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ABSTRACT

We show that the fluid loss ratio in a fluid queue with finite buffesind constant link capacity is
always a jointly convex function of andc. This generalizes prior work [7] which shows convexity

of the (b, ¢) trade-off for large number of i.i.d. multiplexed sources, using the large deviations rate
function as approximation for fluid loss. Our approach also leads to a simpler proof of the prior result,

and provides a stronger basis for optimal measurement-based control of resource allocation in shared
resource systems.
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1 Introduction

A queueing system can be described as a set of resources, typically service capach@sl(adthin
communication networks), and buffers (where excess traffic can be stored temporarily). The traffic offered
to the queues is determined by the routing and scheduling disciplines, which in turn determines system
performance. In general, the resources at the queues have to be designed such that a performance criterion
is satisfied, for instance the buffer overflow probability has to be below some small fracti@r a fixed
performance level, the resources involved ofrale off As each of these resources has its specific price, it
is important to have more detailed knowledge of this trade-off. Hence, efficient (i.e., economical) network
design is enabled through insight into the shape of the resulting ‘iso-performance curve’.

In this note we focus on one of the simplest queueing networks: a single queue, with finite buffer size
b and constant service ratefed by a stationary fluid (arbitrarily divisible) source. We show that the fluid
loss ratiofunction ®(c, b) is jointly convex inc andb. (This in particular implies that for a given> 0, the
trade-off curve betweehandc, defined by®(c, b) = € is convex.) A crucial observation in our analysis is
the following general principle:

Sharing resources is always better than partitioninglore precisely: compare (1) a ‘parti-
tioned’ system in which random input procesgefeeding queues with resourcgs, b;) (with

i = 1,2), with (2) a ‘'shared’ system in whicfy + f- feeds a queue with buffés + b, and link
ratec; + co. The amount of traffic lost in the shared system is dominated by the (total) amount
of traffic lost in the partitioned system.

Our analysis shows that this general principle easily implies the joint convexiyf@b). In thelarge
deviations regimewhich involves scaling up the resourceshas: nb andc — nc, and replacing the input
process by: i.i.d. copies, previous work established that tiverflow probabilitydecays exponentially in
[2, 3, 10], with decayate functionI(c, b). It is proved in [7] that the trade-off curve defined b, b) = ¢
is convex. Based on our observations abb(t, b), we also give a simpler proof of that result.

However, the main advance of this work is the generalization of [7] by proving the joint convexity of
the loss ratio®(c, b), even away from the asymptotic largeregime, using simpler arguments that those
in [7]. This generalization can offer several practical advantages. Firstly, it facilitates resource partitioning.
As in [7], this can be done optimally using our results for inhomogeneous traffic and differential QoS
requirements, and unlike [7], even when each traffic class has only a few connections. Secondly, joint
convexity permits use of more complex QoS metrics without losing the computational tractability of the
multi-class resource optimization problem. Finally, when measurement-based control is feasible, the loss
ratio ®(c,b) is a more appropriate, and more directly measurable, parameter in comparison to the rate
function I(c,b). These considerations make it desirable to directly prove the universal joint convexity of
®(c, b) without usingl(c, b) as approximation. Related convexity results were presented in [1, 6].

The rest of this note is organized as follows. Section 2 gives a number of key sample path relations, and
Section 3 establishes the convexityd®(fb, c). In Section 4 the large deviations regime is examined, and the
convexity of the trade-off curve for buffer overflow probability is proved before conclusion in Section 5.



2 Key sample path relations

Consider a single server with (constant) processing capacind a buffer sizé. The server is fed by a
fluid input flow. We denote by (¢) the cumulative amount of fluid arrived by time= R. In this section
we assume thaf(-) is a fixed function (interpreted later as a sample path of a random process), which is
non-decreasing continuous. Also, we consider the evolution of such (fluid) system in the ifitesug| so
f=(f(t), t >0)and, by conventionf (0) = 0.

Suppose the buffer size is finite,< oo, and the initial queue length (buffer content)qi®), where
0 < ¢(0) < b. Then, the queue length at every time 0 is determined as follows:

q(t) = q(0) + f(t) — ct + h[q(0), f, ¢, b](t) — g[a(0), f,c, b](2), 1)
where the lower and uppeggulationsh andg are unique non-decreasing continuous functions such that

Ab 0<Q() a 203

B,  h(0)=g(0) =
t

C /I{q( ) > 0bdh(s) =0, >0, and
0

t
D, /0 I{q(s) < bdg(s) =0, >0,

see Harrison [5], Proposition 2.4.6.

The functionsh andg we will also refer to as thécumulative) idlenesand(cumulative) losgunction,
respectively.

In case of an infinite buffel = oo, the queue length is defined similarly:

q(t) = q(0) + f(t) — ct + hlq(0), f,c](?), )
with

A  0<Zgq(t), t2>0,
B.  h(0) =0,

t
Coy / I{g(s) > 0}dh(s) = 0, ¢ > 0.
0
In addition, for an infinite buffer the expression for the idlenkss explicit (see [5], Proposition 2.2.3):

h(t) = —[sé%f;ﬂ(qw) + f(s) —es) AO],

whereA denotes the minimum of two numbers. Note that, for any 0, ¢(¢) is monotone non-decreasing
in the initial conditiong(0).

The following two simple lemmas are needed to prove the key Lemma 2.3 below. The firstlemma shows
that (for an infinite-buffer system) the queue length is smaller for a pooled system than the sum of the queue
lengths in partitioned systems.



Lemma 2.1 Letqy, g2, ¢, be the queue length functions in three infinite buffer systems, defined by the triples

(q1(0), f1,¢1), (q2(0), f2,¢2), and (¢(0), f, c), respectively, where(0) = ¢1(0) + q2(0), f = f1 + fa,
¢ =c1 +co. Then,

q(t) < q1(t) +q2(t), V¢ >0. )
Proof. If
nf ((0) + 7 (5) = e5) <0 @
then
Ma(0),£,e(0) = = inf (a(0) + () = cs)
< - sé%f:ﬂ(m (0) + fi(s) —e1s) — sé%f:ﬂ(@(o) + fa(s) — c2s)
< h[g1(0), f1, c1)(t) + hlg2(0), f2, 2] (1) ,
which implies (3). The case when condition (4) does not hold is trivial, becauséffigf(t) = 0. |

The following lemma essentially claims that the loss funcyatefined earlier determines th@&nimum
possiblecumulative amount of fluid which is lost in a system with finite bufferNamely, if we assume
that the fluid is being “lost” according teome(non-decreasing continuous) functigrand with such loss
function the buffer does not overflow, thét) > ¢(t) for all ¢ > 0.

Lemma 2.2 Consider a 4-tuple(¢(0), f,¢,b), 0 < ¢(0) < b, and suppose non-decreasing continuous
functions (oft) 4 and g are such that

G(t) = f(t) —ct+ Bf,c,b](t) — glf e, b](0),
with

Ay 0<(t)<b, t

By,  h(0) =¢(0) =0,

t ~
C, / I{g(s) > 0}dh(s) =0, t > 0.
0

(The condition thag can only increase whef(t) is equal tob is absent.) Then,

9(t) > g[q(0), f,c,b](t), Vt=>0. (5)

Proof. This result can be easily obtained for example by slightly extending the proof of Proposition
2.4.6 in [5]. Namely, the paith[q(0), f, c,b], g[q(0), f, ¢, b]) is theuniqgueminimal fixed point of anono-
toneoperator mapping a paji(t), ¢() into a pair(h(®, ¢@). Itis easy to see thdt, §) is a fixed point
of that operator, and therefore the majorization (5) does hold. We omit details. |

The following lemma is the key in establishing the convexityddé, b), where®(c, b) is the fraction of
lost fluid in a finite buffer system with buffdrand server rate.
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Lemma 2.3 Consider three finite buffer systems defined by 4-tugje®), 1, c1,b1), (g2(0), fo2, ca, b2),
and (¢(0), f, ¢, b), respectively, wherg(0) = q1(0) + ¢2(0), f = f1 + f2, ¢ = ¢1 + ¢c2, andb = by + bo.
Then,

glq(0), f, ¢, b](t) < glq1(0), f1,c1,01](t) + glg2(0), fa, c2,b2](t) YVt > 0.

Proof. Using Lemma 2.1, it is easy to verify directly that0), f, ¢ = ¢[q1(0), fi,c1,b1] +
g[q2(0)?f2362362]; and

~

h(t) = — inf (q(0) + f(s) —g(s) —cs),
s€[0,t]
satisfy the conditions of Lemma 2.2. Therefogé) < g(¢) for all ¢. [

Remark. The results of this section can be easily generalized in at least two directions. (The proofs
are essentially same, with straightforward adjustments and rephrasings.) First, both the service rate and
the buffer size can be time-varying: the cumulative potential amount of seftican be replaced by a
continuous non-decreasing functioft), and the buffer sizé by a continuous functioh(¢). Secondly, the
arrival functionf does not have to be continuous, as long as the jumps are interpreted as namaaris
of fluidsarriving instantly,not “discrete customers” requiring certain amount of service before leaving the
system.

3 Convexity of the fluid loss ratio

In this section we prove the convexity result for the fluid loss ratio. The importance and universality of
this result is in the fact that the convexity holds for a system with any fixed parameters — not only in an
asymptotic regime.

Let f = (f(¢), t > 0) now be arandom processvith continuous non-decreasing paths and stationary
increments. We can use normalizati(0) = 0 without loss of generality. The mean (fluid) arrival rate

m = Ef(1)

is well defined. The steady state fraction of lost fluid in a finite buffer system definéfl, byb) is defined
as follows:

D(e,h) 1= L i 00O}
assuming that the right-hand side is well defined and does not depefi@)on(It is easy to see that this
assumption holds in virtually all cases of interest, and so the above definition matches most of the common
definitions of steady state ‘loss probability’ or ‘fluid loss ratio’ in systems with finite buffers.)

Theorem 3.1 Suppose the random input flow procgswith stationary increments is fixed. Then the func-
tion ®(c, b) is jointly convex irc andb.



Proof. Consider a fixed sample paghof the input process, and a fixed initial buffer conte(i). Let
us fix positive constants; andas, such thate; + as = 1, and positive constanis b, ¢y, by, co, by, Such
thatc = ajc1 + asce andb = a1 b1 + asbe. We have for any > 0:

9(q(0), f,¢,b](t) < glarq(0), an f, arer, anbi](t) + glazq(0), ao f, agca, anbo](t)
= alg[Q(O)a fa C1, bl](t) + a29[q(0)7 fa C2, bZ](t)a

where the inequality follows directly from Lemma 2.3 and the equality follows from the fact that an (aux-
illary) system defined byw;q(0), a; f, aici, aibs), i = 1,2, is the system defined ky(0), £, ¢;, b;) ‘scaled
down’ by a factora;. |

Remark. Notice that the proof of Theorem 3.1 in fact establishes a stronger result, namely thaitithest
up to any time is jointly convex inc andb.

4 Convexity of the trade-off curve for buffer overflow probability in the
large deviations regime

In this section we consider a system wiitlfinite buffer space (i.e., no traffic loss). We consider traffic from
n independent, statistically identical, sources feeding into a buffered resource. This resource is modeled as
a queue with constant depletion rate As in the previous section, a single traffic source is described by a
random procesg = (f(t),t > 0) continuous non-decreasing paths and stationary increments. (It will be
clear from our development that the continuity assumption is not important.) We reminfi(that f(0)
represents the amount of traffic arrived by timso we assume thgt0) = 0.

Since we consider an infinite buffer system we assume that the mean arrival rate (for a single source)
therefore, the mean (fluid) arrival rate

m=Ef(l) <c,

so that the system is stable.

We are interested in the steady-staterflow probabilityp,, (¢, b), which is the probability of the queue
length exceeding levelb. (Here we use notatiolfor a ‘threshold value’ rather than the buffer size.) Under
non-restrictive conditions, this probability decaggoonentiallyin the scaling parameter. We define the
corresponding exponentidecay rate

.1
I(c,b) := —nll)rgo - log pn(c, b).

The key result o/ (b, ¢), based on large deviations arguments, is given below in Theorem 4.3. A major
contribution to the development of these results was given by Botvich and Duffield [2], whereas related
results were derived in [3, 10]. Recently, a significant improvement was made by Likhanov and Mazumdar

[8].



Assumption 4.1 Se€8] — Assumd,(c, b) is larger thana log ¢, for ¢ large enough, and a positive, where

Ii(c,b) :=sup (0(() + ct) — log Eegf(t)> . (6)
0>0

An additional assumption has to be made on the regularity of the traffic. For this purpose we here use
Hypothesis 1(iv) from [2], which essentially implies that the decay rate for discrete time carries over to
continuous time. This is proven analogously to the proof of Theorem 1 of [2, p. 302].

Hypothesis 1(iv) is stated as follows. Define

wheref;’s are i.i.d. copies of a single source process. (To be precise, the above notation also assumes that
the procesy is extended to be defined for all re¢al Then it is required that

1
lim sup lim sup — sup log Eexp (Gft"r) <0.
0 m—oo T >0 ’

It is easily verified that, due to the stationarity and i.i.d. assumptions, this requirement reduces to the follow-
ing.

Assumption 4.2 Seg[2] — Assume that for alt € R,

lim sup log Eexp <0 sup f(r')) <0.
rl0 o<r'<r

Theorem 4.3 Seq[2, 9] — Under Assumptions 4.1 and 4.2,

I(c,b) = glg Ii(c,b) . (7)

Now, let us recall the meaning df(c, b). By the classical Crasr’theorem (cf. Theorem 2.2.3 in [4]),
I(e, b) is nothing else but the value of the large deviaticate functionfor the sequence of distributions of

1 n
- > k()
k=1
at pointb 4 c¢t. This in particular means that, for a givenI;(c,b) is essentially a function of a single
variableb + ct. Using standard properties of rate functions, we can rewrite (7) as
I(c,b) = inf{L,(§,B) [t >0, £ > 0,8 >0, B+ &t > b+ ct}. (8)

Theorem 4.4 Defined implicitly byl (c,b) = ¢ with § > 0, bufferb as a function of service capacity is
convex

Proof. Let us fix two (positive) pairgc;, b;) and(cz, b2) such thatl (c;,by) = I(cq, be) = 6. Let us fix
positive @1 andasy, such thaty; + as = 1. Denotec = aqe; + asey andb = a1by + asbe. We need to
show thatl(c, b) > 4.



Let t* € R be the value of that optimizes (7) for the paiic, b), and therefordt*, ¢, b) optimizes the
right-hand side of (8). We obviously have the following property:

Either b + ct* > b + Clt* or b+ ct* > by + Cgt*. (9)

Without loss of generality, let us assume that the former inequality holds.
By (8) and (9), we have
d=1(c1,b1) < Ii=(c,b) = I(c,b).

Remark. Property (9) is of course a matter of simple arithmetic. However, it is key here, and can be
interpreted the same way as Lemma 2.1 (and in fact can be obtained as a simple corollary from it):

If the amount of fluich + ct* arrives in the intervall0, t*] into the system with paramete(s, b), then

q(t*) > b. Therefore, if we partition the system into two, with parametess;, a;b;), i = 1,2, and feed the
amounts of fluidy; (b + ¢t*) in [0, ¢*] into them, then the queue length must be at or above threshbjdn

at least one of them.

5 Conclusion

In this work, we have proved that the loss ratio is always a jointly convex function of buffer and band-
width sizes in buffer-bandwidth queuing systems, which also implies convexity of buffer-bandwidth trade-
off curves. This result generalizes previous work [7] that proves convexity of the loss function, approximated
by the large deviations rate function, for large numbers of multiplexed flows. Our results hence establish
that the same practical advantages mentioned in [7] regarding optimal design of partitioned buffer-bandwidth
systems continue to apply if the loss ratio were the criterion instead of the rate function, and without the
need for large numbers of multiplexed flows. Apart from theoretical generality, this may offer some practical
advantages in terms of more efficient resource allocation, better use of loss measurements, and the ability to
admit more complex QoS requirements.
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