
MATHEMATICS OF OPERATIONS RESEARCH

Vol. 31, No. 2, May 2006, pp. 316–350
issn 0364-765X �eissn 1526-5471 �06 �3102 �0316

informs ®

doi 10.1287/moor.1050.0181
©2006 INFORMS

The Fluid Limit of an Overloaded Processor Sharing Queue

Amber L. Puha
Department of Mathematics, California State University, San Marcos, 333 Twin Oaks Valley Road,

San Marcos, California 92096–0001, USA, apuha@csusm.edu, http://www.csusm.edu/puha/

Alexander L. Stolyar
Bell Laboratories Lucent Technologies, 600 Mountain Avenue, Room 2C-322, Murray Hill, New Jersey 07974–0636, USA,

stolyar@research.bell-labs.com, http://cm.bell-labs.com/cm/ms/who/stolyar/

Ruth J. Williams
Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112, USA,

williams@math.ucsd.edu, http://www.math.ucsd.edu/˜williams/

This paper primarily concerns strictly supercritical fluid models, which arise as functional law of large numbers approxi-
mations for overloaded processor sharing queues. Analogous results for critical fluid models associated with heavily loaded
processor sharing queues are contained in Gromoll et al. [9] and Puha and Williams [15]. An important distinction between
critical and strictly supercritical fluid models is that the total mass for a solution that starts from zero grows with time for the
latter, but it is identically equal to zero for the former. For strictly supercritical fluid models, this paper contains descriptions
of each of the following: the distribution of the mass as it builds up from zero, the set of stationary solutions, and the limiting
behavior of an arbitrary solution as time tends to infinity. In addition, a fluid limit result is proved that justifies strictly
supercritical fluid models as first order approximations to overloaded processor sharing queues.

Key words : overloaded processor sharing queue; supercritical fluid models; measure-valued process; invariant shape; order
preservation; continuity in initial conditions; renewal equations

MSC2000 subject classification : Primary: 60K25; secondary: 68M20, 90B22
OR/MS subject classification : Primary: queues-approximations, queues-limit theorems, queues-transient results; secondary:
probability-stochastic model applications

History : Received August 13, 2004; revised April 4, 2005.

1. Introduction. The main aim of this paper is to study strictly supercritical fluid models which arise as
functional law of large numbers approximations for overloaded GI/GI/1 processor sharing queues. An analogous
study of critical fluid models associated with heavily loaded processor sharing queues is contained in Gromoll
et al. [9] and Puha and Williams [15], and the investigation undertaken here is a natural progression from that
work. The introduction of Gromoll et al. [9] contains a brief summary of the processor sharing literature, and
we refer the reader to that paper for a list of references. The queueing model setup used here is similar to that in
Gromoll et al. [9]. In particular, we use a measure-valued state descriptor in order to capture information about
residual service times. Measure-valued state descriptors have been successfully used for other stochastic networks
models; see, e.g., Doytchinov et al. [3], Grishechkin [7], and Gromoll [8]. In formulating the strictly supercritical
fluid models, we take formal limits of sequences of measure-valued stochastic processes, corresponding to
sequences of overloaded processor sharing queues, under law of large numbers scaling. Solutions of the strictly
supercritical fluid models are functions of time that take values in the set of finite, nonnegative Borel measures
on the nonnegative real numbers and that satisfy certain properties. There is an important distinction between
the critical fluid models (associated with sequences of heavily loaded processor sharing queues) and the strictly
supercritical fluid models. Namely, the total mass for a fluid model solution with zero initial measure grows with
time for the latter, but it is identically equal to zero for the former. In analyzing the strictly supercritical fluid
models, we describe the distribution of mass as it builds up from zero. The same analysis produces some new
results for critical fluid models, which we include here as well. Thus, we consider supercritical fluid models in
this paper. These include both the critical and the strictly supercritical cases. However, the main emphasis is on
the latter.
For the strictly supercritical fluid models, we prove four results. We give conditions for existence and unique-

ness of fluid model solutions (cf. Theorem 3.1). We explicitly identify the fluid model solutions having a zero
initial condition (cf. Theorem 3.2). We identify the fluid model solutions for which the shape does not change
with time, the so-called stationary fluid model solutions (cf. Theorem 3.6). Finally, we investigate the asymptotic
behavior of fluid model solutions as time tends to infinity. Indeed, under mild conditions, we prove a limit
theorem that identifies the asymptotic shape (cf. Theorem 3.5). There are two key elements in the proofs of
these theorems. The first is an order preservation property for fluid model solutions (cf. Theorem 4.2), and the
second is a continuity property (cf. Theorem 4.3). Both properties are valid not only for strictly supercritical
fluid models, but also for critical fluid models. As a consequence, we are able to extend the work in Gromoll
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et al. [9] to prove a result that holds for both critical and strictly supercritical fluid models (cf. Theorem 3.3).
This result states that the mapping from initial conditions in a certain domain to the associated fluid model
solutions is continuous.
In order to justify the strictly supercritical fluid models as first-order approximations to overloaded processor

sharing queues, we prove a fluid limit result. For this, we consider a sequence of measure-valued stochastic
processes corresponding to a sequence of overloaded processor sharing queues. The fluid limit result states that,
under mild conditions, the fluid scaled measure-valued stochastic processes converge in distribution to a limit
which is almost surely a fluid model solution (cf. Theorem 3.7). This result concerns a sequence of stochastic
processes that converges in distribution to a limiting stochastic process. However, since the limit process is
almost surely a fluid model solution, it is only stochastic through the initial condition.
In [10], Jean-Marie and Robert prove a law of large numbers type of result that is consistent with our fluid

limit result. They study the asymptotic behavior as time tends to infinity of a single overloaded processor
sharing queue that has exactly one job in the system at time zero. They prove that, under mild conditions, the
state at time t divided by t converges almost surely as t tends to infinity to what we would call the state of
the fluid model solution at time one when the initial measure is the zero measure (cf. Jean-Marie and Robert
[10, Proposition 4] and the last paragraph of §3.3.2 here).
Fluid approximations for the queue length processes of processor sharing queues are proposed in Chen

et al. [2]. As was noted in the introduction of Gromoll et al. [9], the justification given in [2] for those fluid
approximations is valid, provided that all limit points are deterministic. Our approach provides a proof that
this assumption is valid for the overloaded processor sharing queue under the mild conditions identified here
(cf. Theorem 3.7). In the strictly supercritical setting, the authors of Chen et al. [2] show that their fluid
approximations for the queue length processes are asymptotically linear as time tends to infinity, and they
determine the limiting linear rates of increase (cf. [2, Proposition 6] and the last paragraph in §3.2.7 here). Our
Theorem 3.5 is a generalized version of [2, Proposition 6] that also specifies the asymptotic shape (as time goes
to infinity) of the fluid approximation to the measure-valued process that captures the behavior of the residual
service times.
In [13], our fluid limit result is used by Mandjes and Zwart who analyze the asymptotic behavior of the

tail probability for the sojourn time of a tagged job in a strictly subcritical GI/GI/1/PS queue in steady state.
The main Mandjes and Zwart result [13, Theorem 3.1] concerns the sojourn time under a light-tailed (but not
too light) service time distribution (cf. [13, Assumptions 3.1 and 3.2]). In the proof of Mandjes and Zwart
[13, Theorem 3.1], the tail probability for the sojourn time in a strictly subcritical queue is related to the tail
probability for the sojourn time in a strictly supercritical queue (cf. [13, Equation (3.7)]), and then the strictly
supercritical tail probability in [13, Equation (3.7)] is analyzed to obtain a desired lower bound. The analysis of
the strictly supercritical tail probability in [13, Equation (3.7)] in part relies on [13, Lemma 3.1], the proof of
which uses our fluid limit result.
The paper is organized in the following manner. Section 2 describes the basic setup. Specifically, §2.1 estab-

lishes the notation that is used throughout the paper, and §2.2 describes the dynamics for a processor sharing
queue and the associated measure-valued state descriptor. Section 3 contains a discussion of the fluid models.
The definitions of fluid model solutions for both the critical and strictly supercritical models are contained in
§3.1. Section 3.2 contains the statements of the main results proved in the paper concerning solutions of the
supercritical fluid models (Theorems 3.1, 3.2, 3.5, and 3.6 for strictly supercritical data, and Theorem 3.3 for
supercritical data). Section 3.3 contains the statement of the fluid limit result (Theorem 3.7). Sections 4 and 5
are devoted to the proofs of the theorems stated in §3. Some of the theorems can be proved in a very similar
manner to those in Gromoll et al. [9], particularly for the case of nonzero initial measures. For these instances,
we have chosen to omit the complete proof in favor of referencing the similar proof in Gromoll et al. [9] and
explaining how to adapt it. This allows us to focus on the new tools and results such as the order preservation
property (Lemma 4.2 in §4.3), the proof of uniqueness for Theorem 3.2, the proof of continuity at the zero
initial measure for Theorem 3.3, and establishing tightness for the fluid limit result.

2. Preliminaries and queueing model. In this section, we outline some necessary background. In §2.1,
we introduce the basic notation that is used throughout the paper. In §2.2, we describe the processor sharing
queueing model. Readers who are familiar with the setup in Gromoll et al. [9] will find this to be rather
redundant, since it is largely taken verbatim from that paper. We repeat it here for completeness because the
processor sharing queueing model needs to be precisely defined in order to state the fluid limit result.

2.1. Notation. Let � denote the set of natural numbers, let � denote the set of real numbers, and let �+
denote the set of nonnegative real numbers. For a�b ∈ �, we write a∨ b for the maximum of a and b, a∧ b
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for the minimum of a and b, a+ = a∧ 0 and a− = a∨ 0 for the positive and negative parts of a respectively,
�a	 for the largest integer less than or equal to a, and 
a� for the smallest integer greater than or equal to a. For
a Borel-measurable function g� �+ → �, define the positive and negative parts of g by g+�x	= g�x	∨ 0 and
g−�x	= �−g�x		∨ 0 for all x ∈ �+. For such a function g, let 
g
� = supx∈�+ �g�x	�, 
g
K = supx∈�0�K� �g�x	�
for each K ≥ 0, and 
g
L1 =

∫ �
0 �g�x	�dx, where we allow these quantities to take the value +�.

For a set B ⊂ �+, we denote the indicator function for the set B by 1B. We also define the real-valued
functions � and � on �+ as follows: ��x	= x for x ∈ �+, and ��x	= 1/x for x ∈ �0��	 and ��0	= 0. For
a topological space A, denote by C�A	 the set of continuous, real-valued functions defined on A. Similarly,
Cb�A	 denotes the set of continuous, bounded, real-valued functions defined on A. In addition, for an interval
I ⊂�, C1�I	 is the set of once continuously differentiable, real-valued functions defined on I , and C1

b�I	 is the
set of functions in C1�I	 that together with their first derivatives are bounded on I . For g ∈ C1�I	, we write
g′�x	= � d

dx
	g�x	, for all x ∈ I .

Let �F be the set of finite, nonnegative Borel measures on �+. Consider � ∈�F and a Borel-measurable
function g� �+ →� which is integrable with respect to � . We define �g� �� = ∫

�+
g�x	 ��dx	. Our equations will

involve expressions of the form
∫
�a��	 g�x− a	 ��dx	, for a≥ 0. To ease notation throughout, we write this as

�g�· − a	� ��, adopting the convention that g is always extended to be identically zero on �−��0	. The set �F

is endowed with the topology associated with weak convergence of measures. Recall that, for ��n� n ∈��⊂�F

and � ∈�F , �n converges to � weakly as n→� if and only if �g� �n�→ �g� �� as n→� for all g ∈Cb��+	, in
which case we write �n

w→ � as n→�. With this topology, �F is a Polish space (cf. Prohorov [14]). A family
��t� t ∈ �0��	� ⊂ �F converges to � ∈ �F if and only if for each sequence �tn� n ∈ �� ⊂ �0��	 such that
tn→� as n→� we have �tn

w→ � as n→�. We denote the zero measure in �F by 0 and the measure in
�F that puts one unit of mass at the point x ∈�+ by �x.
We will use “⇒” to denote convergence in distribution of random elements of a metric space. Following

Billingsley [1], we will use P and E respectively to denote the probability measure and expectation operator
associated with whatever space the relevant random element is defined on. All stochastic processes used in this
paper will be assumed to have paths that are right continuous with finite left limits (r.c.l.l.). For a Polish space � ,
we denote by D��0��	�� 	 the space of r.c.l.l. functions from �0��	 into � , and we endow this space with
the usual Skorohod J1-topology (cf. Ethier and Kurtz [5]). The subspace of continuous functions from �0��	
into � will be denoted by C��0��	�� 	. When restricted to this space, the Skorohod J1-topology is the same
as that induced by uniform convergence on compact time intervals.

2.2. The processor sharing queue. Here, we describe our processor sharing queueing system. The primi-
tive stochastic processes and initial condition for our model are introduced in §2.2.1. The system dynamics and
performance processes are described in §2.2.2. Here, an important quantity for the processor sharing queue is
introduced, namely the cumulative service process. In §2.2.3, we introduce the state descriptor and a dynamic
equation associated with its evolution. The state descriptor and the associated dynamic equation play a funda-
mental role in justifying the strictly supercritical fluid model as a first-order approximation of an overloaded
processor sharing queue.

2.2.1. Primitive processes and initial condition. The exogenous arrival process E�·	 is a rate � delayed-
renewal process. The arrival rate � is assumed to be strictly positive and finite. Jump times for E�·	 correspond
to times at which jobs enter the system. This renewal process is defined from a sequence of interarrival times
�ui�

�
i=1, where u1 denotes the time at which the first job to arrive after time zero enters the system and ui,

i ≥ 2, denotes the time between the arrival of the �i − 1	st and ith jobs to enter the system after time zero.
Frequently, we will simply refer to the ith job to enter the system after time zero as the ith arrival. Thus,
Ui =

∑i
j=1 uj is the time at which the ith arrival enters the system, which is interpreted as zero if i = 0, and

E�t	= sup�i≥ 0� Ui ≤ t� is the number of exogenous arrivals by time t. We assume that the sequence �ui�
�
i=2 is

an i.i.d. sequence of nonnegative random variables with E�u2�= 1/�. The random variable u1 is associated with
an initial delay preceding the first arrival and is assumed to be a strictly positive random variable, independent of
�ui�

�
i=2, with finite mean, but otherwise may have an arbitrary distribution. We refer to u1 as the initial residual

interarrival time.
The service process, �V �i	��i=0, is such that V �i	 records the total amount of time required from the server

to process the first i arrivals. More precisely, let �vi�
�
i=1 denote an i.i.d. sequence of strictly positive random

variables with common distribution given by a Borel probability measure & on �+. We interpret vi as the amount
of time required from the server to process the ith arrival. The vis are known as the service times and & is known
as the service time distribution. Then, V �i	=∑i

j=1 vj , i ≥ 0, which is taken to be zero if i = 0. It is assumed
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that v1 > 0 and E�v1� <�. In terms of &, these assumptions are expressed by saying that & does not charge the
origin (&��0�	= 0) and ���&�<�. (Recall that ��x	= x for all x ∈�+.)
The two processes E�·	 and V �·	 are called the primitive processes, since they provide the primitive stochastic

inputs for the model. The processes E�·	 and V �·	 are not assumed to be independent of one another since our
interest is in asymptotic behavior under fluid scaling where only laws of large numbers come into play.
Any job that is present in the system at time zero is called an initial job. The initial condition specifies the

number Z�0	 of initial jobs and each initial job’s respective service requirement. Here, Z�0	 is assumed to be a
nonnegative, integer-valued random variable with finite mean. The service times for the initial jobs are taken to
be the first Z�0	 elements of a sequence �ṽj�

�
j=1 of strictly positive random variables, with ṽj being the service

time requirement of the jth initial job, 1≤ j ≤ Z�0	. It is assumed that the initial workload has a finite mean,
i.e., that E

[∑Z�0	
j=1 ṽj

]
<�. The random variables Z�0	 and �ṽj�

�
j=1 are neither assumed to be independent of one

another nor of the primitive processes.

2.2.2. Performance processes and descriptive equations. In a processor sharing queue, the server, rather
than providing service to just one job at a time, works simultaneously on all jobs currently in the system by
providing an equal fraction of its attention to each. In particular, at any given time that the system is nonempty,
each job in the system is being processed at a rate that is the reciprocal of the number of jobs in the system.
When the server has fulfilled a given job’s service requirement, the job exits the system. This system is known
as a processor sharing queue.
As the processor sharing queue evolves in time, certain r.c.l.l. stochastic processes are used to track important

measures of performance for the system, e.g., queue length, workload, and idle time. Let Z�t	 denote the queue
length at time t, which is the total number of jobs in the system at time t. Also, let W�t	 denote the (immediate)
workload at time t, which is the total amount of time that the server must work in order to satisfy the remaining
service requirement of each job present in the system at time t, ignoring future arrivals. Finally, let Y �t	 denote
the cumulative amount of time that the server has been idle up to time t. The processes W�·	, Y �·	, and Z�·	
are called performance processes. These processes satisfy a set of descriptive equations, which we now present.
We begin with the familiar equations for the workload W�·	 and idle time Y �·	 processes, which are valid for

any nonidling service discipline, including processor sharing. For t ≥ 0,

W�0	 =
Z�0	∑
j=1

ṽj � (1)

W�t	 = W�0	+V �E�t		− t+ Y �t	� (2)

Y �t	 = sup��W�0	+V �E�s		− s	−� 0≤ s < t�- (3)

A set of equations satisfied by the queue length process Z�·	 under a processor sharing service discipline is the
following. For t ≥ 0,

Z�t	 = Z�0	+E�t	−D�t	� (4)

D�t	 =
Z�0	∑
j=1

1�ṽj≤S�t	�+
E�t	∑
i=1

1�vi≤S�t	−S�Ui	�
� (5)

S�t	 =
∫ t

0
��Z�s		ds- (6)

Recall that ��x	= 1/x if x > 0, and ��0	= 0. The process D�·	 is the departure process, where D�t	 represents
the total number of jobs that have departed from the system by time t. The process S�·	 is known as the
cumulative service process, and S�t	 represents the cumulative amount of service time allocated per job up to
time t.
The cumulative service process S�·	 will play a particularly important role in our analysis. We will find it

convenient to have notation for the increments of this process. For t� h≥ 0, define the cumulative service per
job in �t� t+h� by

St� t+h = S�t+h	− S�t	=
∫ t+h

t
��Z�s		ds- (7)

For t ≥Ui, the ith arrival receives an amount of service equal to vi ∧SUi� t
by time t. Define the residual service

time at time t ≥ 0 of the ith arrival, i ∈ �1� 0 0 0 �E�t	�, and of the jth initial job, j ∈ �1� 0 0 0 �Z�0	�, by
Ri�t	= �vi− SUi� t

	+ and �Rj�t	= �ṽj − S�t		+� (8)
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respectively. The workload at time t ≥ 0 can be rewritten as

W�t	=
Z�0	∑
j=1
�Rj�t	+

E�t	∑
i=1

Ri�t	- (9)

2.2.3. Measure-valued state descriptor. As in Gromoll et al. [9], we use a measure-valued process to keep
track of the residual service times. For each t ≥ 0, let 2�t	 be the random, finite, Borel measure on �+ = �0��	
given by

2�t	=
Z�0	∑
j=1

1�0��	� �Rj�t		� �Rj �t	
+

E�t	∑
i=1

1�0��	�Ri�t		�Ri�t	
- (10)

Recall that �x is the measure that puts a single unit of mass at x for x ∈ �+. Thus, the random measure 2�t	
has a unit of mass at the residual service time of each job that is still in the system at time t. The indicator
functions in the above definition serve to eliminate jobs with zero residual service times from the description of
the system state, since such jobs have departed the system. We call 2�t	 the measure-valued state descriptor at
time t. Note that the queue length and workload at time t can be obtained from the state descriptor by integrating
against an appropriate function. In particular, for t ≥ 0,

Z�t	= �1�2�t	� and W�t	= ���2�t	�- (11)

Furthermore, given the primitive processes and the initial condition, one can recover D�·	 and S�·	 from Z�·	,
and Y �·	 from W�·	. Notice that the information given by the initial condition is described by the random initial
measure 2�0	. In particular, our assumptions on the initial condition are given by

E�Z�0	�=E��1�2�0	�� <� and E�W�0	�=E����2�0	�� <�- (12)

Henceforth, these will be stated in terms of 2�0	, rather than in terms of Z�0	 and �ṽj�
�
j=1.

The assumptions on the initial condition and primitive processes, together with the processor sharing dynamics,
imply that, for each t ≥ 0, the random measure 2�t	 is an element of �F , the space of finite, nonnegative Borel
measures on �+. It is straightforward to see that 2�·	 is a measure-valued stochastic process with sample paths
in the Polish space D��0��	��F 	 of functions from �0��	 into �F that are right continuous with finite left
limits, endowed with the Skorohod J1-topology (cf. Ethier and Kurtz [5]). This measure-valued process and its
fluid limit are the objects of central interest in this paper. An equivalent formulation of (10) is to consider the
real-valued processes �g�2�·	� for a suitable class of functions g� �+ →�. In fact, (10) holds if and only if for
each bounded, Borel-measurable function g� �+ →�, the process 2�·	 satisfies

�g�2�t	� =
Z�0	∑
j=1

�1�0��	g	� �Rj�t		+
E�t	∑
i=1

�1�0��	g	�Ri�t		� for all t ≥ 0- (13)

The set of equations given by (13), or equivalently equation (10), will be the starting point for our analysis of
processor sharing queues.

3. Supercritical fluid model and main results.

3.1. Definition of fluid model solutions. The fluid model has two parameters, � ∈ �0��	 and a Borel
probability measure & on �+ that does not charge the origin and satisfies ���&� <�. These parameters are
limits of parameters in the queueing system, where � corresponds to the rate at which jobs arrive to the system
and the probability measure & corresponds to the distribution of the i.i.d. service times for those jobs. The traffic
intensity parameter 3 is given by 3= �/4, where 4= 1/���&�. The pair ���&	 is referred to as the fluid model
data, or simply the data. Here we only consider supercritical data, i.e., data that satisfies 3≥ 1. The adjectives
critical and strictly supercritical are used to refer to data that satisfies 3= 1 and 3> 1, respectively.
The fluid model is formulated by considering a formal law of large numbers limit �2�·	 for the measure-

valued processes corresponding to a sequence of processor sharing queues that satisfies appropriate asymptotic
conditions. The dynamics of �2�·	 are prescribed through a set of so-called fluid model equations that are satisfied
by the real-valued projections �g� �2�t	�, t ≥ 0, for each function g� �+ → � in a suitable class. To avoid the
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singular behavior associated with the abrupt departure of mass at the origin, this class is chosen so that the
functions, together with their first derivatives, vanish at the origin. Specifically, we work with the class

� = �g ∈C1
b��+	� g�0	= 0� g′�0	= 0�� (14)

which is large enough for the purpose of characterizing fluid model solutions. The form of the fluid model
equations depends on the data ���&	, or, more precisely, on the value of the traffic intensity parameter 3.
We begin by recalling the formulation of the critical fluid model used in Gromoll et al. [9].
Definition 3.1. Given critical data ���&	 (i.e., data satisfying 3= 1), a fluid model solution for the data

���&	 is a function �2� �0��	→�F such that
(C.1) �2�·	 is continuous,
(C.2) �1�0�� �2�t	� = 0 for all t ≥ 0,
(C.3) for all g ∈�, �2�·	 satisfies

�g� �2�t	� = �g� �2�0	�−
∫ t

0

�g′� �2�s	�
�1� �2�s	� ds+�t�g� &�� (15)

for all t < t∗ = inf�s ≥ 0� �2�s	= 0�, and
(C.4) for all t ≥ t∗, �2�t	= 0.
The equations in (15), one for each g, are called the critical fluid model equations. The reader is referred

to Gromoll et al. [9] for an informal interpretation of the conditions in this definition. Of particular relevance
here is the interpretation of (C.4), which hinges on the condition 3= 1. Specifically, when 3= 1, the service
rate is the same as the arrival rate. Therefore, in the fluid model, work should not build up from the zero initial
measure, which is guaranteed by (C.4). Moreover, Gromoll et al. [9, Lemma 4.4] implies that if the initial
measure is nonzero, then t∗ =�, and consequently, (15) holds for all t ≥ 0. Thus, when 3= 1, (C.4) does not
take effect for fluid model solutions with nonzero initial measures.
Next, we give the formulation of the strictly supercritical fluid model. In this case, the arrival rate exceeds

the service rate. Therefore, one does expect mass to build up from the zero initial measure. In particular, (C.4)
does not apply, and the above definition must be modified.
Definition 3.2. Given strictly supercritical data ���&	 (i.e., data satisfying 3 > 1), a fluid model solution

for the data ���&	 is a function �2� �0��	→�F such that
(S.1) �2�·	 is continuous,
(S.2) for all t ≥ 0, �1�0�� �2�t	� = 0, and
(S.3) for all g ∈�, �2�·	 satisfies

�g� �2�t	� = �g� �2�0	�−
∫ t

0
�g′� �2�s	����1� �2�s	�	ds+�t�g� &�� for all t ≥ 0- (16)

Recall that ��x	 = 1/x if x ∈ �0��	 and ��0	 = 0. The equations in (16), one for each g, are called the
strictly supercritical fluid model equations. The function ��·	 is used in (16) to allow for the possibility that
�2�s	= 0 for some s ≥ 0. Note that the integral term in (16) is well defined since �2�·	 is continuous and, for
each g ∈�, the absolute value of the integrand is bounded above by 
g′
�.
Given supercritical data ���&	 (i.e., data satisfying 3 ≥ 1), the terminology a fluid model solution for the

data ���&	 will mean a function �2�·	 satisfying Definition 3.1 if 3= 1 or Definition 3.2 if 3 > 1. We refer to
a function �2�·	 as a fluid model solution if there exists supercritical data ���&	 such that �2�·	 is a fluid model
solution for the data ���&	.
Let �2�·	 be a fluid model solution. The fluid analogue of the queue length process is given by

�Z�t	= �1� �2�t	�� for all t ≥ 0- (17)

For obvious reasons, �Z�t	 is referred to as the total mass at time t. Due to the assumed continuity of fluid model
solutions, �Z�·	 is continuous. The fluid analogue of the cumulative service per job is defined by

�S�t	=
∫ t

0
�� �Z�u		du� for all t ≥ 0� (18)

where �S�t	=� if the integral on the right diverges. The fluid analogue of the workload process is given by

�W�t	= ��� �2�t	�� for all t ≥ 0- (19)
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If, for a particular t ≥ 0, we have ��� �2�t	� =�, then �W�t	=�. Also let
�M�t�x	= �1�x��	� �2�t	�� for all t ≥ 0 and x ∈�+- (20)

Then, it is easily verified that 
 �M�t� ·	
L1 = �W�t	 for all t ≥ 0.
We note that, if 3> 1, then it follows from (16) that

�Z�t	 > 0� for all t > 0- (21)

This can be seen by substituting a sequence of nonnegative functions �gn�n∈� ⊂� into (16), where gn↗ � and
g′n↗ 1�0��	 as n→�. Using monotone convergence, it follows that

�W�t	= �W�0	−
∫ t

0

�Z�s	�� �Z�s		ds+3t� for all t ≥ 0� (22)

which implies that �W�t	 ≥ �W�0	− t + 3t > 0 for all t > 0 and verifies (21). Further, note that (21) together
with (22) implies that if 3> 1, then

�W�t	= �W�0	+ �3− 1	t� for all t ≥ 0� (23)

which is expected since this should hold for all nonidling disciplines. Finally, if 3> 1 and �Z�0	 > 0, then �Z�t	
is continuous and strictly positive for all t ≥ 0 (cf. (21)), and �S�·	 ∈C1��0��		 with

d

dt
�S�t	= 1

�Z�t	 � for all t ≥ 0-

3.2. Properties of fluid model solutions.

3.2.1. No atoms property. It will be shown that fluid model solutions have no atoms for all time. In
particular, fluid model solutions take values in the following set:

�c
F = �7 ∈�F � 7��x�	= 0 for all x ∈�+��

and in
�c�p

F = �7 ∈�c
F � 7 �= 0��

when the initial measure is nonzero. Intuitively, this is so because fluid model solutions are continuous (cf. (C.1)
and (S.1)). Indeed, given x ∈ �0��	 and t ≥ 0, one expects that all of the mass located at x at time t will depart
the system simultaneously. But then, if a fluid model solution were to have an atom at x at time t, the total mass
would have a downward jump (i.e., a discontinuity) at the departure time of that atom, which would contradict
the assumption that fluid model solutions are continuous. This intuition is made rigorous for strictly supercritical
data, nonzero initial measures, and t = 0 in the proof of Proposition 4.1 below. For strictly supercritical (resp.
critical) data and nonzero initial measures, the no atoms property follows from Corollary 4.1 (resp. Remark
4.2). For the zero initial measure, the no atoms property is immediate from (C.4) for critical data and from
Theorem 3.2 and the fact that the measure 9 (defined in (29) below) has no atoms for strictly supercritical data.

3.2.2. Existence and uniqueness theorem for strictly supercritical data.

Theorem 3.1. Given strictly supercritical data ���&	 and 7 ∈�c
F , a fluid model solution �2�·	 for the data

���&	 such that �2�0	= 7 exists and is unique. Moreover,

��� �2�t	� = �3− 1	t+���7�� for all t ≥ 0- (24)

Equation (24) is called the fluid workload equation. If ���7� = �, then (24) is interpreted as saying that
��� �2�t	� =� for all t ≥ 0. Equation (24) was already verified in (23), but the proof of existence and uniqueness
still remains. Under the assumption that the data is critical, the analogue of Theorem 3.1 was proved in Gromoll
et al. [9, §4] (cf. [9, Theorem 3.1]). To prove Theorem 3.1, there are two cases to consider; 7 ∈�c�p

F and 7 = 0.
For 7 ∈�c�p

F , since any fluid model solution �2�·	 for strictly supercritical data ���&	 such that �2�0	 = 7 is
continuous and never hits the zero measure (cf. (21)), it follows that t∗ ≡ inf�t ≥ 0� �2�t	 = 0� =� and that
�2�·	 satisfies (15), i.e., �2�·	 satisfies the same conditions as for the critical fluid model. In §4.1, we will see
that because of this, the proof of existence and uniqueness given in Gromoll et al. [9] for critical data extends
to strictly supercritical data for �2�0	 �= 0 (cf. Theorem 4.1 below). Thus, the main contribution here is the proof
of Theorem 3.1 for 7 = 0, which follows as a consequence of Theorem 3.2 below. Theorems 3.2 and 4.1 imply
Theorem 3.1.
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3.2.3. Starting from the zero initial measure for strictly supercritical data. If the data ���&	 is strictly
supercritical, then we expect mass in the fluid model to exit from the system at a rate that is strictly slower
than the rate at which it arrives to the system. Therefore, the total mass is expected to grow. The next theorem,
Theorem 3.2 below, validates this intuition, and moreover, explicitly describes the distribution of the mass as it
builds up from the zero measure.
For the statement of Theorem 3.2, we will need to provide some background. Note that, given strictly super-

critical data ���&	, there is a unique, positive real number m such that

��1−�exp�−m ·	� &�	=m- (25)

To verify this, let &e denote the excess lifetime probability measure associated with &. Specifically, &e is the
Borel probability measure on �+ that is absolutely continuous with respect to Lebesgue measure and has density
function

fe�x	= 4�1�x��	� &�� for all x ∈�+- (26)

Recall that 4= 1/���&�. The left side of (25) can be expressed in terms of &e since
��1−�exp�−y·	� &�	= ��1− exp�−y·	� &� = 3y�exp�−y·	� &e�� for all y ∈�+-

Here the first equality makes use of the fact that & is a probability measure and the second equality follows by
substituting y

∫ ·
0 exp�−yv	dv for 1− exp�−y·	 and then interchanging the order of integration. So we see that,

for m ∈ �0��	, (25) holds if and only if
�exp�−m·	� &e� = 3−1- (27)

There is a unique m ∈ �0��	 satisfying (27) since 3−1 ∈ �0�1	 and since, as a function of m ∈ �0��	, the left
member of (27) is strictly decreasing and maps onto �0�1	. The real number m can be thought of as a type of
Malthusian parameter (Smith [17]).
Given strictly supercritical data ���&	, let m be the unique, positive real number satisfying (25) and define

p� �+ →�+ by
p�x	= ��1�x��	�·	 exp�m�x− ·		� &�� for all x ∈�+- (28)

Note that
∫ �
0 p�x	dx= 1. To see this, integrate (28) over �+, interchange the order of integration, simplify, and

then use (25). Let 9 ∈�F denote the measure that is absolutely continuous with respect to Lebesgue measure
and has Radon-Nikodym derivative mp�·	:

9�dx	=mp�x	dx� for all x ∈�+- (29)

In particular,
�1� 9� =m- (30)

Finally, let �9� �0��	→�F be given by

�9�t	= t9� for all t ≥ 0- (31)

Theorem 3.2. Given strictly supercritical data ���&	, let �9�·	 be defined via (28), (29), and (31). Then, �9�·	
is the unique fluid model solution for the data ���&	 with initial measure 0.

As previously noted, Theorem 3.2 explicitly describes the distribution of mass as it builds up from zero. In
particular, the distribution is invariant in shape (where the shape has probability density function p) and the total
mass grows linearly in t. Lemma 4.4 in §4.2 implies that �9�·	 is a fluid model solution for the data ���&	. The
more challenging issue is to verify the uniqueness claimed in Theorem 3.2; this is done in §4.4.3.

3.2.4. Continuous dependence on the initial measure. Given supercritical data ���&	 and 7 ∈ �c
F , let

�27�·	 denote the unique fluid model solution for data ���&	 with initial measure 7. Let >� �c
F →C��0��	��F 	

be such that
>�7	= �27�·	-

Remark 3.1. Since C��0��	��F 	 is a subspace of D��0��	��F 	, one could use the latter in the above
definition of >, as was done in Gromoll et al. [9].
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Theorem 3.3. Let ���&	 be supercritical data. Then, > is continuous.

Under the condition that ���&	 is critical data, Gromoll et al. [9, Lemma 4.9] asserts that the restriction of >
to �c�p

F is continuous. As we will see in §4.1, the proof of [9, Lemma 4.9] extends to strictly supercritical data
as well (cf. Lemma 4.3 below). Therefore, the main contribution here is to prove the following theorem which
implies that, for all supercritical data, > is continuous at the zero measure.

Theorem 3.4. Let ���&	 be supercritical data, and let �7n� n ∈��⊂�c�p
F be such that 7n

w→ 0 as n→�.
Then, >�7n	 converges to >�0	 in C��0��	��F 	 as n→�.
Theorem 3.4 is proved in §4.5.2. Together Gromoll et al. [9, Lemma 4.9] (for critical data), Lemma 4.3 (for

strictly supercritical data), and Theorem 3.4 (for supercritical data) imply Theorem 3.3.

3.2.5. Shift and scaling properties of fluid model solutions. Let ���&	 be supercritical data and �2�·	 be
a fluid model solution for the data ���&	. For s ≥ 0, define ?s �2� �0��	→�F to be given by

�?s �2	�t	= �2�t+ s	 for all t ≥ 0- (32)

For s > 0, define �s �2� �0��	→�F to be such that

��s �2	�t	=
�2�st	
s

for all t ≥ 0- (33)

The following lemma is straightforward to verify.

Lemma 3.1. Let ���&	 be supercritical data, and �2�·	 be a fluid model solution for the data ���&	.
(i) For each s ≥ 0, �?s �2	�·	 is a fluid model solution for the data ���&	.
(ii) For each s > 0, ��s �2	�·	 is a fluid model solution for the data ���&	.

We refer to Lemma 3.1(i) as the shift property and to Lemma 3.1(ii) as the scaling property. When combined
with continuity in the initial condition, the shift and scaling properties have significant consequences for the
behavior of fluid model solutions. These are described in §§3.2.6 and 3.2.7 below.

3.2.6. Asymptotics of fluid model solutions for strictly supercritical data.

Theorem 3.5. Let ���&	 be strictly supercritical data, and let 9 be defined by (28) and (29). Any fluid
model solution �2�·	 for the data ���&	 satisfies

�2�t	
t

w−→ 9� as t→�- (34)

Proof. Let ���&	 be strictly supercritical data and �2�·	 be a fluid model solution for the data ���&	. By
Lemma 3.1(ii), for each s > 0, ��s �2	�·	 is a fluid model solution for the data ���&	. Note that, for each s > 0,
�2�s	/s = ��s �2	�1	 (cf. (33)). Thus, it suffices to show that

��s �2	�1	 w−→ 9� as s→�- (35)

Also note that, for each s > 0, ��s �2	�0	= �2�s	/s and so,

��s �2	�0	 w−→ 0� as s→�-

If �2�0	= 0, then, by Theorem 3.2 and (31), ��s �2	�0	 ∈�c�p
F for each s > 0. Similarly, if �2�0	 �= 0, then by

Proposition 4.1 below, ��s �2	�0	 ∈�c�p
F for each s > 0. Thus, from Theorem 3.4, it follows that

��s �2	�1	=>���s �2	�0		�1	 w−→>�0	�1	= �9�1	� as s→�-

Since �9�1	= 9 (cf. (31)), (35) follows. �



Puha, Stolyar, and Williams: The Fluid Limit of an Overloaded Processor Sharing Queue
Mathematics of Operations Research 31(2), pp. 316–350, © 2006 INFORMS 325

As a consequence of Theorem 3.5 and (30), it follows that if �2�·	 is a fluid model solution for the data ���&	,
then

lim
t→�
�Z�t	
t
=m-

Under the condition that �W�0	 <�, this was previously recognized in Chen et al. [2, Proposition 6]. Note that
the asymptotic linear rate of growth for the fluid analogue of the queue length in a first-in-first-out queue is
�−4. If & is exponential, then m= �−4, but m �= �−4 in general.
A statement analogous to that in Theorem 3.5 can be made when the data is critical (cf. Puha and Williams

[15, Theorem 1.2]). In particular, for 7 ∈�c
F such that ���7�<�, �2�t	 w→ 4e���7�&e as t→�, with 4e =

1/���&e� if ���&e�<� and 4e = 0 otherwise. For this, there is no need to normalize by a linear growth factor
since the total mass does not grow with time. In the critical case, the probability density function fe�·	 plays the
role that the probability density function p�·	 plays in the strictly supercritical case. Note that if 3 decreases to
one by letting � decrease to 4, then m decreases to zero and p�·	 given by (28) converges to fe�·	. In this way,
p�·	 can be viewed as a generalization of fe�·	 suited to the strictly supercritical setting.

3.2.7. Stationary fluid model solutions for strictly supercritical data. For any fluid model solution, Theo-
rem 3.5 implies that for strictly supercritical data the fluid analogue of the queue length process is asymptotically
linear, and that the fluid analogue of the process giving the empirical distribution of the residual service times
converges to m−19 as time tends to infinity. This naturally raises the question as to what conditions are necessary
and sufficient for this last fluid analogue to be identically equal to m−19, and motivates the following definition.
Definition 3.3. Let ���&	 be strictly supercritical data. A fluid model solution �2�·	 for the data ���&	 is

stationary (in shape) if there exists a Borel probability measure @ on �+ such that �2�t	= �1� �2�t	�@ for all
t ≥ 0.
Given strictly supercritical data ���&	, �9�·	 defined by (28), (29), and (31) is an example of a stationary fluid

model solution for the data ���&	. From �9�·	, it is easy to construct a one-parameter family of stationary fluid
model solutions for the data ���&	. Specifically, by Lemma 3.1(i), for each s ≥ 0, �?s�9	�·	 is a fluid model
solution for the data ���&	, which is easily verified to be stationary. The next theorem implies that this one-
parameter family contains all of the stationary fluid model solutions for the data ���&	. In other words, the
probability density function p�·	 defined by (28) determines the unique stationary shape for the data ���&	.
Theorem 3.6. Let ���&	 be strictly supercritical data, and let �9�·	 be defined by (28), (29), and (31). A fluid

model solution �2�·	 for the data ���&	 is stationary if and only if for some s ∈ �0��	, �2�t	= �?s�9	�t	 for all
t ≥ 0.
Proof. Let ���&	 be strictly supercritical data and let �9�·	 be defined by (28), (29), and (31). As noted

above, for any s ∈ �0��	, �?s�9	�·	 is a stationary fluid model solution for the data ���&	. We must show that
these are the only stationary fluid model solutions for the data ���&	. For this, suppose that �2�·	 is a stationary
fluid model solution for the data ���&	. Then, there exists a Borel probability measure @ on �+ such that, for
all t ≥ 0,

�2�t	= �1� �2�t	�@- (36)

By Theorem 3.5, limt→� t−1 �2�t	 = 9, where the convergence is weak convergence in �F . This implies that
limt→� t−1�1� �2�t	� = �1� 9� = m. Thus, on dividing (36) by t and letting t→�, we obtain @ = 9/�1� 9� =
m−19. Therefore,

�2�t	= �1� �2�t	�m−19 for all t ≥ 0- (37)

Hence, if it can be shown that

�1� �2�t	� =mt+�1� �2�0	�� for all t ≥ 0� (38)

it will follow that �2�·	= �?s�9	�·	 for s =m−1�1� �2�0	�. Equation (37) together with (16) and (21) implies that
for each g ∈�,

�1� �2�t	�m−1�g� 9� = �1� �2�0	�m−1�g� 9�− tm−1�g′� 9�+�t�g� &�� for all t ≥ 0-
In §4.2, it is verified that for each g ∈�, �g� 9� =−m−1�g′� 9�+��g� &� (cf. (67)). Thus, for each g ∈�,

�1� �2�t	�m−1�g� 9� = �1� �2�0	�m−1�g� 9�+ t�g� 9�� for all t ≥ 0-
Since there exists g ∈� such that �g� 9� �= 0, equation (38) follows. �
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3.3. Convergence to fluid model solutions.

3.3.1. A sequence of overloaded processor sharing queues. In this section, we specify the assumptions
under which the fluid limit result will be proved. Consider a sequence of processor sharing queueing models
indexed by r , which increases to � through a sequence in �0��	. Each model in the sequence may be defined
on a separate probability space. The r th model is defined as in §2.2, except that all accompanying processes
and parameters have a superscript r appended to them. In particular, primitive processes associated with the
r th system are Er and V r , which have parameters �r and &r , respectively. Similarly, the performance processes
associated with the r th system are Wr�·	, Y r�·	, and Zr�·	, and the measure-valued process is 2r�·	. Recall that
the initial condition for each queueing model, as well as the assumptions placed on it, can be specified in terms
of the initial random measure 2r�0	. In particular, it is assumed (cf. (12)) that for each r , 2r�0	 satisfies

E��1�2r�0	�� <� and E����2r�0	�� <�- (39)

The fluid limit result concerns the behavior of processor sharing queues on law of large numbers scale, or
fluid scale. Accordingly, define the fluid-scaled processes

�Zr�t	 = 1
r
Zr�rt	 (40)

�Wr�t	 = 1
r
W r�rt	 (41)

�2r�t	 = 1
r
2r�rt	 (42)

�Er�t	 = 1
r
Er�rt	 (43)

�Sr
t� t+h = Sr

rt� r�t+h	 =
∫ r�t+h	

rt
���1�2r�s	�	ds =

∫ t+h

t
���1� �2r�s	�	ds� (44)

for all t ∈ �0��	, h≥ 0.
Let ���&	 be strictly supercritical data. In order to obtain convergence in distribution of the fluid-scaled

processes �2r�·	 to a process that is a.s. a fluid model solution for the data ���&	, we impose the following
asymptotic assumptions on the sequence of processor sharing queueing models. For the primitive processes,
assume that as r→�,

�r −→ �� (45)

&r
w−→ &� (46)

���&r� −→ ���&�� (47)

E�ur1�/r −→ 0� (48)

E�ur2B u
r
2 > r� −→ 0- (49)

Recall that since the data is strictly supercritical, ����&�> 1. Thus, assumptions (45) and (47) guarantee that
as r→�, the systems become overloaded, i.e., that 3r → 3 > 1 as r→�. Assumption (48) implies that the
initial residual interarrival time vanishes on fluid scale. We assume (49) in order to provide uniform control over
the tail of the distribution of ur2, which is used to obtain a weak law of large numbers for a triangular array (cf.
Gromoll et al. [9, Lemma A.2]).
For the fluid-scaled initial measures, we assume that for some random measure C taking values in �F ,

we have
� �2r�0	� ��� �2r�0	�	=⇒ �C� ���C�	� as r→�� (50)

with C satisfying
E��1�C�� <� and E����C�� <�� (51)

and, almost surely, for all x ∈�+,
�1�x��C� = 0- (52)
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Assumption (52) states that a.s. C has no atoms, which is needed to show tightness of ��2r�·	�r>0 and that fluid
limit points have continuous paths a.s. The “no atoms” assumption will be used in the equivalent form

lim
D↓0

P
(
sup
x∈�+
�1�x� x+D��C�<

E

4

)
= 1� for all E > 0- (53)

The equivalence of (52) and (53) was proved in Gromoll et al. [9, Appendix].

3.3.2. Fluid limit result for strictly supercritical data.

Theorem 3.7. Let ���&	 be strictly supercritical data. Consider a sequence of overloaded processor sharing
queueing models as defined in §3.3.1, satisfying assumptions (45)–(52) for the data ���&	. Then, the sequence
of fluid-scaled processes ��2r�·	�r>0 converges in distribution as r→� to a process �2F�·	, taking values in �F

such that �2F�0	 is equal in distribution to C and almost surely �2F�·	 is a fluid model solution for the data
���&	.

We refer to the limiting process �2F�·	 as the fluid limit of the sequence ��2r�·	�r>0 of fluid-scaled processes
and to Theorem 3.7 as the fluid limit result. Section 5 contains the proof of the fluid limit result. This proof is
largely an adaptation of the proof of Gromoll et al. [9, Theorem 3.2]. However, if the limiting initial measure
is the zero measure, the behavior in the strictly supercritical case diverges from that in the critical case. This is
the key issue that is addressed in §5.
The result stated in Jean-Marie and Robert [10, Proposition 4] is a law of large numbers type of result

that is consistent with our fluid limit result. The authors of [10] consider a single overloaded processor sharing
queue with one job in the system at time zero. To state Jean-Marie and Robert [10, Proposition 4] in terms
of our notation, let 2�·	 denote the measure-valued process for the overloaded processor sharing queue defined
in [10] and, for each r > 0, let �2r�·	=2�r ·	/r . Their proposition states that, under the mild conditions in [10],
�2r�1	 w→ �9�1	 almost surely as r tends to infinity. To see that this is consistent with our fluid limit result, note
that since �1� �2r�0	� = 1/r for all r > 0, �2r�0	 w→ 0 almost surely as r tends to infinity. Thus, if conditions
(45)–(52) are satisfied, then C= 0 and, by Theorem 3.7 here, it follows that

�2r�·	=⇒ �2F�·	� as r→��
where �2F�·	= �9�·	 almost surely. In particular, �2F�1	= �9�1	 almost surely.

4. Proofs of properties of supercritical fluid model solutions. This section contains the proofs of the
theorems stated but not proved in §3.2. In particular, we prove Theorems 3.2 and 4.1, which imply Theorem 3.1.
We also prove Theorem 3.4 and Lemma 4.3 which, together with Gromoll et al. [9, Lemma 4.9], imply Theo-
rem 3.3. Recall that these theorems are concerned with initial measures taking values in the sets �c

F and �c�p
F .

Given 7 ∈�c�p
F , let

h7�x	= �1�x��	� 7�� for all x ∈�+- (54)

Since 7 has no atoms, h7�·	 is continuous. Since 7 is not the zero measure, h7�0	 > 0. Moreover, h7�·	 is
nonnegative and nonincreasing. Let C+↘ denote the set of all such functions:

C+↘ = �h ∈C��+	� h�0	 > 0 and h�x	≥ h�y	≥ 0 for all 0≤ x≤ y <��-
Denote by H7�·	 the antiderivative of h7�·	 such that H7�0	= 0:

H7�x	=
∫ x

0
h7�y	dy� for all x ∈�+- (55)

Then, H7�·	 ∈ C1��+	. It is easily verified that H7�x	 = �x ∧ ��7� for all x ∈ �+. Also, recall that, given
supercritical data ���&	, &e denotes the excess lifetime probability measure associated with & (cf. (26)). Let F
(resp. Fe) denote the cumulative distribution function associated with the probability measure & (resp. &e). Since
& does not charge the origin, F �0	= 0. In addition, by (26), Fe�x	= 4

∫ x

0 �1− F �y		dy, for all x≥ 0.
The analysis of the critical fluid model in Gromoll et al. [9] benefited from the behavior of the solutions to

certain renewal equations (cf. [9, Equations (4.3) and (4.4)]). For the more general setup of the supercritical
fluid model, a factor of 3 must be introduced and the equations then become of a more general Volterra type.
Here, we briefly introduce these Volterra equations and summarize the facts required for the supercritical fluid
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model analysis. Given a locally bounded, Borel-measurable function g� �+ → �+ and a nondecreasing, right
continuous function U� �+ →�+, let

�g ∗U	�u	=
∫
�0� u�

g�u− s	dU�s	� for all u≥ 0-

Note that by convention the contribution to the above integral is g�u	U�0	 at s = 0 whenever U�0	 �= 0. Given
supercritical data ���&	 and h ∈C+↘, let H�x	= ∫ x

0 h�y	dy for all x≥ 0, and consider the convolution equations
J �u	 = H�u	+3�J ∗ Fe	�u	� for all u≥ 0� (56)

j�u	 = h�u	+3�j ∗ Fe	�u	� for all u≥ 0- (57)

Notice that (after a change of variables from s to u− s in the integrals) the above are indeed linear Volterra
equations of the second kind, since Fe�·	 is absolutely continuous with density function fe�·	. Since H�·	, h�·	,
and fe�·	 are locally bounded on �+, each of these equations ((56) and (57)) has a unique locally bounded,
Borel-measurable solution. For this, see the proof of Linz [12, Theorem 3.3], which easily generalizes from
continuous to locally bounded, Borel-measurable functions. In fact, that proof shows that there is an explicit
representation for the unique locally bounded, Borel-measurable solution of each of these equations in terms of
the function

Ue�u	=
�∑
i=0

3i�F ∗ie 	�u	� for all u≥ 0� (58)

where F ∗0e �·	≡ 1 and F ∗ie �·	= �F ∗�i−1	e ∗Fe	�·	, for all i ∈ �1�2� 0 0 0 �. Note that, for each u≥ 0, the above series
converges since for each u≥ 0, 3i�F ∗ie 	�u	≤ ��u	i/i! for all i ∈ �0�1� 0 0 0 �. Then,

J �u	= �H ∗Ue	�u	� for all u≥ 0� (59)

is the unique locally bounded, Borel-measurable solution of (56), and

j�u	= �h ∗Ue	�u	� for all u≥ 0� (60)

is the unique locally bounded, Borel-measurable solution of (57). Observe that Ue ∈C��+	 since Fe ∈C��+	.
Also, note that J �0	 = 0, J is strictly increasing, and, since 3 ≥ 1, limu→� J �u	 = �. Moreover, since Ue ∈
C��+	, H ∈C1��+	, and H�0	= 0, it follows that J ∈C1��+	 with J ′�·	= j�·	.

4.1. Nonzero initial measures: Existence and uniqueness for strictly supercritical data. When the data
���&	 is strictly supercritical and the initial measure is nonzero, (S.1)–(S.3) imply (C.1)–(C.4) (cf. (21)). Con-
sequently, when the initial measure is nonzero, much of the analysis in Gromoll et al. [9] pertaining to critical
data extends to strictly supercritical data as well. In particular, the proof of existence and uniqueness in [9] for
nonzero initial measures extends to the strictly supercritical case (cf. Theorem 4.1 below). Similarly, the portion
of the proof of [9, Lemma 4.9] which shows that the restriction of > to �c�p

F is continuous also extends to the
strictly supercritical case (cf. Lemma 4.3 below). Here, we outline the key steps for extending these proofs.
Let ���&	 be strictly supercritical data. Define

�p
F = �7 ∈�F � 7 �= 0�-

Our analysis begins with a simple observation: If �2�·	 is a fluid model solution for the data ���&	 such that
�2�0	 ∈�p

F , then, by (21), t
∗ = �. This together with (16) implies that (15) holds. This has some immediate

consequences.

Lemma 4.1. Let ���&	 be strictly supercritical data. Suppose that �2�·	 is a fluid model solution for the data
���&	 such that �2�0	 ∈�p

F . Then, for all t ≥ 0 and for all w ∈ �0���,

�1�0�w	� �2�t	� = �1�0�w	�· − �S�t		� �2�0	�+�
∫ t

0
�1�0�w	�· − �S�t	+ �S�s		� &�ds- (61)

The equations in (61) (one for each t ≥ 0 and w ∈ �0���) have an intuitive interpretation in terms of the fluid
model dynamics. To see this, note that for 0≤ s ≤ t, �S�t	− �S�s	 represents the net shift to the left due to service
in the time interval �s� t�. Thus, the integrand in the second term on the right-hand side of (4.8) accounts for
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the contribution to the left side at time t due to the fluid that arrived at time 0≤ s ≤ t. Similarly, the first term
on the right-hand side of (4.8) accounts for the contribution due to fluid that was in the system at time 0.
Note that (61) also holds for critical data as well, at least for 0≤ t < t∗ (cf. Gromoll et al. [9, Lemma 4.3]).

In fact, the proof of Lemma 4.1 is almost identical to the proof of [9, Lemma 4.3] and thus it is omitted. The
interested reader can readily verify that the necessary ingredients are continuity of �2�·	 and (15) together with
t∗ = �, which is guaranteed by (21). Specifically, it is straightforward to check that the property that �2�0	
has no atoms, which is a condition of [9, Lemma 4.3], is not used in its proof. In fact, as a consequence of
Lemma 4.1, we have the following result that the initial measure has no atoms.

Proposition 4.1. Let ���&	 be strictly supercritical data. Suppose that �2�·	 is a fluid model solution for
the data ���&	 such that �2�0	 ∈�p

F . Then, �2�0	 ∈�c�p
F .

Proof. Fix strictly supercritical data ���&	. Suppose that �2�·	 is a fluid model solution for the data ���&	
such that �2�0	 ∈�p

F . By (S.2), �2�0	 does not have an atom at the origin. So it suffices to show that �2�0	 has
no atoms on the positive real line. For this, we will show that, if �2�0	 has an atom at a ∈ �0��	, then �Z�·	 has
a discontinuity at time ta, the time at which this atom departs the system. This will violate (S.1) and provide a
contradiction, thereby implying that no such a exists.
For this, we first need to show that an atom that starts at a ∈ �0��	 does eventually depart the system, i.e.,

that there exists a finite time ta such that �S�ta	= a. This follows from the fact that

lim
t→�
�S�t	=�- (62)

To verify (62), note that by (61) with w=� and (S.2), for each t ≥ 0,

�Z�t	= �1�0��	�· − �S�t		� �2�0	�+�
∫ t

0
�1�0��	�· − � �S�t	− �S�s			� &�ds- (63)

Equation (63), together with (21), implies that

0< �Z�t	≤ �Z�0	+�t� for all t ≥ 0-
Therefore, for all t ≥ 0,

�S�t	=
∫ t

0

1
�Z�s	 ds ≥

1
�
log

( �Z�0	+�t

�Z�0	
)
�

and (62) follows.
Suppose that a ∈ �0��	 is such that �2�0	 has an atom at a, and let ta > 0 be such that �S�ta	= a. Clearly,

the first term on the right side of (63) has a downward jump at time ta. Thus, to complete the proof that �Z�·	
has a discontinuity at t = ta, it suffices to show that the second term on the right side of (63) is continuous for
t ∈ �0��	. For this, note that for each fixed t ≥ 0 and s ∈ �0� t� such that & does not have an atom at �S�t	− �S�s	,

lim
u→t
�1�0��	�· − � �S�u	− �S�s			� &� = �1�0��	�· − � �S�t	− �S�s			� &�-

Since �S�·	 is strictly increasing and & has at most countably many atoms, the above holds except perhaps for
countably many values of s ∈ �0� t�, which comprise a set of Lebesgue measure zero (possibly depending on t).
So, using bounded convergence and the fact that the integrand is bounded, continuity of the second term on the
right side of (63) for t ∈ �0��	 follows. �

Remark 4.1. Proving a version of Proposition 4.1 for critical data is possible, but slightly more delicate.
This is so because the proof of Proposition 4.1 requires (21), i.e., t∗ = �. By following the arguments in
Gromoll et al. [9], it can be verified that t∗ =� under the condition �2�0	 ∈�p

F . In particular, it is easy to verify
that the condition �2�0	 ∈�p

F is all that is required in the proof of Lemma 4.4 in [9]. Specifically, the proof
of [9, Lemma 4.4] relies on Lemma 4.3 there and convolution equation arguments, neither of which requires
�2�0	 to have no atoms. Indeed, one can justify the conclusion �T �·	= �H7 ∗Ue	�·	 using the facts that �T �·	 is
continuously differentiable with �T ′�·	= �h7 ∗Ue	�·	 and H7�·	=

∫ ·
0 h7�y	dy, together with Fubini’s theorem to

justify interchanging the order of integration.

Corollary 4.1. Let ���&	 be strictly supercritical data. Suppose that �2�·	 is a fluid model solution for the
data ���&	 such that �2�0	 ∈�p

F . Then, �2�t	 ∈�c�p
F for all t ≥ 0.
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Proof. Fix strictly supercritical data ���&	. Suppose that �2�·	 is a fluid model solution for the data ���&	
such that �2�0	 ∈�p

F . By (21), �2�s	 ∈�p
F for all s ≥ 0. By Lemma 3.1, for each s ≥ 0, �?s �2	�·	 is a fluid model

solution for the data ���&	. Note that, for each s ≥ 0, �?s �2	�0	= �2�s	. Thus, for each s ≥ 0, �?s �2	�0	 ∈�p
F .

Consequently, by Proposition 4.1, �2�s	= �?s �2	�0	 ∈�c�p
F for each s ≥ 0. �

Remark 4.2. In light of Remark 4.1, a similar proof to that given above yields that the conclusion of
Corollary 4.1 also holds for critical data.
Given strictly supercritical data ���&	 and 7 ∈�c�p

F , suppose that �2�·	 is a fluid model solution for the data
���&	 such that �2�0	= 7. It turns out that (63) can also be used to relate �Z�·	 to a time changed solution of
a certain convolution equation. To see this, observe that �S�·	 is continuous and strictly increasing (since �Z�·	
is continuous and strictly positive). Moreover, by (62), �S�·	 maps onto �0��	. Thus, the continuous inverse of
�S�·	 is given by

�T �u	= �S−1�u	= inf�t ≥ 0� �S�t	 > u�� for all u≥ 0- (64)

In (64), the superscript −1 denotes the functional inverse. The function �T �·	 has a natural interpretation in terms
of the fluid model dynamics. For u ≥ 0, �T �u	 represents the amount of time that fluid that is at u at time 0
spends in the system, i.e., the fluid analogue of sojourn time. Note that, since �2�·	 is continuous and never zero,
�S�·	 ∈C1��0��		 with �S ′�·	= 1/ �Z�·	. This means that �T �·	 ∈C1��0��		 with

�T ′�u	= 1
�S ′��T �u		 � for all u≥ 0- (65)

In other words, �T ′� �S�t		= �Z�t	 for all t ≥ 0. Using this fact, together with (63), yields an equation for �T ′� �S�·		.
One can use this equation to show that �T ′�·	= j7�·	, where j7�·	 is the unique locally bounded solution of the
convolution equation (57) for h�·	= h7�·	 with h7 defined by (54). Indeed, we have the following lemma.

Lemma 4.2. Let ���&	 be strictly supercritical data and let 7 ∈�c�p
F . Suppose that �2�·	 is a fluid model

solution for the data ���&	 such that �2�0	= 7. If �T �·	 is defined by (64), then
�T �u	= �H7 ∗Ue	�u	 and �T ′�u	= �h7 ∗Ue	�u	� for all u≥ 0-

The analog of Lemma 4.2 for critical data was proved in Gromoll et al. [9] (cf. [9, Lemma 4.4]). In fact,
the proof of Lemma 4.2 is nearly identical to the proof of [9, Lemma 4.4], and therefore it is not included
here. The main difference is that for strictly supercritical data, a factor of 3 is picked up ��1− F �x		= 3fe�x	,
for all x≥ 0.
Theorem 4.1. Let ���&	 be strictly supercritical data and let 7 ∈�c�p

F . A fluid model solution �2�·	 for the
data ���&	 such that �2�0	= 7 exists and is unique.

Proof. Suppose that �2�·	 is a fluid model solution for the strictly supercritical data ���&	 such that �2�0	= 7.
By Lemma 4.1 and (S.2), �1�0�w	� �2�t	� is uniquely determined by �S�·	, 7, and ���&	 for each w ∈ �0��� and
for each t ∈ �0��	. Since intervals of the form �0�w	, w ∈ �0���, generate the Borel J-algebra on �+, this
uniquely determines �2�t	 for each t ∈ �0��	. By (64) and Lemma 4.2, �S�·	 is the inverse of �H7 ∗Ue	�·	. Since
�H7 ∗ Ue	�·	, is determined by 7 and ���&	, the function �S�·	, and therefore the fluid model solution �2�·	,
is uniquely determined by 7 and ���&	.
To prove existence, one can mimic the construction of a fluid model solution in §4.2 of Gromoll et al. [9],

except that Ue�·	 is defined by (58). Such a �2�·	 satisfies (S.1), (S.2), and �2�0	= 7. Moreover, �2�t	 �= 0 for all
t ≥ 0 and (15) holds for this �2�·	. Therefore, (S.3) holds and existence follows. �

Let ���&	 be supercritical data and let >p be the restriction of > to �c�p
F . Under the condition that 3= 1,

it was proved in Gromoll et al. [9] that this mapping is continuous (cf. the proof of [9, Lemma 4.9]). It is
straightforward to check that this proof generalizes to the situation in which 3> 1. Thus, we obtain the following
lemma.

Lemma 4.3. Let ���&	 be strictly supercritical data. Then, >p is continuous.

4.2. The zero initial measure: Existence for strictly supercritical data.

Lemma 4.4. Let ���&	 be strictly supercritical data. Then, �9�·	 defined by (28), (29), and (31) is a fluid
model solution for the data ���&	.
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Proof. Clearly, �9�·	 satisfies (S.1) and (S.2). Therefore, it suffices to show that �9�·	 satisfies (S.3), i.e., that
�9�·	 is a solution of (16). Since �9�t	 �= 0 for all t > 0, �9�·	 satisfies (16) if and only if, for all g ∈� and t > 0,

t�g� 9� =− t

m
�g′� 9�+�t�g� &�� (66)

which is equivalent to
1
m
�g′� 9�+ �g� 9� = ��g� &�� for all g ∈�- (67)

In order to verify (67), fix g ∈�, combine the two integrals on the left side of (67) into one, use the definition
of 9 and of p�·	, interchange the order of integration, note that for each y ∈�+, �g′�·	+mg�·		 exp�m�· − y		
is a perfect derivative, and use the fact that g�0	= 0. �

Lemma 4.4 establishes the existence of a fluid model solution for the zero initial measure. Thus, in order to
prove Theorem 3.2, it suffices to prove uniqueness. For this, we will need to use an order preservation property
and a weak continuity property for fluid model solutions. These are stated and proved in §4.3 and §4.10,
respectively. Those statements and proofs require versions of (61) and (63) that hold for �9�·	; these are provided
by Lemma 4.5, and Corollary 4.2, respectively.

Lemma 4.5. Let ���&	 be strictly supercritical data. Then, for all t > 0 and x ∈�+,

�1�x��	� �9�t	� = 3
∫
�0� t�

fe

(
x+ 1

m
log

(
t

s

))
ds- (68)

Proof. We begin with a simple calculation. By using the definiton of p�·	, interchanging the order of
integration, and performing a change of variables, we obtain, for all x ∈�+,

∫
�x��	

p�y	dy = �
∫
�x��	

∫
�0� z−x	

exp�−my	dy &�dz	-

After another interchange of the order of integration, a use of the definition of fe�·	, and a change of variables,
for all x ∈�+ we obtain ∫

�x��	
p�y	dy = 3

∫
�x��	

fe�y	 exp�−m�y− x		dy- (69)

So, from the definiton of �9�·	, we see that, for each t > 0 and x ∈�+,

�1�x��	� �9�t	� =mt3
∫
�x��	

fe�y	 exp�−m�y− x		dy-

Using the change of variables s = t exp�−m�y− x		 in the above integral proves (68). �

By taking x= 0 in (68), using the definition of �9�·	, and using (30), we obtain the following corollary.
Corollary 4.2. Let ���&	 be strictly supercritical data. Then,

mt = 3
∫
�0� t�

fe

(
1
m
log

(
t

s

))
ds� for all t > 0- (70)

4.3. An order preservation property. In this section, we prove an order preservation property (cf. Theo-
rem 4.2) that turns out to be a key tool for analyzing the supercritical fluid model. In particular, it is used in §4.4
to prove a conservation law (cf. Lemma 4.9), which is used in turn to prove a weak continuity at zero property
(cf. Lemma 4.10). The weak continuity at zero property is used to prove uniqueness for Theorem 3.2. Moreover,
some of the tools developed for proving the order preservation property (cf. Lemma 4.8) are also used in §4.5
to prove a continuity property (cf. Theorem 4.3), which is the key ingredient in the proof of Theorem 3.4.
To formulate the order preservation property, we fix supercritical data ���&	 and investigate the effect of the

fluid model dynamics on the following partial ordering on �F .
Definition 4.1. Suppose that �1� �2 ∈�F . Then, �2 dominates �1 if

�1�x��	� �1� ≤ �1�x��	� �2�� for all x ∈�+�
in which case we write �1 " �2.
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Since the processor sharing queue is a discrete event system, it is straightforward to verify that the processor
sharing queueing dynamics preserve this partial ordering. Specifically, if 21�·	 and 22�·	 are measure-valued
state descriptors for a processor sharing queue such that 21�0	 " 22�0	, then it is not difficult to verify that
21�t	"22�t	 for all t ≥ 0. The aim of this section is to prove an analogous result for the fluid model dynamics.
In particular, the main objective of this section is to prove Theorem 4.2 below, which implies that, under
appropriate conditions, the fluid model dynamics preserve this partial ordering. In addition, Theorem 4.2 implies
that if a fluid model solution �2�·	 has a nonzero initial measure, then �2�t	 dominates �9�t	 for all t ≥ 0. For this,
we have adopted the convention that

�9�·	≡ 0� if 3= 1-
In order to simplify the statement of Theorem 4.2, we introduce some notation. For 7 ∈�c�p

F , let �27�·	 denote
the unique fluid model solution for the supercritical data ���&	 such that �27�0	 = 7. Given 7 ∈�c�p

F , for all
t ≥ 0, let

�Z7�t	= �1� �27�t	�� �S7�t	=
∫ t

0

1
�Z7�s	

ds� �T7�t	= �S−17 �t	� �W7�t	= ��� �27�t	��

and
�M7�t� x	= �1�x��	� �27�t	�� for all x ∈�+-

In the above, we have used 7 ∈�c�p
F , (21) here, and Gromoll et al. [9, Theorem 3.1] to eliminate ��·	 in the

definition of �S7�·	. In this section, we will frequently consider 71� 72 ∈ �c�p
F , and in future sections, we will

frequently consider �7n� n ∈��⊂�c�p
F . To avoid cluttering the notation, for each n ∈�, we write

�2n�·	= �27n
�·	-

Similarly, for each n ∈� and for all t ≥ 0, we let �Zn�·	= �Z7n
�·	, �Sn�·	= �S7n�·	, �Tn�·	= �T7n�·	, �Wn�·	= �W7n

�·	,
and �Mn�·� ·	= �M7n

�·� ·	. As noted above, we have adopted the convention that if 3= 1, then �9�·	≡ 0. In addition,
we set

m= 0� if 3= 1- (71)

Theorem 4.2. Let 71� 72 ∈�c�p
F be such that 71 " 72. Then, for all t ≥ 0,

�9�t	" �21�t	" �22�t	-

In order to prove Theorem 4.2, we must verify that, for each t ≥ 0,
�1�x��	� �9�t	� ≤ �M1�t� x	≤ �M2�t� x	� for all x ∈�+- (72)

Note that if 3 > 1, then for each t ≥ 0 and x ∈ �+, (68) expresses �1�x��	� �9�t	� in terms of the data ���&	.
(Recall that m and 3 are determined by ���&	.) The next lemma gives an analogue of (68) for nonzero initial
measures that is valid in the case of both critical data and strictly supercritical data.

Lemma 4.6. Let 7 ∈�c�p
F . Then, �M7�t� x	 is jointly continuous as a function of �t� x	 ∈ �0��	×�+ and

�M7�t� x	= �M7�0� x+ �S7�t		+3
∫ t

0
fe�x+ �S7�t	− �S7�s		ds� for all t ≥ 0 and x ∈�+- (73)

Proof. Fix 7 ∈�c�p
F . To verify (73), fix t ≥ 0. Note that by definition �M7�t� x	= �Z7�t	−�1�0� x�� �27�t	�, for

all x ∈�+. By reasoning similar to that in the proof of Gromoll et al. [9, Proposition 4.6] and since t∗ =� for
critical data, (61) holds with 1�0�w� in place of 1�0�w	 for all supercritical data. Setting w =� and w = x and
subtracting yields (73).
To verify the joint continuity of �M7 , we will verify the joint continuity of each term on the right side of (73).

Note that since 7 has no atoms, �M7�0� x	 is a continuous function of x ∈�+. Also, since �27�·	 is continuous and�Z7�·	 is never zero (cf. Proposition 4.1), �S7�·	 is continuous. Therefore, �M7�0� x+ �S�t		 is jointly continuous as
a function of �t� x	 ∈ �0��	×�+. To verify the joint continuity of the second term on the right side of (73),
note that for each t ≥ 0, s ∈ �0� t�, and x ∈�+ such that & does not have an atom at x+ �S7�t	− �S7�s	,

lim
�u� y	→�t� x	

fe�y+ �S7�u	− �S7�s		= fe�x+ �S7�t	− �S7�s		-

Since �S�·	 is strictly increasing and & has at most countably many atoms, the above holds except perhaps for
countably many values of s ∈ �0� t�, which comprise a set of Lebesgue measure zero (possibly depending on
x and t). So, using bounded convergence and the fact that the integrand is bounded, it follows that the second
term on the right side of (73) is jointly continuous as a function of �t� x	 ∈ �0��	×�+. �
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We will use (68) and (73) to prove Lemma 4.7 below. This lemma implies that, if in addition to the conditions
of Theorem 4.2, we also know that

mt ≤ �Z1�t	≤ �Z2�t	� for all t ≥ 0� (74)

then �9�t	" �21�t	" �22�t	 for all t ≥ 0. The conditions of Lemma 4.7 are more easily verified than (72). To see
this, note that by (C.2) and (S.2), (74) is the x= 0 instance of (72).
Lemma 4.7. Let 71� 72 ∈ �c�p

F . Then, �9�t	 " �21�t	 " �22�t	 for all t ≥ 0 if and only if 71 " 72 and mt ≤
�Z1�t	≤ �Z2�t	, for all t ≥ 0.
Proof. Fix 71, 72 ∈�c�p

F . The “only if” direction follows by taking t = 0 for all x, and then x= 0 for all t
in (72) and using (C.2) and (S.2). Therefore, it suffices to prove the “if” direction. For this, we need to verify
(72) assuming that 71 " 72 and mt ≤ �Z1�t	≤ �Z2�t	 for all t ≥ 0. By (73), we have, for i= 1�2,

�Mi�t� x	= �Mi�0� x+ �Si�t		+3
∫ t

0
fe�x+ �Si�t	− �Si�s		ds� for all t ≥ 0 and x ∈�+- (75)

Since mu≤ �Z1�u	≤ �Z2�u	 for all u≥ 0,
�S1�t	− �S1�s	≥ �S2�t	− �S2�s	� for all 0≤ s ≤ t <�- (76)

This, together with (75), the fact that 71 " 72, the fact that �Mi�0� ·	 is nonincreasing for i = 1�2, and the fact
that fe�·	 is nonincreasing implies that �21�t	" �22�t	 for all t ≥ 0. If the data is critical, then �9�·	≡ 0, and the
proof is complete. Otherwise, the data is strictly supercritical, and then, since mu≤ �Z1�u	 for all u≥ 0, we have

1
m
log

(
t

s

)
≥ �S1�t	− �S1�s	� for all 0< s ≤ t <�- (77)

This, together with (68) and (75), the fact that �M1�0� ·	 is nonnegative, and the fact that fe�·	 is nonincreasing
implies that, if the data is strictly supercritical, then for all t > 0, �9�t	" �21�t	. Since �9�0	= 0, this also holds
for t = 0, and the proof is complete. �

By Lemma 4.7, in order to prove Theorem 4.2, it suffices to verify that, under the conditions of Theorem 4.2,
(74) holds. Let 7 ∈�c�p

F . Then, by (65) if the data is strictly supercritical, or by Gromoll et al. [9, Equation
(4.20) and Lemma 4.4] if the data is critical,

�T ′7� �S7�·		= �Z7�·	- (78)

Also by Lemma 4.2 here and Gromoll et al. [9, Lemma 4.4], �T ′7�·	 is the unique locally bounded, Borel-
measurable solution of (57) for h�·	 = h7�·	. In addition, notice that, for 71� 72 ∈�c�p

F , the condition 71 " 72
is equivalent to h71�·	 ≤ h72�·	. This suggests that one needs to determine how suitable time changes of the
solutions to the convolution equations (57) are ordered with respect to each other for suitably ordered choices
of the functions h.
We begin by defining the time change K�·	 for a given h�·	. Let h ∈ C+↘ and let j�·	 be given by (60).

In particular, j�·	 is continuous and strictly positive. Also, for each x ∈ �+, define H�x	= ∫ x

0 h�y	dy and let
J �·	 be given by (59). Then, as noted immediately below (60), J ∈ C1��+	, J �·	 is strictly increasing, and
limu→� J �u	=�. We wish to define a time change K�·	 such that j�K�·		 plays the role of �Z�·	. For this, we
recall that �S�·	 is the functional inverse of �T �·	. Thus, we define

K�t	= inf�u≥ 0� J �u	 > t�� for all t ≥ 0� (79)

which is the functional inverse of J �·	. Let
L�t	= j�K�t		� for all t ≥ 0- (80)

The next proposition implies that for 7 ∈�c�p
F and h= h7 , L�·	 is the desired time change of j�·	.

Proposition 4.2. Let 7 ∈ �c�p
F . Then, �Z7�t	 = L�t	 for all t ≥ 0, where L�·	 is defined by (80) for

h�·	= h7�·	.
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Proof. Fix 7 ∈�c�p
F . Let j�·	 be given by (60) with h�·	= h7�·	. By Lemma 4.2 here and Gromoll et al.

[9, Lemma 4.4], j�·	= �T ′7�·	 and J �·	= �T7�·	. Hence K�·	= �S7�·	. In particular, L�·	= �T ′7� �S7�·		. This together
with (78) completes the proof. �

We wish to show that if h1� h2 ∈C+↘ and h1�x	≤ h2�x	 for all x ∈�+, then mt ≤ L1�t	≤ L2�t	 for all t ≥ 0,
where, for i= 1�2, Li�·	 is defined by (80) with h= hi. We will in fact verify this conclusion under the more
restrictive condition 0 < h1�x	 < h2�x	 for all x ∈ �+ (cf. Lemma 4.8 below). We will then use this to prove
the desired result. For this, we need to establish some facts about L�·	. Since K is the functional inverse of J ,
J ′ = j , and j is strictly positive, it follows that K ∈C1��+	 and

K ′�t	= 1
L�t	

� for all t ≥ 0- (81)

Also, by (57), symmetry of convolution densities, the change of variables v=K�s	, and (80)–(81), we have

L�t	= j�K�t		 = h�K�t		+3�j ∗ Fe	�K�t		
= h�K�t		+3

∫ K�t	

0
j�K�t	− v	fe�v	dv

= h�K�t		+3
∫ K�t	

0
fe�K�t	− v	j�v	dv

= h�K�t		+3
∫ t

0
fe�K�t	−K�s		ds- (82)

Lemma 4.8.
(i) Let h ∈C+↘ be such that 0<h�x	 for all x ∈�+. Then, for all t ≥ 0,

mt ≤ L�t	�

where L�·	 is given by (80).
(ii) Let h1� h2 ∈C+↘ be such that h1�x	 < h2�x	 for all x ∈�+. Then, for all t ≥ 0,

L1�t	≤ L2�t	�

where, for i= 1�2, Li�·	 is given by (80) with h�·	= hi�·	.
Proof. For critical data, (i) is trivial since m= 0 in that case. To prove (i) for strictly supercritical data, let

T = inf�t ≥ 0� mt > L�t	�. Suppose that T <�. Then, it follows that T > 0,

mu≤ L�u	 for all u ∈ �0� T �� (83)

and

mT = L�T 	- (84)

To verify this, use the fact that L�·	 is continuous (since it is a composition of continuous functions) and the
fact that 0<h�0	= L�0	. By (81) and (83),

1
m
log

(
T

s

)
=
∫ T

s

1
mu

du≥
∫ T

s

1
L�u	

du=K�T 	−K�s	� s ∈ �0� T �-

Using this inequality and the facts that fe�·	 is nonincreasing and 0<h�·	 gives

0<h�K�T 		 and fe

(
1
m
log

(
T

s

))
≤ fe�K�T 	−K�s		� s ∈ �0� T �-

This, together with (70) and (82), implies that mT < L�T 	. But this contradicts (84), and therefore T = �.
In particular, (i) holds for strictly supercritical data.
The proof of (ii) is similar. In particular, let T = inf�t ≥ 0� L1�t	 > L2�t	� and suppose that T <�, which

implies L�T1	= L�T2	 and L1�u	≤ L2�u	 for u ∈ �0� T �. To obtain the contradication L1�T 	 < L2�T 	, proceed
in a manner similar to the above, using (82), L1�u	≤ L2�u	 for u ∈ �0� T �, and h1�x	 < h2�x	 for all x ∈�+. �
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Proof of Theorem 4.2. By Lemma 4.7, it suffices to show that (74) holds. Note that, since 71 " 72, it
follows that 0 ≤ h71�·	 ≤ h72�·	. In order to use Lemma 4.8, we fix sequences �7i�n� n ∈ �� ⊂�c�p

F , i = 1�2,
such that 7i�n

w→ 7i as n→� and

0<h71� n �·	 < h72� n �·	� for each n ∈�-

By Lemma 4.8 and Proposition 4.2, for each n ∈ �, mt ≤ �Z1� n�t	 ≤ �Z2� n�t	 for all t ≥ 0, where, for i = 1�2
and for each n ∈�, �2i�n�·	 is the unique fluid model solution with �2i�n�0	= 7i�n and �Zi�n�·	= �1� �2i�n�·	�. By
letting n tend to infinity and using the continuity of >p (cf. Lemma 4.3 here or Gromoll et al. [9, Lemma 4.9]
for the critical case), it follows that mt ≤ �Z1�t	≤ �Z2�t	 for all t ≥ 0. �

4.4. Consequences of the order preservation property. Presently, we are in the process of developing the
machinery to prove the uniqueness in Theorem 3.2, and to prove Theorem 3.4. In §4.3, the order preservation
property was stated and proved (cf. Theorem 4.2). Here we use the order preservation property to prove a
conservation law (cf. Lemma 4.9) and weak continuity at zero property (cf. Lemma 4.10). The weak continuity
at zero property is used in §4.4.3 to prove the uniqueness in Theorem 3.2.
Recall that, in §3.2.6, Theorem 3.5 was proved as a simple consequence of Theorem 3.4. In turn, Theorem 3.6

was proved in §3.2.7 as a consequence of Theorem 3.5, and simple properties of the measure 9. So, Theorem 3.4
is the cornerstone of the three results. The proof of Theorem 3.4 given in §4.5 requires substantial effort.
However, if one is willing to impose conditions that control the behavior of the fluid analogue of the workload
process, then weak versions of Theorems 3.5 and 3.6 can be obtained as direct consequences of the weak
continuity at zero property (cf. Lemmas 4.11 and 4.12). These weak versions are proved in §4.4.4.

4.4.1. A conservation law.

Lemma 4.9. Let ���&	 be supercritical data, let �9�·	 be defined via (28), (29), and (31), and let 71� 72 ∈�c�p
F

be such that ���7i�<� for i= 1�2. If 71 " 72, then, for all t ≥ 0,


 �M1�t� ·	−�1�·��	� �9�t	�
L1 = ���71�� (85)


 �M1�t� ·	− �M2�t� ·	
L1 = ���72�− ���71�- (86)

Proof. By Definition 4.1 and Theorem 4.2, �1�·��	� �9�t	� ≤ �M1�t� ·	≤ �M2�t� ·	 for all t ≥ 0. Therefore,


 �M1�t� ·	− �M2�t� ·	
L1 =
∫ �
0
� �M2�t� x	− �M1�t� x		dx=

∫ �
0

�M2�t� x	dx−
∫ �
0

�M1�t� x	dx

= ��� �22�t	�− ��� �21�t	� = ���72�− ���71��

where the final equality follows from (23) if the data is strictly supercritical, and from Gromoll et al. [9, Theorem
3.1] if the data is critical. Thus, (86) holds. If the data is strictly supercritical, (85) follows by a similar argument.
If the data is critical, (85) is trivial since 9= 0 in that case. �

4.4.2. A weak continuity at zero property.

Lemma 4.10. Let ���&	 be supercritical data, and let �9�·	 be defined via (28), (29), and (31). Suppose that
�7n� n ∈ ��⊂�c�p

F is such that 7n
w→ 0 and ���7n� → 0 as n→�. Then, for each t ≥ 0, �2n�t	

w→ �9�t	 as
n→�.
Proof. Fix t ≥ 0. By (85) and the fact that ���7n�→ 0 as n→�, limn→� 
 �Mn�t� ·	−�1�·��	� �9�t	�
L1 = 0.

This implies that, for every subsequence �ni�
�
i=1 such that ni tends to infinity as i tends to infinity, there exists

a further subsequence �nij �
�
j=1 such that, for Lebesgue almost every x ∈�+,

�Mnij
�t� x	−→�1�x��	� �9�t	�� as j→�- (87)

Notice that, for each n ∈ �, �Mn�t� x	 is a nonincreasing function of x ∈ �+. Also, notice that �1�x��	� �9�t	� is
continuous for x ∈ �+ since �9�t	 has no atoms. Therefore, the convergence in (87) is in fact pointwise for all
x ∈�+, which implies the result. �



Puha, Stolyar, and Williams: The Fluid Limit of an Overloaded Processor Sharing Queue
336 Mathematics of Operations Research 31(2), pp. 316–350, © 2006 INFORMS

4.4.3. The zero initial measure: Uniqueness for strictly supercritical data.
Proof of Theorem 3.2. Let ���&	 be strictly supercritical data, and let �9�·	 be defined via (28), (29),

and (31). Suppose that �2�·	 is a fluid model solution such that �2�0	= 0. We must show that �2�·	= �9�·	. For
this, let �sn� n ∈��⊂ �0��	 be such that sn→ 0 as n→�. For each n ∈�, let �2n�·	= �?sn �2	�·	= �2�· + sn	
and 7n = �2n�0	= �2�sn	. By (21), 7n ∈�p

F , and by Lemma 3.1, �2n�·	 is a fluid model solution. This, together
with Proposition 4.1, implies that 7n ∈�c�p

F . By the continuity of �2�·	, 7n w→ 0 as n→�. In addition, by (23),
���7n� = �3− 1	sn for each n ∈ �. Thus, ���7n� → 0 as n→�. Therefore, by Lemma 4.10, it follows that
for each t ≥ 0, �2n�t	

w→ �9�t	 as n→�. But, since �2�·	 is continuous, it also follows that �2n�t	
w→ �2�t	 as

n→� for each t ≥ 0. Consequently, �2�t	= �9�t	 for all t ≥ 0. �

4.4.4. Additional consequences of the weak continuity property for strictly supercritical data.

Lemma 4.11. Let ���&	 be strictly supercritical data, and let 9 be defined by (28) and (29). Any fluid model
solution �2�·	 for the data ���&	 that satisfies �W�0	 <� also satisfies

�2�t	
t

w−→ 9� as t→�- (88)

Proof. Let �2�·	 be a fluid model solution for the data ���&	 such that ��� �2�0	�<�. If �2�0	= 0, then
(88) follows immediately from Theorem 3.2. Thus, it is henceforth assumed that �2�0	 �= 0. By Lemma 3.1(ii),
for each s > 0, ��s �2	�t	= �2�st	/s for all t ≥ 0 is a fluid model solution for the data ���&	. By Proposition 4.1
and Remark 4.1, ��s �2	�0	 ∈�c�p

F for each s > 0. Moreover,

��s �2	�0	 w−→ 0 and ��� ��s �2	�0	� −→ 0� as s→�-
Thus, from Lemma 4.10, it follows that

��s �2	�1	 w−→ �9�1	= 9� as s→��
and the result follows. �

Similarly, one can prove the following lemma by using Lemma 4.11 in place of Theorem 3.5 in the proof of
Theorem 3.6 given in §3.2.7.

Lemma 4.12. Let ���&	 be strictly supercritical data, and let 9 be defined by (28) and (29). A fluid model
solution �2�·	 for the data ���&	 such that �W�0	 <� is stationary if and only if for some s ∈ �0��	, �2�t	=
�?s�9	�t	, for all t ≥ 0.
4.5. Convergence to �9�·	. In this section, we use the order preservation property to prove Theorem 3.4. By

Theorem 3.2, >�0	= �9�·	. Thus, in order to prove Theorem 3.4, it suffices to show that, given �7n� n ∈��⊆�c�p
F

such that 7n
w→ 0 as n→�, we have, for each T > 0 and g ∈Cb��+	,

lim
n→� sup

t∈�0� T �
��g� �2n�t	�− �g� �9�t	�� = 0- (89)

Recall that for critical data, �9�·	 ≡ 0. Therefore, for critical data, it follows that, for all g ∈ Cb��+	, T > 0,
and n ∈�,

sup
t∈�0� T �

��g� �2n�t	�− �g� �9�t	�� ≤ 
g
� sup
t∈�0� T �

�Zn�t	- (90)

So, in the case of critical data, it suffices to show that the total mass tends to zero uniformly on compact
time intervals. In general, uniform control over the convergence of the total mass to a suitable limit is the key
ingredient in the proof of (89). In particular, the main step in the proof of Theorem 3.4 is to prove the following
theorem.

Theorem 4.3. Let ���&	 be supercritical data, and let �7n� n ∈��⊂�c�p
F be such that 7n

w→ 0 as n→�.
Then, for each T > 0,

lim
n→� sup

t∈�0� T �
� �Zn�t	−mt� = 0� (91)

where, for strictly supercritical data, m is the unique positive real solution of (3.10), and for critical data,
m= 0.
Recall that �1� �9�t	� =mt for all t ≥ 0 since �9�·	≡ 0 for critical data and (30) holds for strictly supercritical

data. In particular, for critical data, (89) follows as an immediate consequence of Theorem 4.3 and (90). However,
for strictly supercritical data, more extensive analysis is required in order to prove (89) as a consequence of the
result in Theorem 4.3. This analysis is contained in §4.5.2. We begin in §4.5.1 by proving Theorem 4.3.
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4.5.1. Convergence to �1� �9�·	�. The proof of Theorem 4.3 depends on the rate at which Ue�·	 tends to
infinity. For critical data, the elementary renewal theorem implies that Ue�·	 tends to infinity linearly. For strictly
supercritical data, Ue�·	 tends to infinity exponentially fast; this is proved in Lemma 4.13 using the key renewal
theorem. We begin this section by reviewing the facts that are needed for the application of this theorem.
Consider strictly supercritical data ���&	. Our application of the key renewal theorem is confined to a specific

renewal function R�·	. In order to define R�·	, note that, by (27), 3 exp�−m·	fe�·	 is a probability density
function on �+. For x ∈�+, let

C�x	= 3
∫ x

0
exp�−my	fe�y	dy and R�x	=

�∑
i=0

C∗i�x	- (92)

Then, R�·	 is the renewal function for a zero-delay renewal process with interarrival distribution determined by
the cumulative distribution function C�·	. Furthermore, it is easy to verify that ∫�+�1−C�x		dx <�. The key
renewal theorem implies that for any directly Riemann integrable function g� �+ →�+,

lim
z→��g ∗R	�z	=

∫
�+

g�x	dx∫
�+
�1−C�x		dx

(93)

(cf. Feller [6, Chapter XI], or Puha and Williams [15, §4] for a concise summary). It is easy to verify that
the function g�x	 = exp�−mx	, x ∈ �+, is directly Riemann integrable since it is Riemann integrable and
nonincreasing.

Lemma 4.13. Let ���&	 be strictly supercritical data, and let C�·	 and R�·	 be defined via (92). Then, for
all t ≥ 0,

Ue�t	=
∫ t

0
exp�ms	dR�s	- (94)

In particular,

lim
t→�

Ue�t	

exp�mt	
= 1

m
∫ �
0 �1−C�t		dt

- (95)

Proof. First, note that (95) is an immediate consequence of (94), the fact that exp�−mx	, x ∈�+, is directly
Riemann integrable, and (93). So, it suffices to prove (94). For this, note that for all t ≥ 0,

Ue�t	= 1+3�Ue ∗ Fe	�t	-
For each t ≥ 0, let

%Ue�t	= exp�−mt	Ue�t	 and f̂e�t	= exp�−mt	fe�t	-
Then, for each t ≥ 0,

%Ue�t	= exp�−mt	+3
∫ t

0

%Ue�t− s	f̂e�s	ds-

In particular, %Ue�·	 satisfies a Volterra equation that is very similar to the Volterra equation (57). So, via the
same line of reasoning that was used in the beginning of §4 to argue that (60) is the unique locally bounded,
Borel-measureable solution of (57), equation (94) follows (also see Resnick [16, Theorem 3.5.1] or Feller
[6, the lemma on p. 359]). �

Next we show how to use Lemma 4.13 to prove Theorem 4.3. This proof is guided by the following intuition:
The more time that the initial mass spends in the system, the more opportunity it has to slow down processing and
cause the total mass to build up. So the worst-case scenario would be if the initial mass never exited the system,
i.e., if the initial measure was an atom at infinity. Clearly, such a measure is not an element of �F , and therefore
cannot be used as an initial measure. However, Proposition 4.2 and Lemma 4.8(ii) allow us to circumvent this
technicality. Indeed, given 7 ∈�c�p

F , we can choose a positive constant c such that c is strictly larger than the
total mass of 7. Taking a measure that has an atom at infinity of size c corresponds to fixing a function h�·	
that is identically equal to c. Then, h�·	 is strictly larger than h7�·	, and so the conditions in Lemma 4.8(ii) are
satisfied. Consequently, the L�·	 associated with h�·	 dominates the �Z7�·	 associated with 7. This rigorizes the
intuition that throwing all of the mass out to infinity results in a worst-case scenario. A consequence of this
is that, in order to prove (91), it suffices to prove the analogue of (91) for a sequence of Ln corresponding to
positive, constant hn which tend to zero and dominate the h7n . The advantage of working with the hn is that they
are constant, and thus the functions determined by the hn (Hn, Jn, Kn, and Ln) obey certain scaling properties
(cf. (97)), as we will see in the proof below.
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Proof of Theorem 4.3. By Theorem 4.2, for each n ∈ �, mt ≤ �Zn�t	, for all t ≥ 0. Fix a monotone,
nonincreasing sequence �cn�n∈� ⊂ �0��	 that converges to zero as n→� and that satisfies �1� 7n� < cn for
all n ∈ �. For each n ∈ �, let hn�·	≡ cn. Then, for each n ∈ �, since �1�x��	� 7n�< cn = hn�x	 for all x ∈ �+,
by Lemma 4.8(ii) and Proposition 4.2, we have �Zn�·	≤ Ln�·	. In particular, for each n ∈ �, 0≤ �Zn�t	−mt ≤
Ln�t	−mt, for all t ≥ 0. Thus, in order to prove Theorem 4.3, it suffices to show that for each T > 0,

lim
n→� sup

t∈�0� T �
�Ln�t	−mt	= 0- (96)

In order to prove (96), fix T > 0 and let h�x	= 1 for all x ∈�+. Then, for all t ≥ 0,

j�t	=Ue�t	� J �t	=
∫ t

0
Ue�s	ds� K�t	= J−1�t	� and L�t	= j�K�t		-

Therefore, since hn�·	≡ cn for each n ∈�, it follows that for all n ∈� and t ≥ 0,
jn�t	= cnj�t	� Jn�t	= cnJ �t	� Kn�t	= J−1�t/cn	� and Ln�t	= cnL�t/cn	- (97)

Thus, for all n ∈� and any constant M ∈ �0� T /cn�,

sup
t∈�0� T �

�Ln�t	−mt	 = sup
t∈�0� T �

(
cnL

(
t

cn

)
−mt

)

≤ sup
t∈�0�Mcn�

(
cnL

(
t

cn

)
−mt

)
+ sup

t∈�Mcn�T �

t

(
cn
t
L

(
t

cn

)
−m

)

≤ sup
t∈�0�Mcn�

cnL

(
t

cn

)
+ sup

t∈�Mcn�T �

t

(
cn
t
L

(
t

cn

)
−m

)
-

Note that L�·	 is nondecreasing since both j�·	 and K�·	 are nondecreasing. Using this, we obtain that for all
n ∈� and any constant M ∈ �0� T /cn�,

sup
t∈�0� T �

�Ln�t	−mt	 ≤ cnL�M	+ T sup
t∈�cnM�T �

(
cn
t
L

(
t

cn

)
−m

)

≤ cnL�M	+ T sup
t∈�M�T /cn�

(
L�t	

t
−m

)

≤ cnL�M	+ T sup
t≥M

(
L�t	

t
−m

)
-

Thus, it suffices to show that

lim
t→�

L�t	

t
=m- (98)

Indeed, if (98) holds, then, given E > 0, there exists a M ∈ �0��	 such that

sup
t≥M

(
L�t	

t
−m

)
<

E

2T
�

and an N ∈ � such that for all n≥ N , we have T /cn >M and cnL�M	 < E/2. Thus, if (98) holds, then given
E > 0, there exists an N ∈� such that for all n≥N ,

sup
t∈�0� T �

�Ln�t	−mt	 < E�

which proves (96). Therefore, it suffices to prove (98).
In order to prove (98), notice that for all t ≥ 0, L�J �t		= j�t	. Since J �·	 is continuous and strictly increasing,

and J �t	 tends to infinity as t tends to infinity, in order to prove (98), it suffices to show that

lim
t→�

j�t	

J �t	
=m- (99)
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Since, for t ≥ 0, j�t	=Ue�t	, (99) is equivalent to

lim
t→�

Ue�t	∫ t

0 Ue�s	ds
=m- (100)

So, in order to prove (98), it suffices to show that (100) holds.
To prove (100), there are two cases to consider. First, suppose that the data is critical. Then m= 0, and by

the elementary renewal theorem, Ue�t	/t converges to 4e = 1/���&e� as t tends to infinity, where 4e = 0 if
���&e� = � (cf. Resnick [16, Theorem 3.3.3]). If 4e > 0, then (100) follows immediately. Otherwise, 4e = 0.
In this case, since Ue�t	≥ 1 for all t ≥ 0, it follows that

Ue�t	∫ t

0 Ue�s	ds
≤ Ue�t	

t
� for all t ≥ 0�

and (100) follows. Therefore, (100) holds for critical data. For strictly supercritical data, by Lemma 4.13 and
L’Hôpital’s rule, there exists a c ∈ �0��	 such that

lim
t→�

Ue�t	

exp�mt	
= c and lim

t→�

∫ t

0 Ue�s	ds

exp�mt	
= c

m
- (101)

Therefore,

lim
t→�

Ue�t	∫ t

0 Ue�s	ds
=m-

So (100) holds for strictly supercritical data as well. �

4.5.2. Proof of Theorem 3.4. In the case of critical data, Theorem 3.4 is an immediate consequence of
Theorem 4.3. So the main focus here is to show how to use Theorem 4.3 in the case of strictly supercritical
data to prove Theorem 3.4. The first order of business is to obtain a bound that serves the same purpose for
strictly supercritical data as (90) serves for critical data. For this, we derive analogues of (61) and (68) with
g ∈ Cb��+	 in place of the indicator functions. These analogues involve shifted versions of the g of the form
g�·−a	, for a≥ 0. For this, recall that we have adopted the convention that all g are extended to be identically
equal to zero on the negative half line.

Lemma 4.14. Let ���&	 be supercritical data, and let 7 ∈�c�p
F . For all t ≥ 0 and g ∈Cb��+	,

�g� �27�t	� = �g�· − �S7�t		� 7�+�
∫ t

0
�g�· − � �S7�t	− �S7�s			� &�ds- (102)

In addition, if ���&	 is strictly supercritical data and �9�·	 is defined via (28), (29), and (31), then for all t > 0
and g ∈Cb��+	,

�g� �9�t	� = �
∫
�0� t�

〈
g

(
· − 1

m
log

(
t

s

))
� &

〉
ds- (103)

Proof. Fix supercritical data ���&	 and 7 ∈ �c�p
F . To prove (102) and (103), we use a monotone class

theorem for functions (cf. Durrett [4, Chapter 5, Theorem 1.4]). Since the two arguments are very similar, we
prove only (102) here and leave the proof of (103) for the reader. To begin, let

� = �g� �+ →�� g is Borel measurable, bounded and satisfies (102)�-

We wish to show that Cb��+	⊂� . Let

�= ��x�w	� 0≤ x <w <��∪(-
Then, � is a @-system that generates the Borel J-algebra on �+. Also, note that for all t ≥ 0 and 0≤ x <w ≤�,

g = 1�x�w	 ∈� -

For x �= 0, the above follows from (61) if the data is strictly supercritical, and from Gromoll et al. [9, Lem-
ma 4.3] if the data is critical. For strictly supercritical data (resp. critical data), to show that the above holds
for x = 0, use (61) (resp. [9, Lemma 4.3]), (S.2) (resp. (C.2)), and the following facts: 7 has no atoms, �S7�·	
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is strictly increasing, and & has at most countably many atoms. Thus, A ∈ � implies that 1A ∈ � . It is easily
verified that f � g ∈� implies that f + g ∈� and cf ∈� for all c ∈�. Finally, fix �gn� n ∈��⊂� such that for
each n ∈�, gn is nonnegative and the sequence �gn�n ∈�� increases to a bounded, Borel-measurable function
g� �+ →�. To complete the proof, it suffices to show that g ∈� . By the monotone convergence theorem, for
each 0≤ s ≤ t,

lim
n→��gn�·	� �27�t	� = �g�·	� �27�t	��

lim
n→��gn�· − �S7�t		� 7� = �g�· − �S7�t		� 7��

and

lim
n→��gn�· − � �S7�t	− �S7�s			� &� = �g�· − � �S7�t	− �S7�s			� &�-

This, together with gn ∈� for each n ∈�, implies that g ∈� and this completes the proof of (102). �

For �7n� n ∈ �� ⊂ �c�p
F such that 7n

w→ 0 as n→�, from (102) and (103) it follows that, if the data is
strictly supercritical, then for all g ∈Cb��+	, T > 0, and n ∈�,

sup
t∈�0� T �

��g� �2n�t	�− �g� �9�t	��

≤ 
g
��1� 7n�+� sup
t∈�0� T �

∫
�0� t�

〈∣∣∣∣g�· − � �Sn�t	− �Sn�s			− g

(
· − 1

m
log

(
t

s

))∣∣∣∣� &
〉
ds- (104)

Since g is bounded and continuous, what is needed is some control over the convergence of �Sn�t	− �Sn�s	 to
�1/m	 log�t/s	 as n→�, for each 0< s ≤ t <�, which can be obtained from Theorem 4.3.

Lemma 4.15. Let ���&	 be strictly supercritical data, and let �7n� n ∈ ��⊂�c�p
F be such that 7n

w→ 0 as
n→�. Then, for each 0<T1 ≤ T2 <�,

lim
n→� sup

T1≤s≤t≤T2

∣∣∣∣�Sn�t	− �Sn�s	− 1
m
log

(
t

s

)∣∣∣∣= 0-

Proof. Fix 0 < T1 ≤ T2 < �. Recall that, by (21), �Zn�t	 > 0 for all t ∈ �T1� T2�. Thus, for each T1 ≤
s ≤ t ≤ T2, ∣∣∣∣�Sn�t	− �Sn�s	− 1

m
log

(
t

s

)∣∣∣∣≤
∫ t

s

∣∣∣∣ 1
�Zn�u	

− 1
mu

∣∣∣∣du-
Therefore,

sup
T1≤s≤t≤T2

∣∣∣∣�Sn�t	− �Sn�s	− 1
m
log

(
t

s

)∣∣∣∣≤ �T2− T1	 sup
t∈�T1� T2�

∣∣∣∣ 1
�Zn�t	

− 1
mt

∣∣∣∣- (105)

From Theorem 4.3, since T1 > 0,

lim
n→� sup

t∈�T1� T2�

∣∣∣∣ 1
�Zn�t	

− 1
mt

∣∣∣∣= 0- (106)

The result follows by letting n→� in (105) and using (106). �

Proof of Theorem 3.4. First, consider the case where the data is critical. Then, the result in Theorem 3.4
follows from (89), (90), and Theorem 4.3.
Next, consider the case where the data is strictly supercritical. For this, fix strictly supercritical data ���&	.

By (104), it suffices to show that for each T > 0, g ∈Cb��+	, and E > 0, there exists an N ∈� such that, for all
n≥N ,

sup
t∈�0� T �

∫
�0� t�

〈∣∣∣∣g�· − � �Sn�t	− �Sn�s			− g

(
· − 1

m
log

(
t

s

))∣∣∣∣� &
〉
ds ≤ E- (107)

For this, fix g ∈Cb��+	 and E > 0. Let T1 = E/8�
g
�+1	. It suffices to prove (107) for T > T1, so fix T > T1.
Since & is a probability measure, we obtain, for all t ∈ �0� T1� and n ∈�,

∫
�0� t�

〈∣∣∣∣g�· − � �Sn�t	− �Sn�s			− g

(
· − 1

m
log

(
t

s

))∣∣∣∣� &
〉
ds ≤ 2
g
�t ≤

E

4
- (108)



Puha, Stolyar, and Williams: The Fluid Limit of an Overloaded Processor Sharing Queue
Mathematics of Operations Research 31(2), pp. 316–350, © 2006 INFORMS 341

Next, consider t ∈ �T1� T �. For each n ∈�,
∫
�0� t�

〈∣∣∣∣g�· − � �Sn�t	− �Sn�s			− g

(
· − 1

m
log

(
t

s

))∣∣∣∣� &
〉
ds

≤ E

4
+
∫ t

T1

〈∣∣∣∣g�· − � �Sn�t	− �Sn�s			− g

(
· − 1

m
log

(
t

s

))∣∣∣∣� &
〉
ds- (109)

Thus, for each t ∈ �T1� T �, we need to obtain estimates on the integrand of the second term on the right side
of (109), for each s ∈ �T1� t�. In order to obtain such an estimate, let M ≥ 0 be such that

�1�M��	� &� ≤
T1

T − T1
= E

8�
g
� + 1	�T − T1	
- (110)

By Theorem 4.2, mt ≤ �Zn�t	 for all t ≥ 0 and n ∈�. Therefore, for all T1 ≤ s ≤ t ≤ T and n ∈�, �Sn�t	− �Sn�s	≤
�1/m	 log�t/s	. Thus, for all T1 ≤ s ≤ t ≤ T and n ∈�, using the fact the g�·	 is zero on the negative half line,
we have 〈∣∣∣∣g�· − � �Sn�t	− �Sn�s			− g

(
· − 1

m
log

(
t

s

))∣∣∣∣� &
〉

≤
∫
� �Sn�t	−�Sn�s	� �1/m	 log�t/s		

�g�x− � �Sn�t	− �Sn�s			�&�dx	

+
∫
��1/m	 log�t/s	�M	

∣∣∣∣g�x− � �Sn�t	− �Sn�s			− g

(
x− 1

m
log

(
t

s

))∣∣∣∣&�dx	

+
∫
�M��	

∣∣∣∣g�x− � �Sn�t	− �Sn�s			− g

(
x− 1

m
log

(
t

s

))∣∣∣∣&�dx	
≤ 
g
��1� �Sn�t	−�Sn�s	� �1/m	 log�t/s		� &�

+
∫
��1/m	 log�t/s	�M	

∣∣∣∣g�x− � �Sn�t	− �Sn�s			− g

(
x− 1

m
log

(
t

s

))∣∣∣∣&�dx	
+ 2
g
��1�M��	� &�- (111)

Let M > 0 be such that

�g�x	− g�y	� ≤ E

4�T − T1	
� for all x� y ∈ �0�M� such that �x− y�<M-

For each M′ ∈ �0�M�, let N�M′	 ∈� be such that

sup
T1≤s≤t≤T

∣∣∣∣�Sn�t	− �Sn�s	− 1
m
log

(
t

s

)∣∣∣∣<M′� for all n≥N�M′	-

(Note that such an N�M′	 exists by Lemma 4.15.) Observing that the arguments of g�·	 in the second to the last
term in (111) all lie in �0�M�, for T1 ≤ s ≤ t ≤ T and M′ ∈ �0�M� and using (110) on the last term in (111), we
have for all n≥N�M′	,

〈∣∣∣∣g�· − � �Sn�t	− �Sn�s			− g

(
· − 1

m
log

(
t

s

))∣∣∣∣� &
〉

≤ 
g
��1� �Sn�t	−�Sn�s	� �1/m	 log�t/s		� &�+
E

4�T − T1	
�1��1/m	 log�t/s	�M	� &�+

E

4�T − T1	

≤ 
g
��1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� &�+
E

4�T − T1	
+ E

4�T − T1	
-

Therefore, for t ∈ �T1� T � and M′ ∈ �0�M�, we have for all n≥N�M′	,

∫ t

T1

〈∣∣∣∣g�·−� �Sn�t	− �Sn�s			−g
(
·− 1

m
log

(
t

s

))∣∣∣∣�&
〉
ds≤ E

2
+
g
�

∫ t

T1

�1���1/m	log�t/s	−M′	+��1/m	log�t/s		�&�ds- (112)
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Using (109), the definition of T1, and (112), we obtain the following. For all t ∈ �T1� T � and M′ ∈ �0�M�, we have
for all n≥N�M′	,

∫
�0� t�

〈∣∣∣∣g�· − � �Sn�t	− �Sn�s			− g

(
· − 1

m
log

(
t

s

))∣∣∣∣� &
〉
ds

≤ 3E
4
+
g
�

∫ t

T1

�1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� &�ds- (113)

So, in order to complete the proof of (107), it suffices to show that there exists M′ ∈ �0�M� such that for all
t ∈ �T1� T �, ∫ t

T1

�1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� &�ds ≤
E

4�
g
� + 1	
- (114)

This requires some care since & can have atoms. Let A⊂ �+ denote the set containing all of the atoms of &,
which is at most countable, and let &d =

∑
a∈A &��a�	�a be the Borel measure comprised of only the atoms

of &. Then, &c = & − &d has no atoms. Therefore, there exists M
′
1 ∈ �0�M� such that supy∈�+�1�y−M′1� y+M′1	� &c�<

E/�12�T −T1	�
g
�+1		 (cf. the proof of Gromoll et al. [9, Lemma A.1]). Thus, for t ∈ �T1� T � and M′ ∈ �0�M′1�,
we have

∫ t

T1

�1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� &�ds

=
∫ t

T1

�1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� &c�ds+
∫ t

T1

�1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� &d�ds

≤ E

12�
g
� + 1	
+∑

a∈A
&��a�	

∫ t

T1

�1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� �a�ds-

Since
∑

a∈A &��a�	≤ 1, there exists a finite set AE ⊂A such that

∑
a∈A\AE

&��a�	≤ E

12�T − T1	�
g
� + 1	
-

Thus, for t ∈ �T1� T � and M′ ∈ �0�M′1�, we have
∫ t

T1

�1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� &�ds

≤ E

12�
g
� + 1	
+ ∑

a∈A\AE

&��a�	�T − T1	+
∑
a∈AE

&��a�	
∫ t

T1

�1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� �a�ds

≤ E

6�
g
� + 1	
+ ∑

a∈AE

&��a�	
∫ t

T1

�1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� �a�ds-

If AE =(, let M′ = M′1. Otherwise, AE �= (. In that case, for M′ ∈ �0�M′1�, T1 ≤ s ≤ t ≤ T , and a ∈AE, we have

a ∈
[(

1
m
log

(
t

s

)
−M′

)+
�
1
m
log

(
t

s

))
only if s ∈ �t exp�−m�a+M′		� t exp�−ma		-

Therefore, for each M′ ∈ �0�M′1�, t ∈ �T1� T �, and a ∈AE,

∫ t

T1

�1���1/m	 log�t/s	−M′	+� �1/m	 log�t/s		� �a�ds ≤ t�exp�−ma	− exp�−m�a+M′			-

So, if AE �= (, let M′ ∈ �0�M′1� be such that

max
a∈AE

�exp�−ma	− exp�−m�a+M′			≤ E

12�AE��
g
� + 1	T
�

where �AE� denotes the number of atoms in AE. Then, on combining the above inequalities, we have, for
t ∈ �T1� T �, verified (114). Combining (108), (113), and (114) proves (107) with N =N�M′	. �
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5. Proof of the fluid limit result for strictly supercritical data. In this section, we prove Theorem 3.7.
As we will see, if the total mass of the limiting initial measure is bounded away from zero, then the proof
is a simple extension of the proof of Gromoll et al. [9, Theorem 3.2]. However, to handle the case where the
total mass of the limiting initial measure is not bounded away from zero, new analysis is required. Even so, the
overall approach is basically the same as that in [9]. In particular, in order to prove Theorem 3.7, the following
theorem is the key result.

Theorem 5.1. Let ���&	 be strictly supercritical data. Consider a sequence of overloaded processor sharing
queues as defined in §3.3.1, satisfying assumptions (45)–(52) for the data ���&	. Then, the sequence of fluid-
scaled measure-valued processes ��2r�·	� is tight. Moreover, any limit point �2F�·	 is a.s. a fluid model solution
for the strictly supercritical data ���&	.

Recall that the sequence ��2r�·	�r>0 is tight if and only if the associated sequence of probability laws on
D��0��	��F 	 is tight. The term “limit point” in the above statement refers to any limit in distribution along
some subsequence of ��2r�·	�r>0. We use this terminology because our objective is to show that all such limit
points have the same law. This uniqueness in law will hinge on the almost sure characterization of limit points
as fluid model solutions.
Throughout this section, we assume that the conditions in §3.3.1 hold. This section is organized as follows.

In §5.1, the dynamic equation satisfied by �2r�·	 for each r > 0 is given. This dynamic equation is used both in
the proof of tightness and the almost sure characterization of limit points. Tightness of ��2r�·	�r>0 is proved in
§5.2, and the almost sure characterization of limit points as fluid model solutions is proved in §5.3. Finally, the
proof of Theorem 3.7 appears in §5.4.

5.1. A dynamic equation. Recall the convention that any function g that is defined on �+ is extended to
be identically equal to zero on �−��0	 so that for all a> 0, g�· − a	 is well defined on �+.

Lemma 5.1. For each r > 0, almost surely, for each bounded, Borel-measurable function g� �+ → �, and
for all t� h≥ 0,

�g� �2r�t+h	� = ��1�0��	g	�· − �Sr
t� t+h	� �2r�t	�+ 1

r

r �Er �t+h	∑
i=r �Er �t	+1

�1�0��	g	�v
r
i − �Sr

Ur
i /r� t+h	- (115)

Proof. To verify that (115) holds, fix r > 0, a bounded, Borel-measurable function g� �+ →�, and t� h≥ 0.
Using (13), subtract the equation for ��1�0��	g	�·− �Sr

t� t+h	�2
r�rt	� from the equation for �g�2r�rt+ rh	�. Then,

use the definition of the residual service times to cancel the common terms. Finally, divide the result by r to
obtain (115). �

Equation (115) is referred to as the dynamic equation.

5.2. Proof of tightness. In this section, we prove the first half of Theorem 5.1, i.e., that the sequence of
measure-valued processes ��2r�·	�r>0 is tight. Following the approach in Gromoll et al. [9], to verify tightness
of ��2r�·	� we show the following two properties.
(T.1) For each T > 0 and 0<M< 1, there is a compact subset CT �M of �F such that

lim inf
r→� P� �2r�t	 ∈CT �M for all t ∈ �0� T �	≥ 1−M-

(T.2) For each g ∈C1
b��+	, the sequence of real-valued processes

��g� �2r�·	��r>0 is tight.
To prove (T.2), we verify that the usual compact containment and controlled-oscillations conditions are satisfied
by ��g� �2r�·	��r>0 for each g ∈ C1

b��+	 (cf. (146) and (147) in Theorem 5.3 below). Once these conditions
are established, we proceed to verify (T.1), and thereby complete the proof of tightness (cf. Proof of Tight-
ness for Theorem 5.1 at the end of this subsection). Verifying the controlled-oscillations condition (147) for
��g� �2r�·	��r>0, for each g ∈C1

b��+	 is the major challenge in proving Theorem 5.3. In the next few paragraphs,
we outline our approach to proving this.
In Gromoll et al. [9], the controlled-oscillations result was proved by considering two cases, namely, the case

where in fluid scale the initial workload is small, and the case where it is not small. Note that for heavily loaded
processor sharing queues, with high probability, in fluid scale the workload is essentially constant over compact
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time intervals. This fact is used in [9] to show that if the initial workload is small in fluid scale, then with high
probability the initial queue length is small in fluid scale, and it remains small over compact time intervals.
Note that if the queue length remains small in fluid scale, for each g ∈C1

b��+	 and r > 0, �g� �2r�·	� can only
have small oscillations. However, for overloaded processor sharing queues, in fluid scale the workload and thus
the queue length does not remain small. Indeed, they grow. Therefore, the proof of the controlled-oscillations
condition in Gromoll et al. [9] doesn’t immediately carry over to the present setting. Nevertheless, many of the
ideas in [9] for proving tightness of ��g� �2r�·	��r>0, for g ∈ C1

b��+	, are still useful here. Specifically, it turns
out that if the initial workload in fluid scale is not small, then the proof of the controlled-oscillations condition
extends without change to the present setting. Indeed, Theorem 5.2 below gives sufficient conditions for the
controlled-oscillations condition for ��g� �2r�·	��r>0, g ∈C1

b��+	, to hold on a compact time interval �s� T �; these
conditions include the assumptions that the fluid-scaled state descriptor at time s has no large atoms, and that the
fluid-scaled workload is bounded below on �s� T �. The proof of Theorem 5.2 for s = 0 is essentially contained
in [9]; however, such a theorem is not explicitly stated there. Here, the main ideas of the proofs in [9] that imply
an s = 0 version of Theorem 5.2 are reorganized and presented to give a proof that also includes s > 0.
In order to identify conditions under which the sufficient conditions of Theorem 5.2 are satisfied, following

Gromoll et al. [9] we define a “good” event Br , r > 0, that has probability tending to one as r→� and on
which the fluid-scaled primitive processes, initial condition, and workload process are close to their respective
fluid limits (cf. Lemma 5.2). To bound the fluid-scaled workload from below, we introduce a second event Dr

N

on which the fluid-scaled initial workload is small. On Br ∩ D̆r
N , where D̆

r
N denotes the complement of D

r
N , it

turns out that the fluid-scaled workload is bounded below from time zero on (cf. Lemma 5.5). In particular, the
sufficient conditions of Theorem 5.2 hold on Br ∩ D̆r

N for s = 0. On Br ∩Dr
N , we show that there is a positive,

deterministic time TE, after which the fluid-scaled workload is bounded below (cf. Lemma 5.5). In order to
verify that the sufficient conditions of Theorem 5.2 hold on Br ∩Dr

N for s = TE, there is still a need to verify
that no large atoms have formed by time TE. For this, we will show that, despite the fact that the fluid-scaled
queue length tends to grow, on Br ∩Dr

N it does so in a controlled manner. Thus, on Br ∩Dr
N , the fluid-scaled

queue length remains relatively small up to the time TE (cf. Lemma 5.6). In particular, no large atoms form by
time TE, since there simply isn’t much mass in the system by the time TE.
On Br ∩Dr

N , there is also a need to prove the controlled-oscillations condition up to the time TE. In fact, it
is actually necessary to maintain some sort of control for a time slightly beyond TE in order to rule out big
oscillations at TE. This is easily handled since, on Br ∩Dr

N , the fluid-scaled queue length is small (even up to
time 2TE), and therefore does not admit large oscillations (cf. the proof of Theorem 5.3).
We begin by stating a preliminary lemma in which we define the so-called good events Br , for r > 0, and

give a lower bound on the probability of Br for r sufficiently large.

Lemma 5.2. Let ���&	 be strictly supercritical data. Consider a sequence of processor sharing queues as
defined in §3.3.1, satisfying assumptions (45)–(52) for data ���&	. Let T > �4�	−1 and 0< E, M < 1 be given.
There exist strictly positive constants TE, l, M0, MT , N, K, P , D, and r0, and events �B

r�r>0, such that if r > r0,
then P�Br	≥ 1−M, and on Br , the following hold for all r > 0:

TE =
E

8�
(116)

l < TE (117)

sup
t∈�0� T−l�

�Er�t+ l	− �Er�t	 <
E

4
(118)

�Er�t	 < 2�t� t ∈ �0� T � (119)

��� �2r�0	�∨ �1� �2r�0	� < M0 (120)

�1�M0��	�C� <
E

4
(121)

MT = M0+ 2�T (122)

D <
l

2MT

(123)

sup
x∈�+
�1�x� x+D�� �2r�0	� < E

8
� (124)

N < min
{
DE

4
�2TE�3− 1	

}
(125)
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sup
t∈�0� T �

���� �2r�t	�− ��� �2r�0	�− �3− 1	t� < N

4
(126)

sup
t∈�0� T �

1
r

r �Er �t	∑
i=1

vri 1�vri >K�+��1�K��	� �2r�0	� < N

5
(127)

P = K

(
N

4
− N

5

)−1
� (128)

and for all n ∈ �0�1� 0 0 0 �N �, where N = 
T P/D�,

sup
t∈�0� T−l�

1
r

r �Er �t+l	∑
i=r �Er �t	+1

1�nD� �n+1	D	�v
r
i 	 <

E

4
�1��n−1/2	D� �n+3/2	D	� &�- (129)

The proof of Lemma 5.2 is omitted as it is much like the proof of Gromoll et al. [9, Lemma 5.2]; however,
we note that a key ingredient is a functional law of large numbers for Er and V r . We now summarize some
immediate consequences. First,

2TE ≤ T and TE < T − l- (130)

By (115), for t ≥ 0,
�1� �2r�t	� ≤ �1� �2r�0	�+ �Er�t	- (131)

This, together with (119), (120), and (122), implies that on Br ,

sup
t∈�0� T �

�1� �2r�t	� ≤MT - (132)

In addition, by (126), on Br ,

��� �2r�0	�+ �3− 1	t− N

4
≤ ��� �2r�t	� ≤ ��� �2r�0	�+ �3− 1	t+ N

4
� t ∈ �0� T �- (133)

The next theorem gives sufficient conditions under which the controlled-oscillations condition holds.

Theorem 5.2. Let g ∈C1
b��+	, T > �4�	−1, and 0< Ẽ�M < 1. Set E= Ẽ/2�
g
� ∨ 1	. Let TE, l, M0, MT , N,

K, P , D, and r0 be the constants, and �Br�r>0 be the events, given by Lemma 5.2. Set

�=min
{
l�

Ẽ

4PMT �
g′
� ∨ 1	
�
D

P
�1
}
- (134)

Suppose that 0≤ s < T − l, 0< r , and Cr
s is an event such that C

r
s ⊂ Br , and on Cr

s ,

sup
x∈�+
�1�x� x+D�� �2r�s	� ≤ E

2
(135)

and

inf
t∈�s� T �

��� �2r�t	� ≥ N

4
- (136)

Then, on Cr
s ,

sup
t∈�s� T−��

sup
h∈�0� ��

��g� �2r�t+h	�− �g� �2r�t	�� ≤ Ẽ- (137)

In order to prove Theorem 5.2, we need Lemmas 5.3 and 5.4 below. The first lemma, Lemma 5.3, implies
that if the fluid-scaled workload is bounded below, then so is the fluid-scaled queue length. This lemma (and
its proof) is much like Gromoll et al. [9, Lemma 5.4]. The second lemma, Lemma 5.4, implies that in the
presence of (135) and (136) there is an upper bound for the amount of mass that �2r�t	 can have concentrated
near the origin. This lemma (and its proof) is much like Gromoll et al. [9, Lemma 5.5]. These two lemmas
are used below to prove Theorem 5.2. The respective proofs of Lemmas 5.3 and 5.4 are much like those
of [9, Lemmas 5.4 and 5.5], except that time zero is replaced by a positive time s. Readers interested in this
analysis are referred to [9].
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Lemma 5.3. Let T > �4�	−1 and 0< E�M < 1. Let TE, l, M0, MT , N, K, P , D, and r0 be the constants, and
�Br�r>0 be the events, given by Lemma 5.2. Suppose that 0 ≤ s < T − l, 0 < r , and Cr

s is an event such that
Cr
s ⊂ Br and (136) holds on Cr

s . Then, on Cr
s ,

inf
t∈�s� T �

�1� �2r�t	� ≥ 1
P
- (138)

Lemma 5.4. Let T > �4�	−1 and 0< E, M < 1. Let TE, l, M0, MT , N, K, P , D, and r0 be the constants, and
�Br�r>0 be the events, given by Lemma 5.2. Suppose that 0 ≤ s < T − l, 0 < r , and Cr

s is an event such that
Cr
s ⊂ Br and both (135) and (136) hold on Cr

s . Then, on Cr
s ,

sup
t∈�s� T �

�1�0� D�� �2r�t	� ≤ E- (139)

Proof of Theorem 5.2. First, note that �s� T − �� is nonempty by (134) and since s < T − l. Fix t ∈
�s� T − �� and h ∈ �0� ��. Observe that, by (138), on Cr

s ,

�Sr
t� t+h ≤

h

infu∈�s� T ��1� �2r�u	� ≤ hP- (140)

A first-order Taylor expansion of g gives the following estimate on Cr
s for all y ∈ � �Sr

t� t+h��	:
�g�y− �Sr

t� t+h	− g�y	� = �− �Sr
t� t+hg

′�wy	� ≤ hP
g′
�� (141)

for some wy ∈ �y− �Sr
t� t+h� y�, where the inequality follows by (140). Subtracting �g� �2r�t	� from both sides of

equation (115) and using the fact that �1�0��	g	�· − �Sr
t� t+h	= 1� �Srt� t+h��	�·	g�· − �Sr

t� t+h	 yields that, on Cr
s ,

��g� �2r�t+h	�− �g� �2r�t	�� =
∣∣∣∣�1� �Srt� t+h��	�·	�g�· − �Sr

t� t+h	− g�·		� �2r�t	�− �1�0� �Srt� t+h�g� �2r�t	�

+ 1
r

r �Er �t+h	∑
i=r �Er �t	+1

�1�0��	g	�v
r
i − �Sr

Ur
i /r� t+h	

∣∣∣∣
≤ ��1� �Srt� t+h��	�·	�g�· − �Sr

t� t+h	− g�·		�� �2r�t	�+ 
g
��1�0� hP�� �2r�t	�
+ 
g
�� �Er�t+h	− �Er�t		

≤ hP
g′
��1� �2r�t	�+ 
g
��1�0� hP�� �2r�t	�+ 
g
�� �Er�t+h	− �Er�t		�

where the first inequality is by (140) and the second is by (141). Now, taking the supremum over h ∈ �0� �� and
t ∈ �s� T − ��, we see that, on Cr

s ,

sup
t∈�s� T−��

sup
h∈�0� ��

��g� �2r�t+h	�− �g� �2r�t	��

≤ sup
t∈�s� T−��

��P
g′
��1� �2r�t	�+ 
g
��1�0� �P�� �2r�t	�+ 
g
�� �Er�t+ �	− �Er�t			

≤ sup
t∈�s� T−��

(
Ẽ

4MT

�1� �2r�t	�+ 
g
��1�0� D�� �2r�t	�+ 
g
�� �Er�t+ l	− �Er�t		

)

≤ Ẽ

4MT

MT +
g
�E+
g
�
E

4

≤ Ẽ

4
+ Ẽ

2
+ Ẽ

8
< Ẽ�

where the second inequality is by (134) and the third is by (132), (139), and (118). �

The next objective is to choose s and Cr
s for use in Theorem 5.2. We will choose s = 0 in combination with

sets Cr
0 where the initial workload is sufficiently large, and we will choose s = TE in combination with sets C

r
TE

where the initial workload is small. For this, given N > 0, for each r > 0, let

Dr
N =

{
��� �2r�0	� ≤ N

2

}
�

and let D̆r
N be the complement of D

r
N .
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Lemma 5.5. Let T > �4�	−1 and 0< E�M < 1. Let TE, l, M0, MT , N, K, P , D, and r0 be the constants, and
�Br�r>0 be the events, given by Lemma 5.2. On Br ∩Dr

N ,

inf
t∈�TE� T �

��� �2r�t	� ≥ N

4
- (142)

Also, on Br ∩ D̆r
N ,

inf
t∈�0� T �

��� �2r�t	� ≥ N

4
- (143)

Proof. By using (133), (125), and the definition of Dr
N ,

��� �2r�t	� ≥ �3− 1	TE−
N

4
>

N

2
− N

4
= N

4
� t ∈ �TE� T �� on Br ∩Dr

N�

��� �2r�t	� ≥ N

2
− N

4
= N

4
� t ∈ �0� T �� on Br ∩ D̆r

N- �

Lemma 5.5 implies that (136) holds on Br ∩ D̆r
N for s = 0 and on Br ∩Dr

N for s = TE. On B
r ∩ D̆r

N , (135) holds
for s = 0; this is an immediate consequence of (124). On the other hand, as a consequence of the next lemma,
(135) holds on Br ∩Dr

N for s = TE.

Lemma 5.6. Let T > �4�	−1 and 0< E, M < 1. Let TE, l, M0, MT , N, K, P , D, and r0 be the constants, and
�Br�r>0 be the events, given by Lemma 5.2. Then, on Br ∩Dr

N ,

�1� �2r�0	� ≤ E

4
(144)

and

sup
t∈�0� TE�

�1� �2r�t	� ≤ E

2
- (145)

Proof. On Br ∩Dr
N , by (124), the definition of D

r
N , and (125),

�1� �2r�0	� = �1�0� D�� �2r�0	�+ �1�D��	� �2r�0	�

≤ E

8
+ 1
D
��� �2r�0	�

≤ E

8
+ N

2D

≤ E

4
-

By (131), (144), (119), and (116), on Br ∩Dr
N ,

sup
t∈�0� TE�

�1� �2r�t	� ≤ E

4
+ 2�TE =

E

2
- �

We are now ready to verify conditions sufficient to imply the tightness of ��g� �2r�·	��r>0, for each g ∈C1
b��+	.

Theorem 5.3. Let g ∈C1
b��+	, T > 0, and 0< Ẽ�M < 1. Then, there exist M , � > 0, and r0 > 0, such that

r > r0 implies

P
(
sup

t∈�0� T �
��g� �2r�t	�� ≤M

)
≥ 1−M� (146)

P
(

sup
t∈�0� T−��

sup
h∈�0� ��

��g� �2r�t+h	�− �g� �2r�t	�� ≤ Ẽ

)
≥ 1−M- (147)

Proof. Define E= Ẽ/2�
g
�∨1	. Without loss of generality, assume that T > �4�	−1. Then, by Lemma 5.2,
there exist constants TE, l,M0,MT , N, K, P , D, and r0, and events �B

r�r>0, such that r > r0 implies P�B
r	≥ 1−M,

and on Br for all r > 0, (116)–(132) hold. Let � be given by (134) and define

M = �
g
� ∨ 1	MT -
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To prove (146), observe that on Br , by (132),

sup
t∈�0� T �

��g� �2r�t	�� ≤ 
g
� sup
t∈�0� T �

�1� �2r�t	�

≤ 
g
�MT

≤ M-

Next, we prove (147). Let s = 0 and Cr
0 = Br ∩ D̆r

N . Then, (124) implies (135) and (143) implies (136). So,
by Theorem 5.2, (137) holds on Br ∩ D̆r

N for all r > 0 with s = 0. For s = TE and Cr
TE
= Br ∩Dr

N , (145) implies
(135) and (142) implies (136). So, by Theorem 5.2, (137) holds on Br ∩Dr

N for all r > 0 with s = TE. Also on
Br ∩Dr

N ,

sup
t∈�0� TE�

sup
h∈�0� ��

��g� �2r�t+h	�− �g� �2r�t	�� ≤ 2 sup
t∈�0� TE+��

��g� �2r�t	��

≤ 2
g
� sup
t∈�0�2TE�

�1� �2r�t	�

≤ 2
g
�
(
E

4
+ 4�TE

)

= 2
g
�
3E
4
≤ Ẽ- (148)

Here, the second line uses � ≤ l and (117), and the third line uses (131), (144), and (119). The fourth line
uses (116). Thus, the desired estimate holds on Br . Since, for r > r0, P�B

r	≥ 1−M, (147) holds. �

Proof of Tightness for Theorem 5.1. Recall that it suffices to show conditions (T.1) and (T.2) hold. Let
T > 0, 0< Ẽ, M < 1. Define NT =max�MT �N/4+M0+ �3− 1	T �. To show (T.1), define

CT �M = �� ∈�F � �1� ��∨ ��� �� ≤NT �-

Since ��� �� ≤NT implies �1�K��	� �� ≤NT /K, we have

sup
�∈CT �M

�1�K��	� �� −→ 0�

as K→�, which implies that CT �M ⊂�F is relatively compact (cf. Kallenberg [11, Theorem 15.7.5]). By (132),
(133), and (120),

lim inf
r→� P� �2r�t	 ∈CT �M for all t ∈ �0� T �	≥ 1−M-

Replace CT �M with its closure and (T.1) is proved. Finally, (T.2) follows directly from Theorem 5.3 by applying
a standard tightness criterion for real-valued processes (cf. Ethier and Kurtz [5, Chapter 3, Corollary 7.4]). �

5.3. Proof of limit point properties. In this section, we complete the proof of Theorem 5.1 by showing
that any limit point of the sequence ��2r�·	�r>0 is a.s. a fluid model solution for the strictly supercritical data
���&	. In particular, we show that a.s., each sample path is continuous (cf. (S.1)), has no atoms at the origin
for all time (cf. (S.2)), and is a solution of the strictly supercritical fluid model equations (cf. (S.3)). In order
to prove (S.3), we first show that a.s. the sample paths have positive mass at all positive times (cf. (21)), which
eliminates the need for ��·	 in (16) and simplifies the proof. The proofs of (S.1)–(S.3) are modifications of
those in Gromoll et al. [9] for (C.1)–(C.4). Care is needed in adapting these proofs when the initial measure for
the limit point is the zero measure.
For this, fix a limit point �2F�·	 of the sequence ��2r�·	�r>0. Since �2F�·	 is a limit point of ��2r�·	�r>0, there

exists a subsequence ��2r ′�·	�r ′>0 ⊂ ��2r�·	�r>0 such that �2r ′�·	⇒ �2F�·	 as r ′ → �. To ease notation for the
remainder of the proof, we relabel r ′ as r , remembering that we have passed to a subsequence which converges
in distribution to �2F�·	.

5.3.1. Continuity of limit points: Verification of (S.1). From Theorem 5.3, and more specifically from
(147), it follows that a.s., �2F�·	 has continuous sample paths. To see this, choose a countable set V ⊂C1

b��+	
that separates elements of �F (cf. Ethier and Kurtz [5, Chapter 3, Proposition 4.2.ff]). By (147), for each
g ∈ V ⊂ C1

b��+	, the real-valued process �g� �2F�·	� a.s. has continuous sample paths. Since V is a countable
separating class for �F , the result follows.
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5.3.2. Positive total mass and no atom at the origin for all positive times: Verification of (21) and (S.2).
Here, it is shown that for each T > �4�	−1, a.s.,

�1�0�� �2F�t	� = 0� for all t ∈ �0� T 	� (149)

�2F�t	 �= 0� for all t ∈ �0� T 	- (150)

Note that by (52), �1�0�� �2F�0	� = 0. Thus, in order to prove (149) and (150), it suffices to show that for each
0<S < T , a.s.,

�1�0�� �2F�t	� = 0� for all t ∈ �S� T 	� (151)

�2F�t	 �= 0� for all t ∈ �S� T 	- (152)

The proof of (151) and (152) is a simple modification of the proof of Gromoll et al. [9, Equations (5.51)–(5.53)],
which we now explain. For this, let Qr and QF be the probability laws induced on D��0��	��F 	 by �2r�·	 and
�2F�·	, respectively. Fix 0<S < T and define the sets A′ and A′′′ as in [9], except replace the time interval �0� T 	
by �S� T 	:

A′ =
{
��·	 ∈D��0��	��F 	� sup

t∈�S� T 	
�1�0�� ��t	�> 0

}
�

A′′′ =
{
��·	 ∈D��0��	��F 	� inf

t∈�S� T 	
�1� ��t	� = 0

}
-

Let A=A′ ∪A′′′. Clearly, any sample path of �2F�·	 which is not an element of A satisfies (151) and (152). So,
it suffices to show that A is contained in a QF-null set.
In order to show that A is contained in a QF-null set, the Borel-Cantelli argument in Gromoll et al. [9] is

adapted to the present situation. To do this, for each n ∈ �, choose a pair 0< En, Mn < 1 as in [9], except we
also require that En < 8�S; that is, we require that

∑�
n=1 Mn <�, En < 8�S for each n ∈�, and �En�Mn	→ �0�0	

as n→�. Then, by Lemma 5.2, for each n ∈ � there exist strictly positive constants TEn , ln, M0� n, MT�n, Dn,
Nn, Kn, Pn, and r0� n, and events �B

r
n�r>0 such that r > r0� n implies P�B

r
n	≥ 1−Mn, and (116)–(128) hold on Br

n

with the above constants in place of the analogous ones appearing there. Note that the additional requirement
on En implies that TEn < S. Using (142), (145), and Lemmas 5.3 and 5.4 for s = TEn and Cr

TEn
= Br

n ∩Dr
Nn
, using

(124), (143), and Lemmas 5.3 and 5.4 for s = 0 and Cr
0 = Br

n ∩ D̆r
Nn
, and using the fact that TEn < S, it follows

that, for each r > 0, n ∈�, and 0< cn < Dn, on the event B
r
n,

inf
t∈�S� T 	

�1� �2r�t	� ≥ inf
t∈�TEn � T �

�1� �2r�t	� ≥ 1
Pn
� (153)

sup
t∈�S� T 	

�1�0� cn	� �2r�t	� ≤ sup
t∈�TEn � T �

�1�0� cn	� �2r�t	� ≤ En- (154)

Fix �cn�n∈� such that cn→ 0 as n→�. For each n ∈�, let

A′n =
{
��·	 ∈D��0��	��F 	� sup

t∈�S� T 	
�1�0� cn	� ��t	�> En

}
�

A′′′n =
{
��·	 ∈D��0��	��F 	� inf

t∈�S� T 	
�1� ��t	�< 1

Pn

}
-

Then, use a Borel-Cantelli argument as in [9] to complete the proof.

5.3.3. The derivation of the strictly supercritical fluid model equations: Verification of (S.3). The deriva-
tion of (16) for �2F�·	 proceeds in a manner nearly identical to the derivation of Gromoll et al. [9, Equation
(3.3)] (cf. [9, p. 849, Proof of Property (3)]). The essential difference is that time zero is replaced by a positive
time. In particular, by (150), it suffices to show that, a.s. for all g ∈� and 0< s ≤ t <�,

�g� �2F�t	� = �g� �2F�s	�+
∫ t

s

�g′� �2F�u	�
�1� �2F�u	� du+��t− s	�g� &�- (155)

For this, fix T > �4�	−1 and 0<S < T <�, and for each n choose a pair �En�Mn	 as in §5.3.2. Then, to obtain
(155) for each S ≤ s ≤ t ≤ T , proceed as in the derivation of [9, Equation (3.3)], except replacing time zero with
time s and using (153) above in place of [9, Equation (5.55)].
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5.4. Proof of convergence to fluid model solutions.
Proof of Theorem 3.7. By Theorem 5.1, the sequence ��2r�·	�r>0 of measure-valued processes is tight,

and any limit point �2F�·	 has sample paths which a.s. are fluid model solutions for the strictly supercritical
data ���&	. By (50), �2F�0	 is equal in distribution to C, so it remains to show that �2F�·	 is unique in law.
Theorem 3.1 asserts that fluid model solutions for the data ���&	 are unique given an initial value 7 ∈ �c

F .
More precisely, given a 7 ∈�c

F , the unique fluid model solution �2�·	 for critical data ���&	 with initial value
�2�0	= 7 is given by >�7	= �27�·	. Since �2F�0	 is equal in distribution to C, we have by (52) that �2F�0	 ∈�c

F

a.s. Thus, we see that a.s.,
�2F�·	=>� �2F�0		- (156)

By Theorem 3.3, the mapping > is continuous. So, the law of �2F�·	 is uniquely determined by the law of the
random measure C, which completes the proof. �
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