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Abstract

XML is the W3C standard document format for writing and exchanging information on the Web. RDF
is the W3C standard model for describing the semantics and reasoning about information on the Web. Un-
fortunately, RDF and XML—although very close to each other—are based on two different paradigms. We
argue that in order to lead the Semantic Web to its full potential, the syntax and the semantics of information
needs to work together. To this end, we develop a model theory for the XML XQuery 1.0 and XPath 2.0
Data Model, which provides a unified model for both XML and RDF. This unified model can serve as the
basis for Web applications that deal with both data and semantics. We illustrate the use of this model on
a concrete information integration scenario. Our approach enables each side of the fence to benefit from
the other, notably, we show how the RDF world can take advantage of XML query languages, and how the
XML world can take advantage of the reasoning capabilities available for RDF.
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1 Introduction

As the W3C standard document format for writing and exchanging information on the Web XML [6] is mostly
concerned about syntax. However, syntax does not make sense without semantics, and many recent activities
aim at adding more semantic capabilities to XML. Most notably, the XML Infoset [10] offers an abstract
information model for XML; XML Schema [29] allows users to describe XML vocabularies, structures, and
relationships; and XQuery [8] allows users to ask questions, manipulate, or reason about XML documents.

As the W3C standard model for describing the semantics and reasoning about information on the Web,
RDF [18] is mostly concerned about semantics. However, semantics is not very useful in a computer system
without a syntax, and many recent activities aim at providing a syntactic grounding for RDF. Most notably,
RDF uses an XML serialization; and several query languages for RDF [17, 24] have already been proposed as
well.

Many XML application scenarios require the use of semantic tools. For instance, data integration relies on
the ability to build a common ontology between multiple sources [20, 3, 1]. Development of a domain’s XML
dialect (e.g., ebXML or VoiceXML [26]) is greatly simplified by the use of modeling methodologies based on
rich semantic descriptions [7, 21]. Many RDF application scenarios require the access to existing information
sources that are providing XML interfaces. For instance, semantic descriptions for Web services cannot be
made without taking into account the format in which messages will be exchanged between these services.
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Figure 1: The Semantic Web Layer Cake

Indeed, the coming semantic Web is usually envisioned as a layer cake, like the one shown on Figure 11, in
which the semantic layer is not independent from, but is relying on the syntactic layer. Unfortunately, XML and
RDF, which are respectively supposed to form the ground for the syntactic (or data), and semantics (or meaning)
layer of the Web, are currently based on different models, and are developed within separate activities2 . As a
result, very few tools can actually be used jointly between XML and RDF.

We argue that syntax and semantics are the Yin and the Yang of the Web, and should be complementary
to each other rather than independent—or worse, incompatible—from one another. Users facing the above
applications need to deal with syntax and semantics in a unified way. We argue that rather than two Webs: one
Syntactic Web and one Semantic Web, these users need one Web that encompasses both syntax and semantics:
the Yin/Yang Web.

In this paper, we propose an architecture for a unified Web based on a common model theory for XML and
RDF. Although RDF and XML have been two distinct activities, we will see that there is enough commonality
between them to design, and implement, such a common model. There are several difficulties in the way
though, due to the fact that RDF and XML viewpoints are not fully compatible. Notably, XML is ordered while
RDF is not, XML uses a tree model while RDF uses a graph model, RDF distinguishes between classes (e.g., a
company) and properties (e.g., the name of a company) while XML does not (e.g., company and names would

1That figure was extracted from a presentation by Eric Miller at the 5th European Conference on Research and Advanced Technology
for Digital Libraries, but was probably first presented by Tim Berners-Lee.

2One could also facetiously note that they are represented in two distinct WWW’2002 tracks!
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both be elements). Our main contribution is a model theory that encompasses XML and RDF model properties
in order to be able to represent, and reason about, both uniformly. We call this model the Yin/Yang model. As
soon as a common model exists, many more interesting but difficult questions arise. In particular, how XML
Schema and RDFS interact, how one can query both XML and RDF, etc. A complete solution would indeed
address these, but is still beyond the scope of this paper. We will show, however, how the Yin/Yang model
enables some new exciting possibilities with respect to schema, typing and querying.

More precisely, we make the following technical contributions:

� We develop an integrated model for XML and RDF based on a model theory for the XQuery 1.0 and
XPath 2.0 Data Model [12].

� We explain the relationship between that model theory and previous RDF/S model theories. Most of the
existing semantics is captured, and we point out and explain the few existing discrepancies.

� We show how one can perform semantic reasoning in that integrated model theory. Note that the seman-
tics of RDFS only supports limited reasoning capabilities. Although we restrict ourselves to RDFS in this
paper, moving toward more expressive models, e.g., DAML+OIL, would certainly make the Yin/Yang
approach and reasoning features even more useful in practice.

� We show several new possibilities offered through that integrated model theory. Notably, we give some
ideas at how to capture some aspects of the XML Schema in the model theory for reasoning purposes.
We also show how one can apply XQuery on a mix of RDF and XML descriptions, and we explain how
XML querying can benefit from an RDF reasoner.

� Finally we describe our implementation of that model theory on top of the XQuery data model. Because
our model relies on the XQuery data model, building a Yin/Yang implementation with a reasoner can be
done in a much simpler fashion than previous RDF implementation approaches.

1.1 Ins and Outs

The Yin/Yang model provides access to both data structures, through the XQuery data model, and their corre-
sponding semantics, through the model theory.

On the syntactic side, applications have full access to the XQuery data model, hence there is no loss of
information for data-oriented applications. Applications can even take advantage of some of the semantic-based
features of the model by treating XQuery data model constructs in accordance with the meaning provided by the
model theory. Syntactic processing is done entirely within the XML framework, as a result, the RDF parsetype
extension is not handled. Also, the RDF shorthand that is inconsistent with XML is treated in the XML fashion,
not in RDF fashion.

On the semantic side, the model theory integrates the two different world-views of XML and RDF with
minimal loss of information. The model theory allows for both the ordered view of documents from XML
and the unordered view of information from RDF. It does not require the RDF distinction between classes
and properties, allowing arbitrary XML, but the distinction between classes and properties, if present, can be
recovered from the model theory. It includes a complete treatment of RDF typing, where type links are treated
the same as other links, even when there is no distinction between classes and properties and incorporates XML
names into RDF types. It allows for the identification of nodes, turning the tree view of XML into the graph
model of RDF.

The model theory does, however, eliminate as irrelevant XML comments and process instructions as well
as the lexical form of typed text nodes, and does not distinguish between XML elements and attributes. Further,
it does not handle most of the XML Schema structural information, at least for now.
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1.2 Related work

This discussion about the relationship between syntax and semantics is not new. Several attempts have been
made to provide a unified view of XML and RDF. Tim Berners-Lee [4] was one of the first to point out the
reasons for the differences between XML and RDF. Also we acknowledge the fact that RDF and XML serve
different purposes, we believe this difference must not prevent syntactic and semantics interoperability, which
is an important user need. Sergey Melnik [23] created a version of RDF that can handle arbitrary XML, but
uses information on how to handle the parts XML constructs that don’t fit well into the RDF model. Harold
Boley [5] has a data model that can be used for both XML and RDF. However, his approach requires changes
to XML to unify it with RDF. He also stops at the data model and does not proceed on to a model theory.
Fundulaki et al [14] acknowledge the need for integrating syntax and semantics, but require the development of
user-defined rules in order to cope with the discrepancy between XML and RDF. Robie et al [28] also addresses
the need for applications to query semantics, but maps the syntax into the semantics, hence requiring the need
to hard-code some of the semantic aspects in functions. To the best of our knowledge, our approach is the first
one that allows XML data access and RDF semantic reasoning in a common framework.

2 Using syntax and semantics on the Web

We start by giving an application scenario that illustrates the need for tight integration between syntax and
semantics on the Web. In this scenario, a computer retailer wants to build its store’s information system from
multiple hardware and software vendors catalogs (e.g., Sony, IBM), and a product’s review database maintained
by a third party (e.g., http://www.epinions.com/).

Information integration is an important application of XML. Recently, a number of companies [11, 25]
and research projects [27, 13, 9, 2, 22] have been working on building XML-based data integration systems.
These systems rely on the ability to represent any kind of legacy information in XML, and on XML high-
level languages, such as XQuery [8], to merge their information under a common schema. Figure 2 shows the
architecture of a typical data integration system, where wrappers are used to map legacy information into XML,
and a mediator is used to perform the integration. We refer the reader to the related work at how to use XML
query languages to specify such data integration [27, 13, 9, 2, 22].

Still, information integration cannot be fully solved without addressing semantic issues. For instance, one
needs to define a global ontology for all information involved in the sources, and also to understand how similar
information is represented in different ways on each source [20, 3, 1]. In our scenario, the retailer might want
to organize his data according to a product hierarchy where Productwould be the root of the hierarchy. Then
Portable and Desktopwould represent major categories of products, PDA and Laptop be sub-categories
of Portable, etc. Each products would have a name and a reference number, while portables would have
an autonomy. In order to work on the web, modern semantic integration platforms [14] are relying on RDF/S,
to describe such an ontology. However, each vendor’s catalog provides a different set of information for their
products, for instance the Sony catalog indicates the autonomy of each laptop, while the IBM indicates a battery
reference. Also the classifications within the catalogs differ, for instance Sony has separate categories for laptop
and palmtop, while IBM has a single category for portable computers, etc. This often implies that the resulting
global ontology will be a fairly complex hierarchy with many different classes, and properties for these classes.
Understanding the relationship between these classes then becomes essential.

As sources export their data in XML, integration into that common ontology is more easily specified using
an XML language like XQuery. This results in a mismatch between the data produced in XML and the ontology
description in RDF/S. Figure 3 shows an example of an RDFS graph describing the target semantics, and of an
integrated XML document generated from the sources. A first use of a unified XML and RDF model is to be
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code="#1321"; in_stock="true";
price="3000";autonomy="3h"

code="#1412";in_stock="false";
price"500";weight="33"

code="#1311";price="2599";
in_stock="true";weight="22";
autonomy="2h30";
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System

Target Application

...................

Review Table

<catalog vendor="Sony>
   <item type="Vaio">
      <code>1321−A</code>
      <in_stock>true</in_stock>
      <price>3000</price>
      <autonomy>3h</autonomy>
   </item>
   <item type="Battery">
      <code>333−B<code>
      <in_stock>false</in_stock>
      <price>500</price>
      <weight>33</weight>
   </item>
......
</catalog>

<desc_table>
   <desc>
         <ref>1312−A/Sony</name>
         <name>Vaio</name>
         <review>Pretty smart</review>
   </desc>
   </desc>
         <ref>Jim</ref>
         <name> ADAFAS</name>
         <review>.....</review>
  </desc>
   ....
</desc_table>  

<catalog>
   <portable ref="Sony 1321−A">
      <name>Vaio</name>
      <vendor>Sony</vendor>
      <in_stock>true</in_stock>
      <price currency="USD">3000</price>
      <autonomy>180</autonomy>
      <review rid="00977">Pretty Smart</review>
   </portable>
......
</catalog>

ref                      name     review

1312−! / Sony       ....         ....
....

Figure 2: XML-based data integration

able to relate the integrated XML information to its intended meaning in RDF. In section 4 we will see how our
model theory can be used to understand the relationship between the XML document and its intended semantics
in RDF.

It is important to note that the XML document resulting from integration reflects some of the semantic
hierarchy of the ontology. Assuming the target application wants to access all the computers that have certain
characteristics, one should be able to write an XML query to do that. However at the XML level, the connection
between the element names (e.g., desktop, laptop and computers) would not be available to an XML
query processor without knowledge of the semantics layer. In section 5 we will see how one can use our model
theory to perform such semantics querying for XML documents.

2.1 Other Scenarios for the Yin/Yang Web

We took the data integration example for ease of exposure and the striking need for interaction between the
semantic and the data worlds. But there is no shortage of important applications for the Yin/Yang Web.

2.1.1 XML Dialects

The development of domain-specific dialects is an important activity area around XML. Witness of that activity,
the Oasis consortium [26] hosts several dozens of dialects that describe information from almost all possible
domains of human knowledge (e.g., music, theology), industry segments (e.g., car manufacturing, voice inter-
face), or specific transversal activities (e.g., Web presentation with XHTML, calendars).

These dialects allow communities to share information in a common syntax. Yet, this common syntax is
only a means to share information with an agreed upon semantics. It is therefore essential to develop that
dialect based on a mutually shared understanding. Semantic modeling tools [7, 21] provide services to define
ontologies for a given application or domain. After the modeling phase, this usually results in a concrete XML
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<catalog>
<portable ref="Sony 1321-A">

<vendor co="Sony"/>
<name>Vaio</name>
<in_stock>true</in_stock>
<price currency="USD">3000</price>
<autonomy>180</autonomy>
<review rid="00977">Pretty Smart</review>
<accessories>

<battery ref="IBM X111"/>
<docking_station ref="IBM X112"/>
<battery ref="Sony 333-B"/>

</accessories>
</portable>
<PDA ref="Compaq 4XDF">

<name>iPAQ</name>
<vendor co="IBM"/>
<in_stock>inorder</in_stock>
<price currency="USD">500</price>
<weight>33</weight>

</PDA>
.....

<catalog>

<companies>
<company co="Sony">

<name>Sony<name/>
<tel>555-13-13</tel>

</company>
<partner>

<name>IBM<name/>
<tel>555-13-13</tel>
<contract>013</contract>

</partner>
...

</companies>

Figure 3: RDF Schema vs. XML Data
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Schema, in which part of the semantics is either lost (e.g., the distinction between an entity and a relationship) or
deprecated (e.g., typed references to object can be preserved only as integrity constraints). In the Yin/Yang Web,
the applications can be given full access to the data (XML), structure (XML Schema), but also it’s complete
intended semantics (RDF/S).

2.1.2 Web services

High-level service description languages, can be written in a semantic language (for instance DAML-S in
DAML+OIL). Lower-level activities, including passing messages between services, instead use XML, possibly
including XML Schema validation. In the Yin/Yang Web, these two levels can be firmly joined and clearly
related to each other.

3 The Yin/Yang Approach

3.1 Processing information on the Web

When an application gathers some information from the Web, this information is usually accessed as a file,
most often in XML syntax. This file goes through several stages before the actual meaning of the information
is accessible to the application. According to current W3C architectures, initial stages fall into the category
of producing an abstract syntax tree for a document, resulting in one of the various data models, such as the
XQuery data model [12] for data or documents, or the RDF model [18], for semantic information. Each stage
in these processes produce an abstraction of the original document, and can both remove information that they
deem irrelevant (such as non significant white space) and add implied information (such as typing information).
Although they perform very similar tasks, there are significant differences between the initial processing stages
of XML documents and of RDF documents.

� After parsing, XML documents are usually validated against a DTD or XML Schema. As well as check-
ing that all and only the indicated constraints are verified, this process also adds some important infor-
mation to the documents, such as default values, datatypes, some derivation information, etc. This result
in a post-schema validation infoset, which can then be loaded into the XQuery data model for querying.
XQuery data model structures provide a tree representation of the XML document and can be accessed
by applications via a functional interface.

� Parsing RDF documents results in an RDF graph structure, similar to the XQuery data model, but a
graph instead of a tree. This graph structure is given semantics by means of a model theory [16]. Many
RDFS constructs, such as its subclass property, result in constraints in the model theory, such as requiring
that certain kinds of relationships are transitive. The model theory does not specify how these semantic
constraints are to be implemented. The model theory also does not provide a data structure that can be
accessed. On the other hand, access to the semantic information in a document can be performed via
software that implements logical operations on the the model theory, such as entailment.

The existence of these two distinct models, along with distinct processing stages for XML and for RDF is
the main reason that prevents applications from dealing with information both at a data level and at a semantic
level. In addition, due to the similarity of processing in both cases, there is important duplication of work. Our
approach is to reuse as much XML processing as possible before adding semantic layers. In a nutshell, we first
build an instance of the XQuery data model for XML, RDF and even RDFS documents. This already supports
structural manipulation for data-oriented applications over XML, RDF or RDF schema information. Then, we
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Figure 4: Yin/Yang model

use that data model in a model theory in order to support semantic reasoning. The stages in the Yin/Yang model
are described on Figure 4.

This processing architecture has the following advantages. First, it builds on existing XML processors as
much as possible, which reduces the work required to develop a semantic processor. It provides tight coupling
between the data layers and the semantic layers. It allows data applications to benefit from semantic reasoning.
It allows semantic-based applications to access data consistently. Before we explain more about the Yin/Yang
model itself, we briefly give some background information on the XQuery data model and on model theory.

3.2 From Syntax to Data Model

For our purposes a data model is a collection of data types that can be used to construct an abstract view of a
web document (or collection of documents), along with functions that allow access to the information contained
in values belonging to these types. Data models generally also have construction functions, but we will not be
talking much about the construction of the data model and so will mostly ignore them.

The XQuery 1.0 and XPath 2.0 Data Model (henceforth “data model”) represents an XML document as a
collection of nodes of different kinds, arranged in a tree. For example, an element node in the data model, which
corresponds to an XML element information item has accessors for its name, parent, namespaces, attributes,
and children, as one would expect. The data model includes other types of nodes, such as attribute nodes,
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namespace nodes, comment nodes, and text nodes.
One reason that we are using this data model is that it contains support for DTD and XML Schema valida-

tion. To access information gathered from validation, the data model provides accessors for the XML Schema
type associated with many kinds of nodes, and, if the type is a simple XML Schema datatype, to the sequence
of typed values resulting from XML Schema processing of the text within the node (for element nodes) or the
value of the node (for attribute nodes).

So the first phase of the processing of an XML document or collection of documents, so far as we are
concerned, results in the tree or forest of nodes in the data model. This processing includes not only the parsing
of the document, but also DTD and XML Schema validation and decoration.

3.3 From Data Model to Semantics

The next phase of our approach is to move from the data model into the semantic realm. We do this by adopting
conventions from model theory, a branch of mathematics that is used to provide meaning for many logics and
representation formalisms, and has recently been applied to several web-related formalisms, namely RDF [16].
and DAML+OIL [30].

One of the particularities of our approach is the choice of relying on two distinct paradigms: data model
for data, and model theory for semantics. There are several fundamental differences between data models and
model theory approaches that justify that choice.

Information retention: Data models tend to retain almost all of the information in the input document, such
as comments and the exact form of typed values. In model theory, on the other hand, there is a decision
made on just which kind of information to retain, and which kind of information is ignored. It is typical
in model theories to use sets instead of sequences and thus to ignore the order in which information is
presented.

Direction of flow: In data models there is a process of generating a data model from an input document and
thus the result is constructed from the input. In model theory, on the other hand, the interpretations are
simply mathematical objects that are not constructed at all. Instead there is a relationship between syntax
constructs and interpretations that determines which interpretations are compatible with a document.
Generally there are many interpretations that are so compatible, not just one.

Schema vs. Data: Data model approaches usually make a fundamental distinction between schema and data.
In model theory, both schema and data are part of a model on which one can perform reasoning. As
shown on Figure 4, this allows us to deal with both RDF and RDFS in a common way, while some
aspects of XML Schema will remain out of the scope of the inference system.

3.4 Using model theory for reasoning

In a model theory, we end up with not just a single interpretation or model, but instead a collection of inter-
pretations or models. These models can be thought of as the different ways that the world can be and still be
compatible with the information in the input document.

What is generally done next in model theory is to define a relationship between input syntax called entail-
ment, which can be read as “follows from”. A collection of sentences (or documents), called the antecedents,
entails a sentence (or document), called the consequent, if every interpretation that is a model for each element
of the collection is also a model for the consequent. This relationship can be read as “if the world is compat-
ible with each antecedent, then it is also compatible with the consequent” or “if each antecedent is true then
so is the consequent.” It is possible to think of entailment as a version of relational retrieval where the query
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specifies explicit values for all elements of the tuple, i.e, there is at most one possible answer. Generalizations
of entailment have been used that allow open variables in the consequent, resulting in a version of entailment
close to retrieval.

Note again, that the kind of reasoning that can be achieved depends on the expressive power of the semantics
description language. Again, in this paper we are limited in functionality by the expressiveness of RDFS, but
we intend to investigate more expressive formalisms in the future.

4 The Yin/Yang Model Theory

4.1 Processing of input documents

Our model theory starts with a tree structure composed of a set of nodes, N, in the XQuery 1.0 and XPath 2.0
Data Model [12]. This tree structure corresponds to an XML or RDF document (or collection of documents)
that have already been through a serious amount of processing, notably parsing and schema validation. Each
tree node, � , is assumed to have a mapping,

������� �
	 which is the map from strings to qualified names, given
the namespace declarations in scope at the node.

4.2 Example

Consider the following pieces of an XML document (actually RDF with an XML Schema datatype extension):

<Laptop rdf:about="Vaio505G">
<manufacturer rdf:resource="Sony"/>
<price xsi:type="xsd:integer">3000</price>

</Laptop>

<rdf:Description rdf:about="Sony"
home="www.sony.com">

<rdf:type>
<rdf:Description rdf:about="Company">

</rdf:type>
</rdf:Description>

This document is parsed and then loaded into the XQuery data model. This results in the following data
set, written here in a simple data structure where nodes are represented as tuples containing the relevant bits of
information prefixed with a node identifier:

1:<Laptop,attributes=[ 2:<rdf:about,"Vaio505G">],
elements=
[ 3:<manufacturer,

attributes=
[ 4:<rdf:resource,"Sony">]>,

5:<price,
attributes=
[ 6:<xsi:type,"xsd:integer">],

elements=
[ 7:<"3000">]>]>

8:<rdf:Description,
attributes=
[ 9:<rdf:about,"Sony">,
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10:<home,"www.sony.com">],
elements=
[ 11:<rdf:type,

elements=
[ 12:<rdf:Description,

attributes=
[ 13:<rdf:about,"Company">]>]>]>

This structure can then be accessed using the XQuery data model accessor operations on nodes, can be
queried using XQuery, etc.

4.3 Resources, Names, Values, and Datatypes

The Yin/Yang model theory assumes a universe of resources and data values. For simplicity, we make the
assumption that QNames are suitable as RDF identifiers, but readers could read the document substituting RDF
identifiers for QNames. (A full treatment of RDF identifiers is somewhat messy so a simpler treatment is used
here.) The construction rdf: ����
�� refers to the QName with local name ����
�� and URI (the rdf URI):
http://www.w3.org/1999/02/22-rdf-syntax-ns.

Definition 4.1 We call � the lexical space of strings, and
�

the value space of QNames, i.e., pairs of URIs
and local parts. We call � � the subset of

�
corresponding to XML Schema primitive datatypes, and ��� the

union of the value spaces of the XML Schema primitive datatypes. In RDF elements of ��� are generally called
literals. The function � ����� � ������� ����	 , (where

�
is the powerset operator) maps XML Schema primitive

datatypes to their value spaces and � ��� � � ���!� � � ���"	 , maps XML Schema primitive datatypes to their
lexical to value maps. We define the union of the datatype mappings # ��� � � ����� ���$	 , where %�&�# �����(' 	
iff %$)*� ���+�(,.- 	 �(' 	 for some XML Schema datatype

,/-
.

4.4 Yin/Yang Interpretations

Interpretations are the essential component of our model theory. An interpretation corresponds to one pos-
sible way the world can be, hence encoding a certain meaning for the information manipulated by an appli-
cation. Interpretations give information about resources and related resources through relationships and se-
mantic constraints. For instance, one resource may be a �0�21 -43 1 , related to another resource

�53 �76 through a

8���79;:<�>= - 9@?.�A? property. We now define a notion of interpretation that is suitable for both XML and RDF
documents, through the XQuery data model.

Definition 4.2 An interpretation B is a six-tuple:C(D�EGFHEGF # � E � F # � EJI�E �LK , where:
D

is a set of resources,F
is a set of relationships,F # �M� F � D�N � DPO ���"	

maps relationships to the resources they relate,� F # �Q� D �R��� DSO ���"	
maps class resources to their extensions,I � D �R��� FTN8F 	
provides a local order on the relationships, and�U�V�*� D
is a partial map from QNames to resources.
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An interpretation can be thought of as a multigraph with an ordering on the edges. Resources (
D

) form
the nodes of the graph. Edges of the graph are formed from relationships (

F
) and

F # � . For instance, a
relationship:

�.W�& F with
F # �"� �.W2	X) C �Y�/Z 3\[^].[._ E 
8�/�79<:<��= - 9@?.�`? K

indicates that the resource �a��Z 3\[^].[._ is related to the resource 
8�/�79<:<��= - 9@?.�`? , and a relationship:

�2b�& F with
F # �"� �2b.	X) C 
8���79;:<�>= - 9c?\�A? E �d3 �76 K

indicates that the resource 
8���79;:<�>= - 9@?.�A? is related to the resource
�53 �76 . We remark that there is no

distinction at this point between
�53 �76 , as an instance of a class, and 
8�/�79<:<��= - 9@?.�`? , which is a property.

This allows the model theory to represent arbitrary XML documents, while we will see we can still recover the
traditional RDF semantics.�

provides a mapping between syntax (QNames) and their denotation (resources).
�

gives a means to
identify these entities using QNames. There is no requirement that all resources have corresponding QNames,
nor is there a requirement that QNames are all mapped to different resources.� F # � provides typing information for resources. For instance, if

�53 �76 is in
� F # �"�e�a3 
�1c�/�76f	 then

the resource
�53 �76 is of type

��3 
�1c���76 . Loosely speaking, in RDF terms
� F # � serves for both property and

class extensions. Or, considered another way, a property is presented as a type whose values and related tuples
identify arcs in the traditional RDF graph structure.

Finally,
I

provides ordering information between the relationships that are related to a common resource.
This information is not usually part of RDF model theories [16], but it is important to capture document order
in XML documents. We add one special attribute to RDF, rdf:order, to indicate that a node should not
have its outgoing relationships ordered. This is not an ideal solution. We have considered adding a flag to the
semantics to indicate ordering, but decided to use this simple method for now.

Definition 4.3 In order for an interpretation to to be an RDF interpretation, the above six-tuple must also
satisfy the following additional conditions:

� I � ?/	 is a strict partial order.

� If
ChgiE 6 K & I � ?/	 then

F # ��� g 	 and
F # �"� 6f	 have ? as their first element.

� � F # �"�e���hjVk�lm�\nfofp�qrjcsutVvcs\w\x 	y	L) D
� � F # �"�e���hjVk�lm�.z>jVw\tfo/j>v�{ 	y	}| D
� �+�hj>k>l��/v�{/tfo 	~& � F # �"�e�+�hj>k>l��/z�j�w^t@o/j�v>{ 	y	
� If

ChgiE 6 K & F # � , 6�& � F # �"�e�+�hj>k>l��\v�{/tfo 	y	 ,
and
C 6 EG� K & F # � then

g & � F # �"� � 	 .
� If
g & � F # �"� � 	 and

g & D then� 6m& D � C�giE 6 K & F # �� 6m& � F # �"�e���hjVk�lm�.v>{.t@o 	y	� C 6 EG� K & F # � .

� If
, &�� � then

� F # �"�e���(, 	y	X)�� ���H�(, 	 , provided that
�

is defined on
,
.
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The first and second conditions say that
I � ?/	 is a strict ordering over the relationships emanating from ? .

The third, fourth, and fifth conditions provide part of the meaning for some of the built-in RDF vocabulary.
The sixth and seventh conditions relate the two ways of providing typing for resources, one via

� F # � and
one via rdf:type links. This is needed because rdf:type is part of both the theory and the metatheory of
RDF. As part of the theory of RDF, rdf:type is given a denotation, and relationships impinge on it. As part
of the metatheory of RDF, these relationships impose conditions on the extension (

� F # � ) of RDF classes.
The sixth condition goes from rdf:type links to CEXT for all resources and data values whereas the seventh
condition goes the other way, but not for data values.

The eighth conditions provides meaning for XML Schema primitive datatypes. It ensures that the extension
of a resource that corresponds to an XML Schema primitive datatype is the value space of that datatype.

4.5 Example

In Figure 5 we present an RDF graph (the original method for providing meaning to RDF documents) and part of
an interpretation. The interpretation is presented in the form of a graph. Most nodes are resources, i.e., elements
of
D

; the node with 3000 next to it is the integer 3000 and the node with “www.sony.com” next to it is a string,
both data values. (The labels on resource nodes are just so that they can be referred to in the text below.) The
mapping

�
is given by the dashed arrows from QNames to the nodes. Relationships in the interpretation (

F
andF # � ) are shown as links between the resources. Finally

� F # � contains
� F # �"�(' 	�)��A%@� , � F # ��� =`	�)

�u�.� , � F # �"� 1<	L)M�y1@%f� , � F # �"� 
�	L)Q�A
�%@� , � F # �"��� 	X)Q� � �.� , � F # ���h- 	~��� - % E - � E - 
�% E - 1c% E -y� � E -�- � .
This is only a partial representation of an interpretation as it does not incorporate rdf:Description

and rdf:Property, relationships to them, and
� F # � for them. Nor does the graph specify the ordering

relationships that come from the document order.

As an abbreviation, we will use a triple notation, saying that
C � E 1 E 3.K is in B iff there is some resource ?�& D

such that
C � E ? K & F # � ,

C ? E 3.K & F # � , and ?�& � F # �"� 17	 . For example to indicate that �a��Z 3\[^].[._ is related
to
�d3 �76 through a 
8���79;:<�>= - 9c?.�`? resource we will use

C �a��Z 3\[^].[._ E 
8���79;:<�>= - 9c?\�A? E �d3 �76 K .
4.6 Recovering RDF meaning

As one can see in Figure 5, RDF graphs make a clear distinction between classes and properties, while this dis-
tinction is not present in our model theory in order to deal with XML documents. Still, RDF graphs correspond
to a precise subset of our interpretations. In a nutshell, RDF graphs corresponds to interpretations in which a
proper alternation between classes and properties exists.

This statement is made more precise by the following definition.

Definition 4.4 Given an interpretation:
B") � D�EGFHEGF # � E � F # � EJI$E � 	 let
� � )�� g � � 6 g & � F # �"� 6f	� 6�& � F # �"�hjVk>lH�.z>jVw\t@o.j>v�{ 	��
� FY� ) F�� �u� � � 6 F # �"� �r	0) C 6 E ���hjVk�lm�\v�{/t@o 	 K �� �u� � � giE 6 E � � F # �"� �u	X) ChgiE 6 K� F # �"� � � 	L) C 6 E ���hjVk>l��.v>{/tfo 	 K �
If � makes

FY�
bipartite, i.e., all

F # �"� � � 	 for � � & Fa� either originate or terminate, but not both, in � , and
also for each

g & � there is exactly one � � & F � with
F # �"� � � 	 of the form

� giE 6f	 for some 6 and exactly one
� � & FY� with

F # �"� � � 	 of the form
� 6 Eyg 	 for some 6 , then B is a bipartite interpretation.
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Figure 5: RDF Graph and a corresponding interpretation
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A bipartite interpretation can be turned into an interpretation in the RDF model theory [16] by:

� taking each pair of relationships
C � ��E � ��� K & Fa�

where
F # �"� � � 	d) � giE 17	 , F # ��� � ��� 	L) � 1 EG� 	 , and 1 in �

� replacing it with
� giEG� 	 in B F # �"� ?/	 for each ? such that 1�& � F # �"� ?/	

� then adding
� g
E =A	~&�B F # �"�e�+�hj>k>l��.v�{/t@o 	y	 for each

g
in
� F # �"� =A	 for

g
not in � .

4.7 Models of XML and RDF documents

Now that we have defined our notion of interpretation, we need to explain how instances of the XQuery data
model correspond to these interpretations, in other words, how

F B corresponds to data set
F � above. Intu-

itively, each node in the XQuery data model is mapped to a resource in the interpretation, and
F # � relation-

ships are built according to the original tree structure of the XQuery data model instance. On top of that the spe-
cific XML Schema and RDF attributes xsi:type, rdf:ID, rdf:about, rdf:type, rdf:resource,
and rdf:order are treated specially in order to build a theory of RDF documents that reflect their intended
meaning.

Definition 4.5
An interpretation B�) C(D�EGF�EGF # � E � F # � EJI�E �0K is a model for a data set � if

�
is defined on all names in

� , and there are mappings � � � � DUO ��� and �M� � � � � ��� , where � � consists of the attribute nodes
in � . Further, the interpretation and mapping have to satisfy the following conditions. Although there are a lot
of conditions here, they all really boil down to doing the obvious thing.

� For each ��&�� an element node,

– � � �
	~& D and � � �
	~& � F # ���e��� ���/
�� � �
	y	y	
– If � has an attribute with name rdf:ID and string-value 9 then � � �
	0) ����������� �
	 � 9<	y	 .
– If � has an attribute with name rdf:about and string-value 9 then � � �
	H) ����������� �
	 � 9<	y	 .

(This treats rdf:ID and rdf:about as exactly the same which is not quite correct but a full
treatment would have to address the messy differences between QNames and RDF identifiers.)

– If � has an attribute with name rdf:resource and string-value 9 then there is an ��& F withF # �"� �r	0) C � � �
	 E ����������� �
	 � 9<	y	 K .
– If � has an attribute with name rdf:type and string-value 9 then

C � � �
	 E ����������� �
	 � 9<	y	 K &� F # � .

– For each attribute node, � � , of � , except for attributes with any of the specific names above, then
there is an ��& F with

F # �"� �u	0) C � � �
	 E � � � � 	 K .
– If � has a simple type,

,/-
, then� for each of the   typed-values, %.¡ , of � there is an �2¡5& F with:F # �"� �`¡�	d) C � � �
	 E � �����(, 	 � � - ?^Ze�<¢ � %�� ' 9<� � %^¡£	y	 K .� if � has no attribute with name rdf:order and value "false" then:C �`Z E �J¤ K & I for W�¥¦ZX§¨¤H¥P  .

– If � does not have a simple type, then� for each of the   element or text children nodes, � � , of � , in document order there is an �r¡©& F
with

F # �"� �A¡£	L) C � � �
	 E � � � � 	 K .
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� if � has no attribute with name rdf:order and value "false" then
C �AZ E ��¤ K & I for W�¥

ZX§¨¤�¥S  .
� For each ��&�� a text node � � �
	X&���� and � � �
	~&�# ����� � - ?rZ£�<¢ � %�� ' 9;� � �
	y	
� For each ��&�� an attribute node, except for attributes with any of the specific names above,

– � � �
	~& D and � � �
	~& � F # ���e��� ���/
�� � �
	y	y	
– �M� � �
	}&���� and
�M� � �
	~&8# ����� � - ?^Ze�<¢ � %>� ' 9<� � �
	y	

– There is some �a& F with:F # �"� �r	0) C � � �
	 E �M� � �
	 K .
– If � has a simple type,

,/-
, then:

�M� � �
	L)�� �����(,.- 	 � � - ?^Ze�<¢ � %�� ' 9<� � �
	y	
� For each ��&�� a reference node,
� � �
	L)�� �(, �u:7�`?.�`��=`� � �
	y	 .

Definition 4.6 An RDF model B for � is an RDF interpretation B that is a model for � .

4.8 Example

Now the interpretation in Figure 5 is a model for the document above under the mapping � � W2	�)�% , � ��ª 	})

�% , � ��[ 	�)«1@% , � �e¬ 	�) ª^]\]\] , � ��­ 	�)R� , � � W\W2	�) - � , � � WAb.	�)®= , � � W ] 	�) � � , and �Q� � W ] 	�)¯^°�°�°Y± � 3 �76 ± = 3 
 ¯ . The other nodes are “structural nodes” and thus do not have a mapping. As XML Schema
datatypes only show up in the “structural” nodes, they don’t need to be present.

4.9 Entailment

Finally, we are now ready to define a notion of entailment for XML and RDF data sets.

Definition 4.7 A data set � entails another data set � � iff every RDF model of � is also an RDF model of � � .
A collection of data sets entails another data set � � iff every RDF model of every element of the collection is
also an RDF model of � � .

As we will see in Section 5, entailment is the main reasoning tool that we will use at the application level.
Entailment captures valid reasoning, in that if a data set � � is entailed by another � , the information in � � in
implicitly present in � .

4.10 Dealing with RDF Schema

RDF Schema (RDFS) is an extension of RDF that has a vocabulary for stating relationships between classes
and properties as well as some built-in meaning for this vocabulary.

We handle the RDFS vocabulary by requiring that an RDFS interpretation include the following triples.
(Actually there is more RDFS vocabulary than given below, but it is not important.)
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<S(rdf:Description),S(rdf:type), S(rdfs:Class)>
<S(rdf:Description),S(rdfs:subClassOf),S(rdfs:Resource)>
<S(rdfs:Resource), S(rdfs:subClassOf),S(rdf:Description)>
<S(rdfs:Resource), S(rdf:type), S(rdfs:Class)>
<S(rdf:Property), S(rdf:type), S(rdfs:Class)>
<S(rdfs:Class), S(rdf:type), S(rdfs:Class)>
<S(rdfs:Literal), S(rdf:type), S(rdfs:Class)>
<S(rdf:type), S(rdf:type), S(rdf:Property)>
<S(rdfs:subClassOf), S(rdf:type), S(rdf:Property)>
<S(rdfs:subPropertyOf), S(rdf:type), S(rdf:Property)>
<S(rdfs:Class), S(rdfs:subClassOf), S(rdfs:Resource)>
<S(rdf:type), S(rdfs:range), S(rdfs:Class)>
<S(rdfs:subClassOf), S(rdfs:domain), S(rdfs:Class)>
<S(rdfs:subClassOf), S(rdfs:range), S(rdfs:Class)>
<S(rdfs:subPropertyOf), S(rdfs:domain), S(rdf:Property)>
<S(rdfs:subPropertyOf), S(rdfs:range), S(rdf:Property)>
<S(rdfs:range), S(rdfs:domain), S(rdf:Property)>
<S(rdfs:range), S(rdfs:range), S(rdfs:Class)>
<S(rdfs:domain), S(rdfs:domain), S(rdf:Property)>
<S(rdfs:domain), S(rdfs:range), S(rdfs:Class)>

RDFS interpretations also must meet the following additional constraints:

� � F # �"�e���hjVk�lcp��.²�o@p^w\³�j@q.o 	y	L) D
� � F # �"�e���hjVk�lcp��/´@s^vVo/j�µ>¶ 	y	0)����
� If
g & � F # �"� 6f	

and
C 6 E ���hj>k>lcpY�fp2³�·@¸V¶/µ@p�p.¹/l 	 EG� K &�B

then
g & � F # �"� � 	 .

� If
ChgiE �+�hj>k>l@p"��p2³�·@¸>¶�µ@p�p.¹.l 	 E 6 K &�B

and
C 6 E ���hj>k>lcpY�fp2³�·@¸V¶/µ@p�p.¹/l 	 EG� K &�B

then
ChgiE �+�hj>k>l@p"��p2³�·@¸>¶�µ@p�p.¹.l 	 EG� K &�B .

� If
ChgiE ? E 6 K &8B

and
C ? E ���hj>k>lcp��fp2³>·Vz>jVw\t@o.j>v�{f¹/l 	 E � K &�B

then
ChgiE � E 6 K &�B .

� If
ChgiE �+�hj>k>l@p"��p2³�·�z�j�w\tfo/j�v>{f¹.l 	 E 6 K &�B

and
C 6 E ���hj>k>lcpY�fp2³�·�z>jVw\tfo/j>v�{f¹.l 	 EG� K &�B

then
ChgiE �+�hj>k>l@p"��p2³�·�z�j�w\tfo/j�v>{f¹.l 	 EG� K &�B .

� If
ChgiE 1 E 6 K &�B

and
C 1 E ���hjVk>l@p��.jVµ\xfº>o 	 E = K &�B

then 6�& � F # �"� =A	 .
� If

ChgiE 1 E 6 K &�B
and
C 1 E ���hjVk>l@p��/k>wr»;µ�sux 	 E = K &�B

then
g & � F # �"� =A	 .

Now the RDFS analogues of RDF models and RDF entailment are defined in the obvious way.

Definition 4.8 An RDFS model for a data set � is an RDFS interpretation that is a model for � . A data set
� RDFS-entails another data set � � iff every RDFS model of � is also a RDFS model of � � . A collection of
data sets RDFS-entails another data set � � iff every RDFS model of every element of the collection is also a
RDFS model of � � .
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4.11 Caveats

This is quite a bit of machinery. Some of it is required to handle the two ways, XML and RDF, of looking at
the world, and some of it is required to handle the vocabulary of RDF. We feel that this model theory captures
the important parts of XML and RDF, but there are some aspects of both XML and RDF that it is missing.

The model theory explicitly discards as irrelevant most of the formatting aspects of the initial document.
Similarly it also discards as irrelevant the lexical form of elements that have XML Schema datatypes. There is
no way of recovering the exact character sequence of the initial document from the model theory.

Just about the only significant aspect of XML documents that are not handled in the model theory is the
distinction between attributes and elements. This is discarded to obtain consistency with RDF.

On the RDF side our scheme does not handle certain RDF constructs. The meaning of reification in RDF
and RDF containers have not yet been determined, so the model theory does not address them. One RDF
shorthand form is counter to XML practice and thus is not handled in the model theory. As syntax processing
is completely handled by XML, our scheme cannot handle the RDF parsetype extension.

5 Applications

We can now go back to our catalog example from Figure 2. Remember that the data integration is done in two
steps. On the semantic side, one needs to design and build a global ontology for the information manipulated
by the target application. On the data side, he accesses data from various information providers using XML,
resulting in a mismatch between data and semantics, as illustrated on Figure 3.

5.1 Semantic Consequences

The first result of our integration is that the semantic consequences of the RDF Schema information are ap-
plied to the the XML data. For example, the Compaq 4XDF is a portable because that information is
entailed from the fact that it is a PDA and the class relationships in the RDF Schema information. This entailed
information is available to applications that access the data model view.

We are still exploring the various capabilities that a powerful inference system can support in the XML
world. Still, there are two important remarks to be made. First, it is always possible to import more information
for reasoning. For instance, it is quite common that various terminologies or vocabularies will be used between
the data sources, and in the ontology. Following Fundulaki [1], RDFS – hence our model theory – is expressive
enough to capture standard thesaurus descriptions, and incorporate them in the reasoning. For instance, if
one would use manufacturer instead of vendor, the system would still be able to figure our semantics
relationships and inconsistencies, assuming these are declared as homonyms in the thesaurus.

5.2 Querying RDF

A second important application of the Yin/Yang model is related to querying RDF with XQuery. Robie et
al [28] propose one approach to query RDF and topic maps documents using XQuery. One of the benefits they
gain is the ability to query both XML and RDF information in an uniform framework. Still, a difficulty of their
approach relies in lack of understanding of the semantic features of RDF in the XQuery data model. To solve
that problem, [28] uses special-purpose functions in XQuery that perform some part of the reasoning.

In the Yin/Yang model, one now has access to both the data model representation and the semantics of the
RDF information. Hence, one can use XQuery to access the data structure of the RDF document, while using
entailment to access its semantics. For instance, the following function from [28] performs a recursive access
on the class hierarchy in order to figure out whether an entity is an instance of a given class.

18



define function rdf:instance-of-class
( ListOfDescription $t,
charstring $base-name )

returns ListOfDescription
{

( $t[rdf:type = $base-name],
for $i in $t[rdfs:subClassOf = $base-name]
return

rdf:instance-of-class($t, string($i/@rdf:about)) )
}

This function can be defined directly through entailment in the following way:
define function rdf:instance-of-class

( ListOfDescription $t,
charstring $base-name )

returns ListOfDescription
{

for $d in $t
where
entails($yin:yang,

<rdf:Description rdf:about={$d}>
<rdf:type>
<rdf:Description rdf:about={$base-name}>

</rdf:type>
</rdf:Description>)

return $d
}

This function returns only those descriptions $d in $t such that the current semantics (represented as a
global variable $yin:yang) entails the statement (written here in rdf syntax) that $d is of class $base-name.

Indeed, model theory and entailment provide a precise formal foundation for the techniques presented
in [28]. Entailment also allows to perform more complex reasoning, that cannot be captured by a finite set
of functions. For instance, one can ask whether all companies with a contract are partners with the following
entailment query (note the use of parenthesis in the XQuery syntax to separate parameters of the function).

entails( ( $yin:yang,
<rdf:Description rdf:about={$d}>

<rdf:type>
<rdf:Description rdf:about="Company">
<contract>{$c}</contract>

</rdf:type>
</rdf:Description> ) ,

( <rdf:Description rdf:about={$d}>
<rdf:type>
<rdf:Description rdf:about="Partner">

</rdf:type>
</rdf:Description> )

)

A somewhat interesting remark is that our work would also allow a converse approach to the one of Robie et
al, by using an RDF query language such as RQL [17] on the model theory representation of XML documents,
hence allowing to query both XML and RDF with and RDF query language. Note again that we are just starting
to explore the possibilities provided by such semantics reasoning in RDF as well as in XML. We cannot go into
more details due to space limitation, but we believe these simple examples are giving some ideas of the many
interesting possibilities open by our approach.

5.3 Semantic Integrity

Another interesting question to ask as a user is whether the data built through the integration system is seman-
tically consistent with the target ontology. If there are no models for both the RDF Schema information and the
XML data then there is some semantic inconsistency between them.
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Unfortunately, RDF Schema is too weak to provide this sort of reasoning. For example, if a mistake in
the input causes a resource to be both a Company and a Product, this is not a semantic error, as Company and
Product are not necessarily disjoint. This disjointness cannot be enforced in RDF Schema. Adding disjointness
reasoning to our approach would require more powerful semantic formalisms, such as the DAML+OIL ontology
language [31].

There are also other forms of reasoning we are not able to do due to the expressive power limitations of RDF
Schema. We cannot perform any recognition on the information, such as determining that an IBM computer
that has a portable property belongs to the same category as a SONY laptop. Again such inference is available
in newer proposals for the semantic web, such as DAML+OIL.

6 Implementation

The approach we have outlined has several implementation advantages. First and foremost, as the initial stages
of processing for both XML and RDF documents are the same, there is no need to have a syntax processor
for RDF. Second, the approach integrates XML Schema datatypes, eliminating the need for a separate datatype
implementation for RDF.

As a result, an implementation of the entire Yin/Yang model can be quickly and easily written, by exploiting
tools for the XQuery data model. In fact, we have written an initial reference implementation of the scheme
in OCaml [19]. This implementation builds on the Galax XQuery engine [15] and data model implementation,
and our implementation on top of it is only about 300 lines of code.

Although our implementation is not complete, it provides the core of what is needed for a complete system
based on our scheme: the mapping from the XQuery data model and the entailment algorithm. This implemen-
tation is available at3:

http://db.bell-labs.com/user/pfps/xmlrdf-semantics.ml.
The implementation uses the fact that a canonical model exists for our scheme. This is a traditional imple-

mentation technique for semantic reasoners. Given a collection of XML and RDF documents, the implementa-
tion builds a canonical model for them. This canonical model can then be used to determine whether another
document is entailed by the original documents.

7 Future Work and Conclusion

Our work aims at providing both the data and semantics access required by many of the new Web applications.
We have presented an original framework and model for a Web that integrates both syntax and semantics: the
Yin/Yang Web. This unified Web is obtained through a tighter integration between XML and RDF, and we
believe such integration is essential for the coming Semantic Web envisioned by many.

We see this work as foundational, and at this point it is raising many new interesting, but probably difficult,
questions. The obvious next step is to understand precisely how much of XML Schema can and should be
incorporated into the semantic framework. We only touched the problem by addressing two aspects of XML
Schema that are easy to capture in our semantic framework: ID/IDREF and type names hierarchy. Still, XML
Schema includes a very large number of constructs that are more difficult to handle in a semantic framework
such as regular expressions and arity constraints.

Also on the querying part, we believe both XML and RDF users could benefit from the proposed framework
and we intend to explore that in more depth. Notably, it is not clear to us whether it would be more suitable to

3This is a temporary placement for review purposes only.
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query the Yin/Yang Web by extending an XML Query language such as XQuery, by extending an RDF query
language, such as RQL, or by designing a unified language that would provide some features of both.

Another interesting direction is to extend this scheme to more-expressive formalisms, such as DAML+OIL.
The problem here is that DAML+OIL includes constructs that violate one of the fundamental assumptions of
XML and RDF. All constructs and XML and RDF are conjunctive, in that the meaning of an entire collection
of documents is the conjunction of the meaning of each of the pieces. Handling non-conjunctive constructs in
an upwardly-compatible fashion requires a different treatment of DAML+OIL than in its semantics. (The basic
change would be to treat DAML+OIL syntax in a more XML-like fashion, i. e., as a tree, rather than its current
RDF fashion.)

Other extensions to our scheme are also possible, potentially leading to a unified semantics for the entire
semantic web layer cake. As our model theory is somewhat different from the standard logical model theories,
some work will be required create a compatible model theory for logics like first-order logic.

Acknowledgments. We thank Vassilis Christophides and Jonathan Robie for provocative discussions about
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[9] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators need data conversion! In Proceedings of
ACM Conference on Management of Data (SIGMOD), pages 177–188, Seattle, Washington, June 1998.

[10] J. Cowan and R. Tobin. Xml information set. W3C Recommendation, Oct. 2001.
http://www.w3.org/TR/xml-infoset/.

[11] Enosys markets. http://www.enosysmarkets.com.

[12] M. Fernández and J. Marsh. The XQuery 1.0 and XPath 2.0 data model. W3C Working Draft., June 2001.
http://www.w3.org/TR/query-datamodel/.

[13] M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu. System demonstration - Strudel: A
web-site management system. In Proceedings of ACM Conference on Management of Data (SIGMOD),
Tucson, Arizona, May 1997. Exhibition Program.

[14] I. Fundulaki, B. Amann, M. Scholl, C. Beeri, and A.-M. Vercoustre. Mapping xml fragments to commu-
nity web ontologies. In Fourth International Workshop on the Web and Databases (WebDB’2001), Santa
Barbara, CA, June 2001.

[15] Galax xquery 1.0 implementation.
http://db.bell-labs.com/galax/.

[16] P. Hayes. RDF model theory. W3C Working Draft, Sept. 2001. http://www.w3.org/TR/rdf-mt/.

[17] G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki. Querying rdf descriptions for com-
munity web portals. In The French National Database Conference, BDA’2001, Agadir, Maroc, Oct. 2001.
http://139.91.183.30:9090/RDF/RQL/.

[18] O. Lassila and R. Swick. Resource description framework (RDF) model and syntax specification. W3C
Recommentation, Feb. 1999.
http://www.w3.org/TR/REC-rdf-syntax/.

[19] X. Leroy. The Objective Caml system, release 3.02, Documentation and user’s manual. Institut National
de Recherche en Informatique et en Automatique, Nov. 1999.
http://caml.inria.fr/.

[20] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information sources using source
descriptions. In Proceedings of International Conference on Very Large Databases (VLDB), pages 251–
262, Bombay, India, Sept. 1996.

[21] M. Mani, D. Lee, and R. R. Muntz. Semantic data modeling using xml schemas. In Proceedings of the
20th International Conference on Conceptual Modeling (ER 2001), Yokohama, Japan, Nov. 2001.

[22] I. Manolescu, D. Florescu, D. Kossmann, F. Xhumari, and D. Olteanu. Agora: Living with xml and
relational. In Proceedings of International Conference on Very Large Databases (VLDB), pages 623–626,
2000.

[23] S. Melnik. Bridging the gap between RDF and XML, Dec. 1999. http://www-

db.stanford.edu/˜melnik/rdf/fusion.html.

[24] L. Miller. Inkling: Rdf query using squishql. http://swordfish.rdfweb.org/rdfquery/.

22



[25] Nimble technology. http://www.nimble.com.

[26] Organization for the advancement of structured information standards. http://www.oasis-open.org/.

[27] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous infor-
mation sources. In Proceedings of IEEE International Conference on Data Engineering (ICDE), pages
251–260, Taipei, Taiwan, Mar. 1995.

[28] J. Robie, L. M. Garshol, S. Newcomb, M. Biezinski, M. Fuchs, L. Miller, D. Brickley, V. Christophides,
and G. Karvounarakis. The syntactic Web: Syntax and semantics on the Web. In Extreme Markup
Languages’2001, Montreal, Canada, Aug. 2001.

[29] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML schema part 1: Structures. W3C
Recommentation, May 2001.
http://www.w3.org/TR/xmlschema-1/.

[30] F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks. A model-theoretic semantics for DAML+OIL,
Mar. 2001. http://www.daml.org/2001/03/ model-theoretic-semantics.html.

[31] F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks. Reference description of the DAML+OIL (march
2001) ontology markup langauge, Mar. 2001.
http://www.daml.org/2001/03/reference.html.

23


