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ABSTRACT

We show that the fluid loss ratio in a fluid queue with finite bufferb and constant link capacityc is

always a jointly convex function ofb andc. This generalizes prior work [7] which shows convexity

of the (b; c) trade-off for large number of i.i.d. multiplexed sources, using the large deviations rate

function as approximation for fluid loss. Our approach also leads to a simpler proof of the prior result,

and provides a stronger basis for optimal measurement-based control of resource allocation in shared

resource systems.
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1 Introduction

A queueing system can be described as a set of resources, typically service capacities (orbandwidthin

communication networks), and buffers (where excess traffic can be stored temporarily). The traffic offered

to the queues is determined by the routing and scheduling disciplines, which in turn determines system

performance. In general, the resources at the queues have to be designed such that a performance criterion

is satisfied, for instance the buffer overflow probability has to be below some small fraction�. For a fixed

performance level, the resources involved oftentrade off. As each of these resources has its specific price, it

is important to have more detailed knowledge of this trade-off. Hence, efficient (i.e., economical) network

design is enabled through insight into the shape of the resulting ‘iso-performance curve’.

In this note we focus on one of the simplest queueing networks: a single queue, with finite buffer size

b and constant service ratec, fed by a stationary fluid (arbitrarily divisible) source. We show that the fluid

loss ratiofunction�(c; b) is jointly convex inc andb. (This in particular implies that for a given� > 0, the

trade-off curve betweenb andc, defined by�(c; b) = � is convex.) A crucial observation in our analysis is

the following general principle:

Sharing resources is always better than partitioning.More precisely: compare (1) a ‘parti-

tioned’ system in which random input processesfi feeding queues with resources(ci; bi) (with

i = 1; 2), with (2) a ‘shared’ system in whichf1+ f2 feeds a queue with bufferb1+ b2 and link

ratec1 + c2. The amount of traffic lost in the shared system is dominated by the (total) amount

of traffic lost in the partitioned system.

Our analysis shows that this general principle easily implies the joint convexity of�(c; b). In the large

deviations regime, which involves scaling up the resources asb ! nb andc ! nc, and replacing the input

process byn i.i.d. copies, previous work established that theoverflow probabilitydecays exponentially inn

[2, 3, 10], with decayrate functionI(c; b). It is proved in [7] that the trade-off curve defined byI(c; b) = Æ

is convex. Based on our observations about�(c; b), we also give a simpler proof of that result.

However, the main advance of this work is the generalization of [7] by proving the joint convexity of

the loss ratio�(c; b), even away from the asymptotic largen regime, using simpler arguments that those

in [7]. This generalization can offer several practical advantages. Firstly, it facilitates resource partitioning.

As in [7], this can be done optimally using our results for inhomogeneous traffic and differential QoS

requirements, and unlike [7], even when each traffic class has only a few connections. Secondly, joint

convexity permits use of more complex QoS metrics without losing the computational tractability of the

multi-class resource optimization problem. Finally, when measurement-based control is feasible, the loss

ratio �(c; b) is a more appropriate, and more directly measurable, parameter in comparison to the rate

function I(c; b). These considerations make it desirable to directly prove the universal joint convexity of

�(c; b) without usingI(c; b) as approximation. Related convexity results were presented in [1, 6].

The rest of this note is organized as follows. Section 2 gives a number of key sample path relations, and

Section 3 establishes the convexity of�(b; c). In Section 4 the large deviations regime is examined, and the

convexity of the trade-off curve for buffer overflow probability is proved before conclusion in Section 5.
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2 Key sample path relations

Consider a single server with (constant) processing capacityc, and a buffer sizeb. The server is fed by a

fluid input flow. We denote byf(t) the cumulative amount of fluid arrived by timet 2 R. In this section

we assume thatf(�) is a fixed function (interpreted later as a sample path of a random process), which is

non-decreasing continuous. Also, we consider the evolution of such (fluid) system in the interval[0;1), so

f = (f(t); t � 0) and, by convention,f(0) = 0.

Suppose the buffer size is finite,b < 1, and the initial queue length (buffer content) isq(0), where

0 � q(0) � b. Then, the queue length at every timet � 0 is determined as follows:

q(t) = q(0) + f(t)� ct+ h[q(0); f; c; b](t) � g[q(0); f; c; b](t); (1)

where the lower and upperregulationsh andg are unique non-decreasing continuous functions such that

Ab 0 � q(t) � b; t � 0;

Bb h(0) = g(0) = 0;

Cb

Z t

0
Ifq(s) > 0gdh(s) = 0; t � 0; and

Db

Z t

0
Ifq(s) < bgdg(s) = 0; t � 0;

see Harrison [5], Proposition 2.4.6.

The functionsh andg we will also refer to as the(cumulative) idlenessand(cumulative) lossfunction,

respectively.

In case of an infinite buffer,b =1, the queue length is defined similarly:

q(t) = q(0) + f(t)� ct+ h[q(0); f; c](t); (2)

with

A1 0 � q(t); t � 0;

B1 h(0) = 0;

C1

Z t

0
Ifq(s) > 0gdh(s) = 0; t � 0:

In addition, for an infinite buffer the expression for the idlenessh is explicit (see [5], Proposition 2.2.3):

h(t) = �[ inf
s2[0;t]

(q(0) + f(s)� cs) ^ 0] ;

where^ denotes the minimum of two numbers. Note that, for anyt � 0, q(t) is monotone non-decreasing

in the initial conditionq(0).

The following two simple lemmas are needed to prove the key Lemma 2.3 below. The first lemma shows

that (for an infinite-buffer system) the queue length is smaller for a pooled system than the sum of the queue

lengths in partitioned systems.
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Lemma 2.1 Letq1; q2; q, be the queue length functions in three infinite buffer systems, defined by the triples

(q1(0); f1; c1); (q2(0); f2; c2), and (q(0); f; c), respectively, whereq(0) = q1(0) + q2(0), f = f1 + f2,

c = c1 + c2. Then,

q(t) � q1(t) + q2(t); 8t � 0 : (3)

Proof. If

inf
s2[0;t]

(q(0) + f(s)� cs) � 0 (4)

then

h[q(0); f; c](t) = � inf
s2[0;t]

(q(0) + f(s)� cs)

� � inf
s2[0;t]

(q1(0) + f1(s)� c1s)� inf
s2[0;t]

(q2(0) + f2(s)� c2s)

� h[q1(0); f1; c1](t) + h[q2(0); f2; c2](t) ;

which implies (3). The case when condition (4) does not hold is trivial, because thenh[f; c](t) = 0.

The following lemma essentially claims that the loss functiong defined earlier determines theminimum

possiblecumulative amount of fluid which is lost in a system with finite bufferb. Namely, if we assume

that the fluid is being “lost” according tosome(non-decreasing continuous) functionĝ and with such loss

function the buffer does not overflow, thenĝ(t) � g(t) for all t � 0.

Lemma 2.2 Consider a 4-tuple(q(0); f; c; b), 0 � q(0) � b, and suppose non-decreasing continuous

functions (oft) ĥ and ĝ are such that

q̂(t) = f(t)� ct+ ĥ[f; c; b](t) � ĝ[f; c; b](t);

with

A0b 0 � q̂(t) � b; t � 0;

B0b ĥ(0) = ĝ(0) = 0;

C0b

Z t

0
Ifq̂(s) > 0gdĥ(s) = 0; t � 0:

(The condition that̂g can only increase when̂q(t) is equal tob is absent.) Then,

ĝ(t) � g[q(0); f; c; b](t); 8t � 0: (5)

Proof. This result can be easily obtained for example by slightly extending the proof of Proposition

2.4.6 in [5]. Namely, the pair(h[q(0); f; c; b]; g[q(0); f; c; b]) is theuniqueminimal fixed point of amono-

toneoperator mapping a pair(h(1); g(1)) into a pair(h(2); g(2)). It is easy to see that(ĥ; ĝ) is a fixed point

of that operator, and therefore the majorization (5) does hold. We omit details.

The following lemma is the key in establishing the convexity of�(c; b), where�(c; b) is the fraction of

lost fluid in a finite buffer system with bufferb and server ratec.
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Lemma 2.3 Consider three finite buffer systems defined by 4-tuples(q1(0); f1; c1; b1), (q2(0); f2; c2; b2),

and (q(0); f; c; b), respectively, whereq(0) = q1(0) + q2(0), f = f1 + f2, c = c1 + c2, andb = b1 + b2.

Then,

g[q(0); f; c; b](t) � g[q1(0); f1; c1; b1](t) + g[q2(0); f2; c2; b2](t) 8t � 0 :

Proof. Using Lemma 2.1, it is easy to verify directly thatq(0), f , ĝ = g[q1(0); f1; c1; b1] +

g[q2(0); f2; c2; b2], and

ĥ(t) = � inf
s2[0;t]

(q(0) + f(s)� ĝ(s)� cs) ;

satisfy the conditions of Lemma 2.2. Therefore,g(t) � ĝ(t) for all t.

Remark. The results of this section can be easily generalized in at least two directions. (The proofs

are essentially same, with straightforward adjustments and rephrasings.) First, both the service rate and

the buffer size can be time-varying: the cumulative potential amount of servicect can be replaced by a

continuous non-decreasing functionc(t), and the buffer sizeb by a continuous functionb(t). Secondly, the

arrival functionf does not have to be continuous, as long as the jumps are interpreted as non-zeroamounts

of fluidsarriving instantly,not “discrete customers” requiring certain amount of service before leaving the

system.

3 Convexity of the fluid loss ratio

In this section we prove the convexity result for the fluid loss ratio. The importance and universality of

this result is in the fact that the convexity holds for a system with any fixed parameters – not only in an

asymptotic regime.

Let f = (f(t); t � 0) now be arandom processwith continuous non-decreasing paths and stationary

increments. We can use normalizationf(0) = 0 without loss of generality. The mean (fluid) arrival rate

m := Ef(1)

is well defined. The steady state fraction of lost fluid in a finite buffer system defined by(f; c; b) is defined

as follows:

�(c; b) :=
1

m
lim
t!1

Efg[q(0); f; c; b](t)g

t
;

assuming that the right-hand side is well defined and does not depend onq(0). (It is easy to see that this

assumption holds in virtually all cases of interest, and so the above definition matches most of the common

definitions of steady state ‘loss probability’ or ‘fluid loss ratio’ in systems with finite buffers.)

Theorem 3.1 Suppose the random input flow processf with stationary increments is fixed. Then the func-

tion �(c; b) is jointly convex inc andb.
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Proof. Consider a fixed sample pathf of the input process, and a fixed initial buffer contentq(0). Let

us fix positive constants�1 and�2, such that�1 + �2 = 1, and positive constantsc; b; c1; b1; c2; b2, such

thatc = �1c1 + �2c2 andb = �1b1 + �2b2. We have for anyt � 0:

g[q(0); f; c; b](t) � g[�1q(0); �1f; �1c1; �1b1](t) + g[�2q(0); �2f; �2c2; �2b2](t)

= �1g[q(0); f; c1; b1](t) + �2g[q(0); f; c2; b2](t);

where the inequality follows directly from Lemma 2.3 and the equality follows from the fact that an (aux-

illary) system defined by(�iq(0); �if; �ici; �ibi), i = 1; 2, is the system defined by(q(0); f; ci; bi) ‘scaled

down’ by a factor�i.

Remark. Notice that the proof of Theorem 3.1 in fact establishes a stronger result, namely that thefluid lost

up to any timet is jointly convex inc andb.

4 Convexity of the trade-off curve for buffer overflow probability in the

large deviations regime

In this section we consider a system withinfinite buffer space (i.e., no traffic loss). We consider traffic from

n independent, statistically identical, sources feeding into a buffered resource. This resource is modeled as

a queue with constant depletion ratenc. As in the previous section, a single traffic source is described by a

random processf = (f(t); t � 0) continuous non-decreasing paths and stationary increments. (It will be

clear from our development that the continuity assumption is not important.) We remind thatf(t) � f(0)

represents the amount of traffic arrived by timet, so we assume thatf(0) = 0.

Since we consider an infinite buffer system we assume that the mean arrival rate (for a single source)

therefore, the mean (fluid) arrival rate

m = Ef(1) < c;

so that the system is stable.

We are interested in the steady-stateoverflow probabilitypn(c; b), which is the probability of the queue

length exceeding levelnb. (Here we use notationb for a ‘threshold value’ rather than the buffer size.) Under

non-restrictive conditions, this probability decaysexponentiallyin the scaling parametern. We define the

corresponding exponentialdecay rate:

I(c; b) := � lim
n!1

1

n
log pn(c; b):

The key result onI(b; c), based on large deviations arguments, is given below in Theorem 4.3. A major

contribution to the development of these results was given by Botvich and Duffield [2], whereas related

results were derived in [3, 10]. Recently, a significant improvement was made by Likhanov and Mazumdar

[8].
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Assumption 4.1 See[8] – AssumeIt(c; b) is larger than� log t, for t large enough, and a positive�, where

It(c; b) := sup
�>0

�
�(b+ ct)� log Ee�f(t)

�
: (6)

An additional assumption has to be made on the regularity of the traffic. For this purpose we here use

Hypothesis 1(iv) from [2], which essentially implies that the decay rate for discrete time carries over to

continuous time. This is proven analogously to the proof of Theorem 1 of [2, p. 302].

Hypothesis 1(iv) is stated as follows. Define

fnt;r := sup
0<r0<r

nX
i=1

fi(t)� fi(t� r0);

wherefi’s are i.i.d. copies of a single source process. (To be precise, the above notation also assumes that

the processf is extended to be defined for all realt.) Then it is required that

lim sup
r#0

lim sup
n!1

1

n
sup
t�0

log E exp
�
�fnt;r

�
� 0:

It is easily verified that, due to the stationarity and i.i.d. assumptions, this requirement reduces to the follow-

ing.

Assumption 4.2 See[2] – Assume that for all� 2 R,

lim sup
r#0

log E exp

�
� sup
0<r0<r

f(r0)

�
� 0:

Theorem 4.3 See[2, 9] – Under Assumptions 4.1 and 4.2,

I(c; b) = inf
t>0

It(c; b) : (7)

Now, let us recall the meaning ofIt(c; b). By the classical Cram´er theorem (cf. Theorem 2.2.3 in [4]),

It(c; b) is nothing else but the value of the large deviationsrate functionfor the sequence of distributions of

1

n

nX
k=1

fk(t)

at point b + ct. This in particular means that, for a givent, It(c; b) is essentially a function of a single

variableb+ ct. Using standard properties of rate functions, we can rewrite (7) as

I(c; b) = inffIt(�; �) j t > 0; � � 0; � � 0; � + �t � b+ ctg: (8)

Theorem 4.4 Defined implicitly byI(c; b) = Æ with Æ > 0, bufferb as a function of service capacityc, is

convex.

Proof. Let us fix two (positive) pairs(c1; b1) and(c2; b2) such thatI(c1; b1) = I(c2; b2) = Æ. Let us fix

positive�1 and�2, such that�1 + �2 = 1. Denotec = �1c1 + �2c2 andb = �1b1 + �2b2. We need to

show thatI(c; b) � Æ.
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Let t? 2 R be the value oft that optimizes (7) for the pair(c; b), and therefore(t?; c; b) optimizes the

right-hand side of (8). We obviously have the following property:

Either b+ ct? � b1 + c1t
? or b+ ct? � b2 + c2t

?: (9)

Without loss of generality, let us assume that the former inequality holds.

By (8) and (9), we have

Æ = I(c1; b1) � It?(c; b) = I(c; b):

Remark. Property (9) is of course a matter of simple arithmetic. However, it is key here, and can be

interpreted the same way as Lemma 2.1 (and in fact can be obtained as a simple corollary from it):

If the amount of fluidb + ct? arrives in the interval[0; t?] into the system with parameters(c; b), then

q(t?) � b. Therefore, if we partition the system into two, with parameters(�ici; �ibi), i = 1; 2, and feed the

amounts of fluid�i(b+ ct?) in [0; t?] into them, then the queue length must be at or above threshold�ibi in

at least one of them.

5 Conclusion

In this work, we have proved that the loss ratio is always a jointly convex function of buffer and band-

width sizes in buffer-bandwidth queuing systems, which also implies convexity of buffer-bandwidth trade-

off curves. This result generalizes previous work [7] that proves convexity of the loss function, approximated

by the large deviations rate function, for large numbers of multiplexed flows. Our results hence establish

that the same practical advantages mentioned in [7] regarding optimal design of partitioned buffer-bandwidth

systems continue to apply if the loss ratio were the criterion instead of the rate function, and without the

need for large numbers of multiplexed flows. Apart from theoretical generality, this may offer some practical

advantages in terms of more efficient resource allocation, better use of loss measurements, and the ability to

admit more complex QoS requirements.
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