taken in the OIL language [7]. The abstract syntax for OWL DL has
classes and data ranges, which are analogues of concepts and concrete datatypes in
description logics, and axioms and facts, which are analogues of axioms in description
logics. Axioms and facts are grouped into ontologies, the analogue of description logic
knowledge bases, which are the highest level of OWL DL syntax.

The constructors used to form OWL DL descriptions and data ranges are sum-
marised in Figure 1, where / is a class name, 0 (possibly subscripted) is a description,1 (possibly subscripted) is an individual name, 2 is an object (or abstract) property, 3
is a datatype property,4 4 is a datatype, 5 is a data range, 6 (possibly subscripted) is
a data value and 798;:<8;= are non-negative integers; elements > enclosed in braces ? can
be repeated zero or more times and elements [enclosed in square brackets] are optional.
The details of these constructors can be found in the OWL documentation [4].

4 An object property is one that associates pairs of individuals; a datatype property associates an
individual with a data value.



Classes@
intersectionOf( A � . . . A�B )
unionOf( A � . . . A B )
complementOf( A )
oneOf( C � . . . C B )
restriction( DE

allValuesFrom( A ) F E someValuesFrom( A ) FE
value( C ) F [minCardinality( G )]

[maxCardinality( H )] [cardinality( I )])
restriction( JE

allValuesFrom( K ) F E someValuesFrom( K ) FE
value( L ) F [minCardinality( G )]

[maxCardinality( H )] [cardinality( I )])
Data RangesM

oneOf( L � . . . LNB )

Fig. 1. OWL DL Constructors

Descriptions and data ranges can be used in OWL DL axioms and facts to provide
information about classes, properties, and individuals. Figure 2 provides a summary of
these axioms and facts. The details of these constructors can also be found in the OWL
documentation [4]. In particular, Figure 2 ignores annotations and deprecation, which
allow uninterpreted information to be associated with classes and properties, but which
are not interesting from a logical point of view.

Because of the semantic restrictions in OWL DL, metaclasses and other notions that
do not fit into the description logic semantic framework can be ignored. In fact, OWL
DL has a semantics that is very much in the description logic style, and that has been
shown to be equivalent to the RDF-style semantics for all of OWL [16]. Again, we will
not present all of this semantics, instead concentrating on its differences from the usual
description logics semantics.

There is a subset of OWL DL, called OWL Lite, the motivation for which is in-
creased ease of implementation. This is achieved by supporting fewer constructors than
OWL DL, and by limiting the use of some of these constructors. In particular, OWL
Lite does not support the oneOf constuctor (equivalent to description logic nominals),
as this constructor is known to increase theoretical complexity and to lead to difficulties
in the design of practical algorithms [10]. In Section 5 we will examine these differ-
ences in more detail, and explore their impact on the reduction from OWL entailment
to description logic satisfiability.

2.2 Semantics for OWL DL

The semantics for OWL DL is fairly standard by description logic standards. The OWL
semantic domain is a set whose elements can be divided into abstract objects (the ab-
stract domain), and datatype values (the datatype or concrete domain, written O�PQ ).



Class Axioms
Class(

@
partial R � . . . R B )

Class(
@

complete R � . . . R9B )
EnumeratedClass(

@ C � . . . C B )
DisjointClasses( R � . . . R B )
EquivalentClasses( R � . . . R B )
SubClassOf( R � R � )

Property Axioms
DatatypeProperty( S super( S � ) . . . super( S B ) [Functional]

domain( R � ) . . . domain( R9T ) range( U � ) . . . domain( UWV ))
ObjectProperty( X super( X � ) . . . super( X B ) [inverseOf( XZY )]

[Functional] [InverseFunctional] [Symmetric] [Transitive]
domain( R � ) . . . domain( R9T ) range( [ � ) . . . domain( [ V ))

EquivalentProperties( S � . . . S B )
SubPropertyOf( S � S � )
EquivalentProperties( X � . . . X B )
SubPropertyOf( X � X � )

Facts
Individual([ C ] type( R � ) . . . type( R � )

value(\ � L � ) . . . value(\ � L � ))
SameIndividual( C � . . . C B )
DifferentIndividuals( C � . . . C B )

Fig. 2. OWL DL Axioms and Facts (simplified)

Datatypes in OWL are derived from the built-in XML Schema datatypes [3]. Datatype
values are denoted by special literal constructs in the syntax, the details of which need
not concern us here.

An interpretation in this semantics is officially a four-tuple consisting of the ab-
stract domain and separate mappings for concept names, property names, and individual
names (in description logics, the mappings are usually combined to give a two-tuple,
but the two forms are obviously equivalent). OWL DL classes are interpreted as subsets
of the abstract domain, and for each constructor the semantics of the resulting class
is defined in terms of its components. For example, given two classes 0 and 5 , the
interpretation of the intersection of 0 and 5 is defined to be the intersection of the
interpretations of 0 and 5 . Datatypes are handled by means of a mapping ] Q that in-
terprets datatype names as subsets of the concrete domain and data names (i.e., lexical
representations of data values) as elements of the concrete domain.

OWL DL axioms and facts result in semantic conditions on interpretations. For
example, an axiom asserting that 0 is a subclass of 5 results in the semantic condition
that the interpretation of 0 must be a subset of the interpretation of 5 , while a fact
asserting that ^ has type 0 results in the semantic condition that the interpretation of ^
must be an element of the set that is the interpretation of 0 . An OWL DL ontology _ is
satisfied by an interpretation

�
just when all of the semantic conditions resulting from

the axioms and facts in
�

are satisfied by
�

.



The main semantic relationship in OWL DL is entailment—a relationship between
pairs of OWL ontologies. An ontology _ � entails an ontology _ � , written _ �a` b _ � ,
exactly when all interpretations that satisfy _ � also satisfy _ � . This semantic relation-
ship is different from the standard description logic relationships, such as knowledge
base and concept satisfiability. The main goal of this paper is to show how OWL DL
entailment can be transformed into DL knowledge base (un)satisfiability.

3 cedgfihkjmlonqp and cedrh*stlonqp

The main description logic that we will be using in this paper is
������� �"!$#&%

, which
is similar to the well known

�����au�!$#&%
description logic [10], but is extended with

inverse roles (
�

) and restricted to unqualified number restrictions (
�

). We will assume
throughout the paper that datatypes and data values are as in OWL.

Let A, vaw , v Q , and I be pairwise disjoint sets of concept names, abstract
role names, datatype (or concrete) role names, and individual names. The set of������� �"!$#&%

-roles is vawyxz>{2'| ` 2~}�vkw-?�x<v Q . In order to avoid considering
roles such as 2�|.| we will define ���N� ! 2 % s.t. ���o� ! 2 % b 2'| and ���o� ! 2'| % b 2 . The set
of
������� �"!$#&%

-concepts is the smallest set that can be built using the constructors in
Figure 3.

The
������� ��!,#�%

axiom syntax is also given in Figure 3. (The last axiom in Fig-
ure 3 forms an extension of

������� �+!,#�%
, which we call

������� ����!,#�%
, which is used

internally in our translation.) A knowledge base � is a finite set of axioms. We will use�
* to denote the transitive reflexive closure of

�
on roles, i.e., for two roles ��8�2 in � ,� �

* 2 in � if � b 2 , � � 2�}*� , ���o� ! � % � ���o� ! 2 % }*� , or there exists some role �
such that � �

* � in � and � �
* 2 in � . A role 2 is called simple in � if for each role

� s.t. � �
* 2 in � , �������{� ! � %��}<� and �������{� ! ���o� ! � %�%��}�� . To maintain decidability, a

knowledge base must have no number restrictions on non-simple roles [11].
The semantics of

�-�����.� � !,#�%
is given by means of an interpretation

� b! O P 8�� P % consisting of a non-empty domain O P , disjoint from the datatype (or con-
crete) domain O�P Q , and a mapping � P , which interprets atomic and complex concepts,
roles, and nominals according to Figure 3. (In Figure 3, � is set cardinality.)

An interpretation
� b ! O�P�8�� P % satisfies a

������� � � !$#&%
-axiom under the condi-

tions given in Figure 3. An interpretation satisfies a knowledge base � iff it satisfies
each axiom in � ; � is satisfiable (unsatisfiable) iff there exists (does not exist) such an
interpretation. A

�-�����.�+!,#�%
-concept 0 is satisfiable w.r.t. a knowledge base � iff

there is an interpretation
�

with 0�P �b+� that satisfies � . A concept 0 is subsumed by
a concept 5 w.r.t. � iff 0 P � 5 P for each interpretation

�
satisfying � . Two concepts

are said to be equivalent w.r.t. � iff they subsume each other w.r.t. � . A knowledge base
� � entails a knowledge base � � iff every interpretation of � � is also an interpretation
of � � .

We define a notion of entailment in
���*��� � � !$#&%

in the same way as it was de-
fined for OWL DL. It is easy to show that � ` b ��� iff � ` b / for every axiom / in��� .



Constructor Name Syntax Semantics
atomic concept A

@ @-�� <¡��
datatypes D K K�¢  y¡ � ¢
abstract role £�¤ D D �  <¡ �¦¥ ¡ �
datatype role £ ¢ S S �� y¡�� ¥ ¡��¢
individuals I C C ��§ ¡ �
data values L L ��¨ L ¢
inverse role D�© 
 D�© �$��¨ª
 D �«� ©
conjunction A ��¬ A � 
 A � ¬ A � � � ¨ A ���­ A ��
disjunction A ��® A � 
 A � ® A � � � ¨ A ���¯ A ��
negation ° A � 
 ° A � �$��¨ ¡ ��± A ��
oneOf

E C �³²µ´µ´³´ F E C �³²³´µ´µ´ F � ¨ E C � � ²³´µ´µ´ F
exists restriction ¶·D ´ A 
 ¶¸D ´ A �$��¨ E³¹aº ¶·» ´¼½¹¿¾ » § D � and » § A � F
value restriction À«D ´ A 
 À¿D ´ A � � ¨ E³¹aº À«» ´¼½¹ ² » ¾ § D �ÂÁ » § A � F
atleast restriction Ã�GÄD 
 Ã'G�D � � ¨ EW¹kºNÅ 
 E » ´¼½¹ ² » ¾ § D � F � ÃÆGÇF
atmost restriction È�GÄD ( È�G�D �É�Â¨ E³¹Êº{Å 
 E » ´¼½¹ ² » ¾ § D � F � ÈÆGÇF
datatype exists ¶ËS ´ K 
 ¶ËS ´ K � � ¨ E³¹Êº ¶·» ´¼½¹ ² » ¾ § S � and » § K ¢ F
datatype value ÀÌS ´ K 
 ÀÌS ´ K � � ¨ E³¹Êº À«» ´¼½¹ ² » ¾ § S � Á » § K ¢ F
datatype atleast Ã�G�S 
 Ã'G�S � � ¨ EW¹ÊºoÅ 
 E » ´¼½¹ ² » ¾ § S � F � ÃÆGÇF
datatype atmost È�G�S ( È�G�S �É��¨ E³¹Êº{Å 
 E » ´¼½¹ ² » ¾ § S � F � ÈÆGÇF
datatype oneOf

E L � ²µ´µ´³´ F E L � ²µ´µ´µ´ F � ¨ E L � � ²µ´Í´µ´ F
Axiom Name Syntax Semantics

concept inclusion A �)Î A � A ��   A ��
object role inclusion D ��Î D � D � �   D � �
object role transitivity Ï�Ð�ÑÓÒWÔ 
 D � D � ¨ª
 D � �ÖÕ
datatype role inclusion S ��Î S � S ��   S ��
individual inclusion ×�Ø{A × � § A �
individual equality × ¨yÙ × � ¨yÙ �
individual inequality ×kÚ¨yÙ × � Ú¨yÙ��
concept existence ¶¸A Å 
 A �«� ÃzÛ

Fig. 3. Syntax and semantics of
�����
	�� Õ 
����

The description logic
�����)(&!$#&%

is just
������� �"!$#&%

without the oneOf construc-
tor and with the atleast and atmost constructors limited to 0 and 1.

���'�)( � !,#�%
is

related to
������� � � !,#�%

in the same way.



OWL fragment Ü Translation
��
 Ü �

Individual(
¹ � . . .

¹ B ) ¶ 
���
 ¹ � � ¬�´µ´µ´�¬ ��
 ¹ B �Ö�
type( A ) Ý 
 A �
value( D ¹

) ¶·D ´ ��
 ¹ �
value( SÆL ) ¶�S ´ E L¸FC E CÓF

Fig. 4. Translation from OWL facts to
�����-	Ì� Õ 
����

4 From OWL DL Entailment to cedÞfihkjmlonqp Unsatisfiability

We will now show how to translate OWL DL entailment into
�-�����.�+!,#�%

unsat-
isfiability. The first step of our process is to translate an entailment between OWL
DL ontologies into an entailment between knowledge bases in

���*��� � � !,#�%
. Then������� � � !$#&%

entailment is transformed into unsatisfiability of
������� ��!,#�%

knowl-
edge bases. (Note that concept existence axioms are eliminated in this last step, leaving
a
���*��� �"!,#�%

knowledge base.)

4.1 From OWL DL to ß�àâáÊã�ätå #�æ
An OWL DL ontology is translated into a

�-�����.�q��!,#�%
knowledge base by taking

each axiom and fact in the ontology and translating it into one or more axioms in the
knowledge base. For OWL DL axioms, this translation is very natural, and is almost
identical to the translation of OIL described by Decker et al. [5]. For example, the OWL
DL axiom Class( / complete 0 � . . . 0èç ) is translated into the pair of

������� � � !$#&%
ax-

ioms / �gé ! 0 � %�ê ]�]N] ê é ! 0èç % and
é ! 0 � %�ê ]N]�] ê é ! 0èç % � / , where

é
is the

obvious translation from OWL classes to description logic concepts, again very sim-
ilar to the transformation described by Decker et al. [5]. Similarly, an OWL DL ax-
iom DisjointClasses( 0 � ... 0 ç ) is translated into the

������� � � !$#&%
axiomsé ! 0
ë % �iì�é ! 0)í % for îÂïñð-òôó¦ïñ= .

The translation of OWL DL facts to
���*��� � � !$#&%

axioms is more complex.
This is because facts can be stated with respect to anonymous individuals, and can
include relationships to other (possibly anonymous) individuals. For example, the fact
Individual(type( 0 ) value( 2 Individual(type( 5 )))) states that there exists an individual
that is an instance of class 0 and is related via the property 2 to an individual that is an
instance of the class 5 , without naming either of the individuals.

The need to translate this kind of fact is the reason for introducing the������� � � !$#&%
existence axiom. For example, the above fact can be translated into

the axiom õ ! 0 ê õ«2�] 5 % , which states that there exists some instance of the concept0 ê õ¿2'] 5 , i.e., an individual that is an instance of 0 and is related via the role 2 to
an instance of the concept 5 . Figure 4 describes a translation

(
that transforms OWL

facts into a
�-�����.� � !$#&%

existence axioms, where 0 is an OWL class, 2 is an OWL
abstract property or

������� � � !$#&%
abstract role, ö is an OWL datatype property or������� � � !$#&%

datatype role, 1 is an individual name, 6 is a data value, and
é

is the
above mentioned translation from OWL classes to

�-�����.� � !,#�%
concepts.



Axiom
@

Transformation ÷ 
 @ �ø Î R ¹ Ø ø ¬ °ZR¶ ø ù Î ° øÏZÐúÑÓÒWÔ 
 U � ¹ Ø9¶·U ´ ¶·U ´ E »ËF ¬ ° ¶·U ´ E »�FU Î<û ¹ Ø9¶·U ´ E »�F ¬ ° ¶ û ´ E »�F
ü ÎÆý

¹ Ø9þ�ÿ����¦¶ ü ´ E�� F ¬ °.¶ ý ´ E�� F
for

� ¨
the set of data values in � ,

plus one fresh data value for each datatype in �× ¨ôÙ ×kÚ¨yÙ
×¦Ú¨ôÙ × ¨yÙ

Fig. 5. Translation from Entailment to Unsatisfiability

Theorem 1. The translation from OWL DL to
������� � � !$#&%

preserves equivalence.
That is, an OWL DL axiom or fact is satisfied by an interpretation

�
if and only if the

translation is satisfied by
�

.5

The above translation increases the size of an ontology to at most the square of its
size. It can easily be performed in time linear in the size of the resultant knowledge
base.

4.2 From Entailment to Unsatisfiability

The next step of our process is to transform
������� � � !$#&%

knowledge base entailment
to
������� �"!$#&%

knowledge base unsatisfiability. We do this to relate our new notion
of description logic entailment to the well-known operation of description logic knowl-
edge base unsatisfiability.

We recall from Section 3 that � ` b ��� iff � ` b / for every axiom / in ��� . We
therefore define (in Figure 5) a translation, � , such that � ` b / iff �"x�>	� ! / % ? is
unsatisfiable, for � a

������� ��!,#�%
knowledge base and / a

������� �+!,#�%
axiom. In

this transformation we have need of names of various sorts that do not occur in the
knowledge base or axiom; following standard practice we will call these fresh names.
Throughout the translation, 
 and � are fresh individual names.

Most of the translations in � are quite standard and simple. For example, an object
role inclusion axiom � ��


is translated into an axiom that requires the existence of
an individual that is related to some other individual by � but not by



, thus violating

the axiom. The only unusual translation is for datatype role inclusions � ���
. Because

data values have a known “identity” (rather like individuals under the unique name
assumption), a fresh value cannot be used to simulate an existentially quantified variable
that could be interpreted as any element in the datatype domain (in the way the fresh
nominal is used in the case of an object role inclusion axiom). Instead, it is necessary to
show that the relevant inclusion holds for every data value that occurs in the knowledge
base, plus one fresh data value (i.e., one that does not occur in the knowledge base)

5 The statement of the theorem here ignores the minor differences between OWL DL interpreta-
tions and

�����
	��ôÕ�
����
interpretations. A stricter account would have to worry about these

stylistic differences.



for each datatype in � . Because there are no operations on data values, it suffices to
consider only these fresh data values in addition to those that occur in the knowledge
base.

The translation � increases the size of an axiom to at most the larger of its size and
the size of the knowledge base. It can easily be performed in time linear in the larger
of the size of the axiom and the size of the knowledge base. (If datatype role inclusions
are not used, then � increases the size of an axiom by atmost a constant amount.)

The translation � eliminates concept existence axioms from the knowledge base �'�
on the right-hand side of the entailment. Our last step is to eliminate concept existance
axioms from the knowledge base � on the left-hand side of the entailment. We do this
by applying a translation � ! � % that replaces each axiom of the form õ¿0 }y� with an
axiom ^���0 , for ^ a fresh individual name. It is obvious that this translation preserves
satisfiability, can be easily performed, and only increases the size of a knowledge base
by a linear amount.

Theorem 2. Let � and �Â� be
������� � � !$#&%

knowledge bases. Then � ` b ��� iff the������� �"!$#&%
knowledge base � ! � % x�>	� !���% ? is unsatisfiable for every axiom / in � � .

4.3 Consequences

The overall translation from OWL DL entailment to
������� �"!$#&%

can be performed
in polynomial time and results in a polynomial number of knowledge base satisfiability
problems each of which is polynomial in the size of the initial OWL DL entailment.
Therefore we have shown that OWL DL entailment is in the same complexity class as
knowledge base satisfiability in

������� �"!$#&%
.

Unfortunately,
������� �"!$#&%

is a difficult description logic. Most problems in������� �"!$#&%
, including knowledge base satisfiability, are in NEXPTIME [17]. Fur-

ther, there are as yet no known optimized inference algorithms or implemented systems
for

���*��� ��!,#�%
. The situation is not, however, completely bleak. There is an inexact

translation from
������� �+!,#�%

to
���'�.�+!,#�%

that turns nominals into atomic concept
names. This translation could be used to produce a partial, but still very capable, rea-
soner for OWL DL. Moreover, as is shown in the next section, the situation for OWL
Lite is significantly different.

5 Transforming OWL Lite

OWL Lite is the subset of OWL DL that

1. eliminates the intersectionOf, unionOf, complementOf, and oneOf
constructors;

2. removes the value construct from the restriction constructors;
3. limits cardinalities to 0 and 1;
4. eliminates the enumeratedClass axiom; and
5. requires that description-forming constructors not occur in other description-

forming constructors.



OWL fragment Ü Translation
���$
 Ü �

Individual(
¹ � . . .

¹ B )
� � 
 ×�Ø ¹ � � ²Í´µ´³´µ² � � 
 ×�Ø ¹ B �
for × a fresh individual name×�Ø type( A ) ×�Ø{Ý 
 A �×�Ø value( D ¹

)
¼ × ² Ù ¾ ØoD ,

� � 
½Ù Ø ¹ �
for

Ù
a fresh individual name×�Ø value( S�L )

¼ × ² L ¾ Ø9S×�ØoC × ¨ C
Fig. 6. Translation from OWL Lite facts to

����	���Õ�
����
Axiom

@
Transformation ÷ 
 @ �

×�Ø{A ×�ØÓ° A¼ × ² Ù ¾ ØÓD Ù Ø M , ×�ØWÀ¿D ´ ° M
for

M
a fresh concept name¼ × ² L ¾ Ø9S ×�Ø�À�S ´ L

Fig. 7. Extended Transformation from Entailment to Unsatisfiability

The reason for defining the OWL Lite subset of OWL DL was to have an easier target
for implementation. This was thought to be mostly easier parsing and other syntactic
manipulations.

As OWL Lite does not have the analogue of nominals it is possible that inference
is easier in OWL Lite than in OWL DL. However, the transformation above from OWL
DL entailment into

������� ��!,#�%
unsatisfiability uses nominals even for OWL Lite

constructs. It is thus worthwhile to devise an alternative translation that avoids nomi-
nals.

There are three places that nominals show up in our transformation:

1. translations into
�-�����.� ��!,#�%

of OWL DL constructs that are not in OWL Lite,
in particular the oneOf constructor;

2. translations into
������� � � !,#�%

axioms of OWL DL Individual facts; and
3. the transformation to

���*��� ��!,#�%
unsatisfiability of

������� � � !$#&%
entailments

whose consequents are role inclusion axioms or role transitivity axioms.

The first of these, of course, is not a concern when considering OWL Lite.

The second place where nominals show up is in the translation of OWL
Individual facts into

������� ��!,#�%
axioms (Figure 4). In order to avoid introduc-

ing nominals, we can use the alternative transformation
( � given in Figure 6. Note that,

in this case, the translation
é ! 0 % does not introduce any nominals as we are translating

OWL Lite classes.
The new transformation does, however, introduce axioms of the form ^��¸0 , �,^Ç8������2 and �$^Ç8;6 �!�
ö that we will need to deal with when transforming from entailment

to satisfiability. We can do this by extending the transformation � given in Figure 5
as shown in Figure 7. The extension deals with axioms of the form �,^Ç8����"��2 using
a simple transformation, described in more detail by Horrocks et al. [12], and with



axioms of the form �,^Ç8�6#�$��ö using a datatype derived from the negation of a data
value (written 6 ).

The third and final place where nominals show up is in the transformation of entail-
ments whose consequents are object role inclusion axioms or role transitivity axioms.

Object role inclusion axioms can be dealt with using a transformation similar to
those given in Figure 7 (and described in more detail in [12]), which does not introduce
any nominals. This is shown in the following lemma:

Lemma 1. Let % be an OWL Lite ontology and let A be an OWL Lite role inclusion
axiom stating that � is a subrole of



. Then % ` b / iff � ! % % x*>&
'� 4 ê õ � !)( 
 |
] ì 4 % ?

is unsatisfiable for 
 a fresh individual name, and 4 a fresh concept name.

Transitivity axioms can be dealt with by exploiting the more limited expressive
power of OWL Lite, in particular its inability to describe classes, datatypes or properties
whose interpretations must be non-empty but finite (e.g., classes described using the
oneOf constructor). As a result of this more limited expressive power, the only way to
deduce the transitivity of a property � is to show that the interpretation of � cannot form
any chains (i.e., consists only of isolated tuples, or is empty). This observation leads to
the following lemma:

Lemma 2. Let K be an OWL Lite ontology and let A be an OWL Lite role transitivity
axiom stating that � is transitive. Then % ` b / iff � ! % % xè>&
$�¸õ � ! õ#�+* % ? is unsatisfiable
for 
 a fresh individual name (i.e., � forms no chains).

The above lemmas, taken together, show that OWL Lite entailment can be transformed
into knowledge base unsatisfiability in

���'�)(*!,#�%
, plus some simple (and easy) tests

on the syntactic form of a knowledge base. A simple examination shows that the trans-
formations can be computed in polynomial time and result in only a linear increase in
size.

As knowledge base satisfiability in
�����)(&!$#&%

is in EXPTIME [17] this means that
entailment in OWL Lite can be computed in exponential time. Further, OWL Lite entail-
ment can be computed by the RACER description logic system [8], a heavily-optimised
description logic reasoner, resulting in an effective reasoner for OWL Lite entailment.

6 Conclusion

Reasoning with ontology languages will be important in the Semantic Web if appli-
cations are to exploit the semantics of ontology based metadata annotations. We have
shown that ontology entailment in the OWL DL and OWL Lite ontology languages
can be reduced to knowledge base satisfiability in, respectively, the

������� �"!$#&%
and���'�)(*!,#�%

description logics. This is so even though some constructs in these lan-
guages go beyond the standard description logic constructs.

From these mappings, we have determined that the complexity of ontology entail-
ment in OWL DL and OWL Lite is in NEXPTIME and EXPTIME respectively (the same
as for knowledge base satisfiability in

���*��� �"!,#�%
and

�-�'�)(*!,#�%
respectively). The

mapping of OWL Lite to
���'�)(*!,#�%

also means that already-known practical reasoning



algorithms for
���'�)(�!,#�%

can be used to determine ontology entailment in OWL Lite;
in particular, the highly optimised RACER system [8], which can determine knowledge
base satisfaction in

���'��(�!$#&%
, can be used to provide efficient reasoning services for

OWL Lite.
The mapping from OWL DL to

������� �+!$#&%
can also be used to provide complete

reasoning services for a large part of OWL DL, or partial reasoning services for all of
OWL DL. In spite of its known decidability, however, the design of “practical” decision
procedures for

������� �+!$#&%
is still an open problem. The search for such algorithms

must obviously be a high priority within the Semantic Web research community.
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