Heavy Traffic Limit for a Mobile Phone System Loss Model

PHiLip J. FLEMING AND ALEXANDER STOLYAR
MOTOROLA, INC.
ARLINGTON HEIGHTS, IL

BURTON SIMON
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF COLORADO AT DENVER
DENVER, CO

ABSTRACT

An individual cell in a mobile phone system sees two types of requests for
service. There are “call setups” which occur when a customer in the cell places
or receives a call, and there are “handovers” which occur when a customer with
an existing call moves into the cell. Customers that are blocked will “retry” for a

while, but will give up if they are not successful after some finite (random) time.

If the two customer types are statistically indistinguishable, the model reduces
to an “Erlang-c system with impatient customers”. We show that the heavy traffic
limit of the stationary distribution for that model is a concatination of two normal
densities. In general, our model is two dimensional. However, we show that in
heavy traffic it reduces to a one dimensional process, whose stationary distribution
is also a concatination of two normal densities. Using the heavy traffic limit we
are able to approximate blocking probabilities, dropped call probabilities, average

utilization and other performance measures with closed form expressions.
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1. Introduction.

Consider a single cell in a mobile phone system. A “call setup” is a request for
a channel by an idle customer presently in the cell that is either placing or receiveing
a call. A “handover” is a request for a channel by an active customer moving into
the cell from a neighboring cell. We assume that every request is granted a channel
if one is available. If a request is made for a channel when they are all busy the
customer is “blocked”.

Blocked customers will not give up immediately, nor will they persist indefi-
nitely. When a call setup is blocked it will periodically “retry” (e.g. via the resend
button) for some (random) amount of time until it either secures a channel, gives
up trying, or leaves the cell. Likewise, a handover that is blocked will retry for
some (random) amount of time until it either secures a channel, gets “dropped”
by losing communication with the original cell, finishes the call, or leaves the cell.
A handover that is dropped will turn into a call setup if the customer wants to

continue the conversation.

We propose a model of this system and analyze its stationary distribution in
heavy traffic, i.e. we analyze systems with a large number of channels and a traffic
load approximately equal to the number of channels.

Even though there are two customer types, the stationary distribution collapses
to one dimension in heavy traffic. This allows us to derive closed form approxima-
tions for stationary blocking probablities, dropped call rates, system utilization and
other performance measures. We are also able to conjecture that the heavy traffic
limit of the underlying stochastic process is a certain one dimensional diffusion with
piecewise linear drift and constant variance parameters.

There has been considerable work done on blocking systems in heavy traffic
starting with Borovkov [1]. Whitt [4] provides approximations similar in spirit to
ours, and includes a good survey of published work in the area. Our model differs
from previous work in two ways. First, the heavy traffic analysis of a blocking
system with “impatient” customers is new. The technically difficult innovation,

however, was going from a one to two dimensional state space.

In the next section we describe the model in detail. In Section 3 we analyze
the Erlang-c system with impatient customers in heavy traffic. We rove that the

stationary density is a concatination of two normal densities, and conjecture the
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form of the limiting stochastic process. In Section 4 we analyze the full model in
heavy traffic. We prove that in heavy traffic the two dimensional process collapses
to one dimension, and that the stationary density has the same form as the Erlang-
¢ system with impatient customers. We conjecture that the stochastic process
collapses to the corresponding one dimensional diffusion. In Section 5 we derive
approximations for the performance measures based on the heavy traffic limit. The

technical details of the proofs of the major theorems can be found in the appendix.

2. Model Description.

Our cell has N channels. Call setups (type 1 customers) arrive as a Poisson
process with rate A; and handovers (type 2 customers) arrive as a Poisson process
with rate A\y. Let A = A1 + A2. Both type 1 and type 2 customers have service
times that are exponentially distributed with mean 1/u. Let p = A/p and let
pi = Xi/p, i =1,2.

If a customer requests a channel when all N are busy it will retry until it either
secures a channel or disappears. The time until a type ¢ customer disappears (given
it does not secure a channel) is exponentially distributed with mean 1/3;. The
interarrival times, service times and maximal waiting times are i.i.d. sequences and
are independent of each other.

Let QQ(t) be the number of customers in the system at time ¢. If Q(¢) > N then
there are blocked customers waiting. Let H;(t) be the number of type i customers
waiting, and let H(t) = H;(t) + Hs(t) = [Q(t) — N]T. Suppose a channel becomes
free at time ¢t when H(t) > 0. We assume that
(a) one of the waiting customers will seize the free channel immediately, and

(b) the probability that a type i customer will get the channel has the form

kin;

P(type i gets the channel | Hy = ky, Hy = ko) = T o
17 272

(2.1)

where 7; > 0.

If the points in time that a blocked type ¢ customers retries is a Poison process
with rate n; (until it succeeds or gives up) then assumptions (a) and (b) hold exactly
as n1 + ny — o0o. We therefore interpret n; as the retry rate for type ¢ customers.

When a waiting type 2 customer gives up (is “dropped”), it immediately be-

comes a type 1 customer with probability p. With probability 1 — p a waiting type
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2 customer disappears after being dropped. All waiting type 1 customers disappear

after giving up.
The following quantities are of particular interest. Let

B = lim P(Q(t) > N) (2.2)

t—o0

be the limiting blocking probability, let

B = B tlim E(H;(t)), i=1,2 (2.3)
—00
be the limiting rate that type ¢ customers are lost due to impatience, and let
" = lim B(Q() ~ H() (2.4)

be the limiting average number of busy channels.

3. The Erlang-c System with Impatient Customers in Heavy Traffic.

The Erlang-c blocking system is an M/M/N/oo queue. A customer is tem-
porarily “blocked” if it has to wait for a server. Typically, an Erlang-c model is
used to correct the “flaw” in the Erlang-b model, where customers “disappear”
when they are blocked. In many applications blocked customers do not disappear
immediately. However, the Erlang-c model overcompensates in many cases. Cus-
tomers are not infinitely patient. For one reason or another they will give up (and
disappear) after some finite (random) time. To model this phenomenon we use an
Erlang-c model where customers disappear if they are forced to wait more than an
exponentially distributed time.

Let A be the arrival rate, u the service rate, and suppose that waiting customers
will disappear after an exponentially distributed time with mean 1/ if they do not
get service. Let p = A\/p and let Q()(t) be the number of customers in the system
at time t. Clearly, Q(®)(t) is a birth-death process. The transition diagram for
Q) (t) is shown in Figure 1.

It follows that the stationary distribution for Q) is

k

. c,e if k< N,
o)(k) = _ 3.1
(k) (A S if k> N, (38-1)

N (Nuti)
where




We now consider a sequence of systems indexed by p = 1,2,..., where the
number of channels, N, increases with p. Without loss of generality we take

i =1 and as a consequence, p = A, for the remainder of the paper.

THEOREM 3.1. Suppose the number of servers, N®) increases with p so that

N —
lim ——2 & p (3.3)

p— 00 \/ﬁ

where —oo < n < co. Then the stationary distribution FP) of the scaled process

0 = Q0 —p (3.4)
N
converges weakly to a distribution with density
a1 ,—x%/2 if r <
e ifr <mn,
n(@) =4 V" o (3.5)
—b\%—we_(m_“) /207 ifr >,
and
Tim /([ + 2/p1) = () (36)
where
p2=E 3.7
5 (3.7)
a = (1—b*)n, (3.8)
—1
¢ = (@(n) +emma/2p(1 — (I)(nb))) (3.9)
o = c1be "2, (3.10)

and ®(z) is the CDF for the standard Normal.
ProoF: We assume that
N=N® =Tp+n/p].

The state space of the process Q) (t) is S = {0,1,2,...}. For each p and corre-

sponding N () we will consider two truncated state spaces

s —10,1,2,...,N -1}
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and

S¥ —{(N,N+1,N+2,...}.

Consider the scaled process, ¢(?)(t) given by (3.4). The state space for ¢(¥)(t) is

therefore

sV ={k/\/p, k=...,—-2,-1,0,1,2,...}. (3.11)

For convenience, the state space s(” is considered to be infinite from the left. We
also break down s() into two subsets, which are the scaled sets corresponding to

S(_p) and S(f) respectively,

s = {oes? o<n}
and

sg_p) = {0 s, 0 >n}.

Let F() (y),y € R, the real numbers, be the stationary distribution function of
the scaled process ¢(?)(t), and p(¥) (), 0 € 5(P), denote the stationary probability of
the state o. So

PP (o) =70 (p+ oy/p). (3.12)
(We will omit upper index (p) where it will not cause confusion.)

To prove Theorem 3.1 we need the following results, which are proved in the

Appendix.

LEMMA 3.1.1. The sequence of distributions F(?), p=1,2,..., is relatively com-

pact.

LEMMA 3.1.2. For any points a1 < as, ai,as € R, consider sequences of states

agp) — ay, aép) — ag, where a%p),aép) € s(P). Then

where



Consider any limiting point (in the sense of weak convergence) F' of the se-
quence of distributions {F()}. To simplify notation we will assume that F(¥) — F.
From Lemma 3.1.2 it follows that the distribution F' is absolutely continuous with

density of the form

B c1é(y) y<n
9= it (5~ D) v o

where ¢; and co are non-negative constants and ¢(y) is the standard normal density.
From Lemma 3.1.2 it follows also that f is continuous at n. Using the continuity
at n along with [ f(y)dy = 1 specifies ¢; and ¢o. (It can be easily obtained from

Lemma 3.1.2 that the convergence (3.6) is uniform in any finite interval x € [a1, az].)

For many applications the heavy traffic limit of the stationary distribution
of the process is sufficient. However, for estimating transient probabilities it is
necessary to use the limit (in the sense of weak convergence) of the sequence of
stochastic processes. (The weak convergence of stochstic processes will be denoted
by =.) If one accepts that ¢(®) (t) = q(t) where ¢(t) is a diffusion then it is a simple

matter to derive the parameters of ¢(t). We sum this up as

CONJECTURE 3.1. Under the scaling (3.4), we have
¢ (t) = q(t), (3.13)

where q(t) is a diffusion process on —oco < x < oo with drift function

e ifx <n,
dlw) = { —pn — Bz —n) ifx >n, (3.14)

and variance function
o?(x) = 2u, —00 < T < 00. (3.15)

The stationary distribution of q is w given by (3.5).

An illustration of 7(z) is given in Figure 2.



4. Heavy Traffic Limit for the Mobile Phone System Model.

Our model for the mobile phone system is an Erlang-c with N servers and two
impatient customer types, corresponding to “call setups” and “handover requests”.
Each type has the same service rate, u, but their quitting rates, ; and (3 may differ.
When a type 2 customer quits, it becomes a type 1 customer with probability p.
As before, we will assume that p = 1, and therefore A = p.

Clearly, Q(t) is a simple birth-death process when Q(t) < N. However, unless
B1 = (2, knowledge of H;(t), i = 1,2, (the number of waiting type i customers) is
necessary when Q(t) > N for the process to be Markovian. The transition diagram
for the process (Q(t), H(t)) is given in Figure 3.

Suppose, p — oo in such a way that ratios p;/p = v; are held constant, vy +vy =
1. Although Q(¥)(t) is not a Markov process, it does have a stationary distribution.
And as p — oo the stationary distributions of the scaled processes ¢(?)(t) converge
to a limiting distribution, which is sufficient to compute most performance measures
since (as we will show) in the limit H;(¢) and Hz(¢) remain in a fixed ratio. We

sum this up in the following theorem.

THEOREM 4.1. Let p — oo, with the ratios p;/p = v; fixed, and

N —
lim —

p— 00 \/ﬁ

Then the stationary distribution FP) of the scaled process

q(p)(t) _ Q(P)(t) — P.

NG

converges weakly to a distribution with density 7(x) specified by (3.5)-(3.10), using

n.

B =aifr+ (1 —p)azfs, (4.1)

where

V112 Vam
on=—  @q3=——" (4.2)
ving + Va1 vine + vam

Furthermore, if G() is the conditional distribution of (H£p), Hép)) under the condi-
tion H® > 0, then for any ¢ > 0,

lim G® <{(a:,y) 2 ”1—’7i < e}> — 1, (4.3)

pP—00



: : Hy _ vine
Le. in heavy traffic we have 3> = -2 whenever H(t) > 0.

SKETCH OF THE PROOF: (The complete proof of the theorem and all supplementary
results is in the appendix.)

Relative compactness of the sequence of distributions F(*) is shown the same
way as in the one dimensional case (Lemma 4.1.1).

For any p, explicit expressions analogous to (3.1) and (3.2) can be written for
the distribution 7(?). The difference is that instead of the constant 3 we use BJ(-p ),

where
2(p) _ (p) 1— 1— (p)
B = P + (1= p)Pa(l — o)
(p)

and o is the conditional mean

H{P)
H(p)
We prove (Theorem A.2 in the appendix) that as p — oo the conditional ratio

a'?) = F(

j [ = j)

pr)/H(p) under the condition that H() > 0, converges to the constant o given
()
j

constant oy (Lemma 4.1.4 in the appendix). The second statement in Theorem 4.1

by (4.2). This allows us to prove that o’ as a function of j also converges to the

also follows from Theorem A.2.

As in the previous section, if we accept that ¢()(t) = ¢(t), where ¢(t) is a dif-
fusion process, then it is a simple matter to derive its drift and variance parameters.

We have

CONJECTURE 4.1. Under the scaling (3.4) we have

¢ (t) = q(t),
where ¢(t) is a one dimensional diffusion process on —oo < = < oo with drift
function d(x) given by (3.14) and variance function o?(x) given by (3.15), where
B is given by (4.1). The stationary distribution of q is m given by Theorem 4.1.

Furthermore,
p~T(HP(t), HY (1) = (ha(t), ha(t)),

where

«; is given by (4.2), and



5. Approximations for the Performance Measures.

For the mobile phone system model described in Section 2, let

B = a1f1 + as(l — p)Pa,

where «; is given by (4.2), and let b2, a, c¢; and co be given by (3.7)-(3.10). Let
m(x),z € R be the probability density specified by (3.5). For large p equation (3.6)

yields
Vo ([ ptayp ) = n(a),
or equivalently, for large ¢t and large p,

ka—p
VP

P(Q)(t) € [k, ks]) ~ ﬂ m(z)dz.

Nz

In particular, the probability that a customer is blocked is

B = p(Q) > N() ~ /OO m(x)dz = co(1 — ®(nbd)),

where,
N® —p

N

n —

Similarly, we can write

BQ) = p+VoF(@) =p+ 5 [ ana)da

(5.1)

=p + /p(ea[bd(nb) + a(l — B(nd))] — c16(n)), (5.2)

and

E(H®) ~ \/_/ z —n)m(zx)ds
pcabld(nb) — b(1 — ®(nb))].

(5.3)

A customer is said to be “dropped” if it leaves the queue before gaining service.

Since E(Hl.(p)) = oy E(H),i = 1,2, the rate type i customers are dropped is

B = Bioa B(H®),
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which can be approximated by using (5.3), and

P(type i customer dropped) = b i=1,2. (5.5)

*
i
For type 2 customers it may be better to define a dropped call to be one that is

caused by some reason other than the call terminating on its own. In that case we

would have
B3 = (B2 — p)as E(H®),

From (5.1) we see that in heavy traffic the blocking probability remains O(1).
However, since 3; ~ O(y/p) and A; ~ O(p), from (5.5) we see that the probability
that a type ¢ customer is dropped is O(p_%).

Finally, the system utilization is the expected number of busy servers,
p* = E(Q(p) _ H(p))7
which can be approximated from (5.2) and (5.3).

APPENDIX

A.1. Technical Details for the Proof of Theorem 3.1.

PROOF OF LEMMA 3.1.1: Consider the scaled process ¢(t) on the truncated state
space s(_p). (This means that the non-scaled process is considered on the state
space S(_p ), corresponding to the loss system with N — 1 servers.) The stationary
distribution Ffp ) of such a truncated process is the truncation of the distribution

F) .
(p) F@ (y)/FP) (n—) ify<n,
FP(y) = .
1 if y > n,

so, the distribution Ffp) is an upper bound for the distribution F(®), i.e.

FO(y) < FP@y), yeR.

It is well known (e.g. Whitt [4]) that the distribution F converges to the

distribution .
(y)/®(n) ify<mn,

1 ify >n,

F(y) = {

(the standard normal distribution ® truncated from the right at point n.)
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Thus, for any € > 0 there exists sufficiently small y such that

limsup F(®) (y) < lim r (y) <e.

p—>00 p—00

Similarly, denote by FJ(rp ) the stationary distribution of the process ¢(t) con-
sidered on the state space sgf). This distribution is a truncated (from the left at
point n) version of the distribution F (P). So, it is a lower bound for the distribution
F®). The sequence of distributions Fip),p = 1,2,..., converges to the normal
distribution with mean (8 — 1)n/ and variance 1/, truncated from the left at n.
Thus,

lim liminf F(*) (y) =1

Yy—00 pP—00
The density of the sequence of distributions F(?) has been proven. This implies its

relative compactness. The proof is complete.

PROOF OF LEMMA 3.1.2: The process ¢(P)(t) is a birth and death process. So,

(p)
W= o (o2) Zln—

7r(P) 0'1
where
G = S(p)[O'l + 1/\/ﬁ, 0'2],
s(P) [x1,m0] = {0 € s(p)|a € [x1,x2]},
and

() {p+0\/,5 if p+o/p <N,
o) =
. N+ (p+oyp—N)B ifp+oyp> N.

Since N = p+n./p + n®,0 < nlP) < 1, we have

M) — 1t g0/ B+ o

where |y(P)| < |1 — 8] < co. Thus,

p_ glo) 1
In W) - Jp +O(p).

The function g is bounded on any finite interval, so

W= =3 glo)Vitol) =~ [ gy

c€G

The proof is complete.
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Technical Details of the Proof of Theorem 4.1.

PROOF OF THEOREM 4.1:
For notational simplicity we will assume throughout this proof (and all supple-
mentary results) that p = 0 and n; = 9, = 1. With obvious modifications the proof

holds in the general case.

We will again consider the scaled process ¢(¥)(t) given by (3.4) and the scaled
state space s(?). Although ¢(")(t) is not Markovian, the process (¢, a(P)(t) is
Markov, where a(P) is the fraction of type 1 customers among all customers waiting

(not being served) at time ¢, i.e.

H .
a(p):{# if H >0,
0 otherwise.

The condition {H > 0} is equivalent to {p + /pg'?) > N}.

The process (¢{?),a(P))(t) has a stationary distribution, which induces a sta-
tionary distribution of ¢(?). As before, this later distribution is denoted by F(),
with F(P)(y), y € R, the corresponding distribution function.

LEMMA 4.1.1. The sequence of distributions F(?) p = 1,2, ..., is relatively com-

pact.

PRrROOF: The argument here repeats the proof of the Lemma 3.1.1. The only differ-
ence is that for the truncated process defined on sgf)), we have to let = min{f, f2}

to get majorization from above.

Consider any limiting point (in the sense of weak convergence) F' of the se-

quence of distributions {F(®)} . To simplify notation we will assume that F(¥) — F.

LEMMA 4.1.2. Lemma 3.1.2 with 8 = a131 + as3> holds for the two-dimensional

case.

The first statement of Theorem 4.1 follows from Lemmas 4.1.1 and 4.1.2. The

second statement of Theorem 4.1 follows from Theorem A.2 below.

PROOF OF LEMMA 4.1.2:

To prove Lemma, 4.1.2 we need two supplementary results.
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LEMMA 4.1.3. For any fixed interval [aq, as] there exists a constant A > 0, such
that
liminf  min  /pp(o) > A,
]

p— 00 O-Es(f’) [a,l ,a2

where p(o) is given by (3.12).

PrROOF: The proof consists of the following observations:
(a) As a corollary of Lemma 3.1.2; for any finite interval [a1, a] there exists a

constant C such that

max fracp(o2)p(o1)
0’1,0’268("> [al,a2]

and if a; 1 a and as | a then C' | 1.
(b) As a corollary of (a),

F(as) — F(a—) > 0.

(¢) The number of elements in the set s(”)[a1, as] grows as (az — a1)/\/p-

LEMMA 4.1.4. For any ai,as such that n < a; < ay < 00, we have

lim EP[|la— a;|T{a; < ¢ < az}] =0,

pP— 00
where E(P) is mathematical expectation with respect to the istribution F®) of the
vector (q,«). (We use the same notation for the distribution of the vector (q, c)

and the distribution of q.)

(The proof of Lemma 4.1.4 depends on some further results and is postponed.)

Proof of the Lemma 4.1.2. continued:

It is easy to see using statement (a) of the proof of Lemma 4.1.3, that it is
sufficient to consider the case n < a; < ag < 0o (note that p+oy/p>Nand H>0
in this case). Our notations here is consistant with the notation in the proof of
Lemma 3.1.2. We have

where



Bo = asfr+ (1 —ay)B2 = (81 — B2)as + o,

and
oy = EP[a|q = o].

Thus,

@ =1+ [n+ faslo — n))/v/B+7/p,

where 3, < max{f, 32} and |y?)| < |1 — B,| < oo . The coefficient of 1/,/p is
uniformly bounded for ¢ € GG. Thus,

W ==Y+ falo —n))/\/o+o(1) =

ceG
=Y I+ pBlo—n)/p =Y (0 =n)(Br— Po) (g —11)/\/p+0(1).
oceG c€eG

Let
Wi=> (ae—1m)/Vp=_(as—1)p(o)/(pp(o)).

celG oc€eG

Due to lemma 4.1.3, for large p,

Vep(o) > A > 0.

Thus,

1

1
W < =1 Z lay — v1|p(o) < E(p)[|a— v|l{a; <q¢<a}]—0, asp— 0

c€G

o |

Then, following the proof of Lemma 4.1.2 we have

as
lim W = —/ g(y)dy.

— 00
P 1

The proof is complete.

PROOF OF LEMMA 4.1.4:
Lemma 4.1.4 is a corollary of Theorem A.2 (below) via the following argument.
Let Fip ) (y) be the conditional distribution of the process ¢(*) under the con-
dition that ¢ > n:

F) (y)—F(”) (n—)

F-(l-p) (y) = 1-F) (n—)
0 if y <mn.

ify > n,
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Then FJ(FP) is also a stationary distribution of the process ¢(?) restricted to the

(p)
+

state space sy . In terms of the original (non-scaled) process, truncation means

that we will look at the two-dimensional birth-death process
AO(t) = (7" H) (1), t>0,

where H; is the number of i-customers waiting in the queue (if any). When the
number of waiting customers H = Hy + Hs drops to 0, the service in the system is

interrupted until the next customer arrival. The process
XO(1) = (X37, X37)(6) = HO(t//p), 120

is the process H®(t) being slowed down by a factor of V/p- But, of course, the
process X ()(t) has the same stationary distribution as H(®)(t) does. Consider also

the scaled process

P () = %Xf(p) (t).

Thus, the relation between the processes z(P)(t) and ¢(¥)(t) s given by the equation

1@ (1) = 2 ()] + |25 ()| = P (t/ p) —n — 0 ) /p

where 0 < 7(®) < 1. The transition diagram for the process X ) (¢) is shown in
the Figure A.1. The birth intensities of the process X () (¢) are described by the
(constant) vector \/p(v1,2), and death intensities by the vector

~(P) X;

\/ﬁ(%I{X > 0}(1 + % IO i=12),

M(X)
where |y(P)| < 1. If the arbitrary constant ¢ > 0 is fixed and p — oo, then
— XZ — .
M(X) = V(X > 0} +4(X), i=1,2),

where both ¢§p ), ép ) _5 0 uniformly in the domain X /P < c.
Each process z(P) (t) is a process with state space being a subset of %i So,
each z(P)(t) can be viewed as a process with the state space (R%,B(R2)) and its

stationary distribution G(®) can be viewed as a measure on (%2, B(R%)).
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THEOREM A.1. Let T > 0 be fixed and
2P (0) = z¢ € R

Then the process z(P)(t) converges to the deterministic process x(t) defined as the

solution of the differential equation
#(t) =v(z(t)), 0<t<T,

where the vector v(z) = (v1,v2)(z),x € R2 is defined as follows:

{(l/i—ﬁ, i=1,2) ifx#0,
v(z) = .
0 ifx =0.

More precisely, for any € > 0,

lim Pr{ sup ||z(P(t) —z(t)|| > €} = 0.
p— 00 tE[O,T]

Theorem A.1 can be obtained, for example, as a corollary of Theorem 1 in [2].

The sequence of stationary distributions G, p = 1,2, .. ., is relatively compact

due to Lemma 4.1.1.

THEOREM A.2. Let G be any limiting point (in the sense of weak convergence in
(R%, B(R2))) of the distribution sequence G\*), p=1,2,.... Then

G({z1 =mnllz|[}) =1

PRrROOF: It follows from Theorem 8.5.1 in [3] and Theorem A.1l that G must be a
stationary distribution of the deterministic process z(t). For any € > 0, the sample
path of x(t) starting from any point zg, not on the line {z; = vq||z||}, reaches the
e-neighborhood of the line {z; = vq||z||} in finite time and then never leaves it. So,
any e-neighborhood of that line has G-measure 1. This implies that the measure of

the line itself is 1. The proof is complete.
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