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ABSTRACT

An individual cell in a mobile phone system sees two types of requests for

service. There are \call setups" which occur when a customer in the cell places

or receives a call, and there are \handovers" which occur when a customer with

an existing call moves into the cell. Customers that are blocked will \retry" for a

while, but will give up if they are not successful after some �nite (random) time.

If the two customer types are statistically indistinguishable, the model reduces

to an \Erlang-c system with impatient customers". We show that the heavy tra�c

limit of the stationary distribution for that model is a concatination of two normal

densities. In general, our model is two dimensional. However, we show that in

heavy tra�c it reduces to a one dimensional process, whose stationary distribution

is also a concatination of two normal densities. Using the heavy tra�c limit we

are able to approximate blocking probabilities, dropped call probabilities, average

utilization and other performance measures with closed form expressions.
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1. Introduction.

Consider a single cell in a mobile phone system. A \call setup" is a request for

a channel by an idle customer presently in the cell that is either placing or receiveing

a call. A \handover" is a request for a channel by an active customer moving into

the cell from a neighboring cell. We assume that every request is granted a channel

if one is available. If a request is made for a channel when they are all busy the

customer is \blocked".

Blocked customers will not give up immediately, nor will they persist inde�-

nitely. When a call setup is blocked it will periodically \retry" (e.g. via the resend

button) for some (random) amount of time until it either secures a channel, gives

up trying, or leaves the cell. Likewise, a handover that is blocked will retry for

some (random) amount of time until it either secures a channel, gets \dropped"

by losing communication with the original cell, �nishes the call, or leaves the cell.

A handover that is dropped will turn into a call setup if the customer wants to

continue the conversation.

We propose a model of this system and analyze its stationary distribution in

heavy tra�c, i.e. we analyze systems with a large number of channels and a tra�c

load approximately equal to the number of channels.

Even though there are two customer types, the stationary distribution collapses

to one dimension in heavy tra�c. This allows us to derive closed form approxima-

tions for stationary blocking probablities, dropped call rates, system utilization and

other performance measures. We are also able to conjecture that the heavy tra�c

limit of the underlying stochastic process is a certain one dimensional di�usion with

piecewise linear drift and constant variance parameters.

There has been considerable work done on blocking systems in heavy tra�c

starting with Borovkov [1]. Whitt [4] provides approximations similar in spirit to

ours, and includes a good survey of published work in the area. Our model di�ers

from previous work in two ways. First, the heavy tra�c analysis of a blocking

system with \impatient" customers is new. The technically di�cult innovation,

however, was going from a one to two dimensional state space.

In the next section we describe the model in detail. In Section 3 we analyze

the Erlang-c system with impatient customers in heavy tra�c. We rove that the

stationary density is a concatination of two normal densities, and conjecture the
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form of the limiting stochastic process. In Section 4 we analyze the full model in

heavy tra�c. We prove that in heavy tra�c the two dimensional process collapses

to one dimension, and that the stationary density has the same form as the Erlang-

c system with impatient customers. We conjecture that the stochastic process

collapses to the corresponding one dimensional di�usion. In Section 5 we derive

approximations for the performance measures based on the heavy tra�c limit. The

technical details of the proofs of the major theorems can be found in the appendix.

2. Model Description.

Our cell has N channels. Call setups (type 1 customers) arrive as a Poisson

process with rate �1 and handovers (type 2 customers) arrive as a Poisson process

with rate �2. Let � = �1 + �2. Both type 1 and type 2 customers have service

times that are exponentially distributed with mean 1=�. Let � = �=� and let

�i = �i=�; i = 1; 2.

If a customer requests a channel when all N are busy it will retry until it either

secures a channel or disappears. The time until a type i customer disappears (given

it does not secure a channel) is exponentially distributed with mean 1=�i. The

interarrival times, service times and maximal waiting times are i.i.d. sequences and

are independent of each other.

Let Q(t) be the number of customers in the system at time t. If Q(t) > N then

there are blocked customers waiting. Let Hi(t) be the number of type i customers

waiting, and let H(t) = H1(t) +H2(t) � [Q(t)�N ]+. Suppose a channel becomes

free at time t when H(t) > 0. We assume that

(a) one of the waiting customers will seize the free channel immediately, and

(b) the probability that a type i customer will get the channel has the form

P (type i gets the channel j H1 = k1; H2 = k2) =
ki�i

k1�1 + k2�2
; (2.1)

where �i > 0.

If the points in time that a blocked type i customers retries is a Poison process

with rate �i (until it succeeds or gives up) then assumptions (a) and (b) hold exactly

as �1 + �2 !1. We therefore interpret �i as the retry rate for type i customers.

When a waiting type 2 customer gives up (is \dropped"), it immediately be-

comes a type 1 customer with probability p. With probability 1� p a waiting type
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2 customer disappears after being dropped. All waiting type 1 customers disappear

after giving up.

The following quantities are of particular interest. Let

B = lim
t!1

P (Q(t) � N) (2.2)

be the limiting blocking probability, let

��i = �i lim
t!1

E(Hi(t)); i = 1; 2 (2.3)

be the limiting rate that type i customers are lost due to impatience, and let

�� = lim
t!1

E(Q(t)�H(t)) (2.4)

be the limiting average number of busy channels.

3. The Erlang-c System with Impatient Customers in Heavy Tra�c.

The Erlang-c blocking system is an M/M/N/1 queue. A customer is tem-

porarily \blocked" if it has to wait for a server. Typically, an Erlang-c model is

used to correct the \
aw" in the Erlang-b model, where customers \disappear"

when they are blocked. In many applications blocked customers do not disappear

immediately. However, the Erlang-c model overcompensates in many cases. Cus-

tomers are not in�nitely patient. For one reason or another they will give up (and

disappear) after some �nite (random) time. To model this phenomenon we use an

Erlang-c model where customers disappear if they are forced to wait more than an

exponentially distributed time.

Let � be the arrival rate, � the service rate, and suppose that waiting customers

will disappear after an exponentially distributed time with mean 1=� if they do not

get service. Let � = �=� and let Q(�)(t) be the number of customers in the system

at time t. Clearly, Q(�)(t) is a birth-death process. The transition diagram for

Q(�)(t) is shown in Figure 1.

It follows that the stationary distribution for Q(�) is

�(�)(k) =

8<
:
C�

�k

k! if k � N ,

C�
�N

N !
�k�NQ

k�N

i=1
(N�+i�)

if k > N ,
(3.1)

where

C� =

 
NX
i=0

�i

i!
+
�N

N !

1X
i=1

�iQi
j=1(N�+ j�)

!�1

: (3.2)
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We now consider a sequence of systems indexed by � = 1; 2; : : :, where the

number of channels, N (�), increases with �. Without loss of generality we take

� = 1 and as a consequence, � = �, for the remainder of the paper.

Theorem 3.1. Suppose the number of servers, N (�) increases with � so that

lim
�!1

N (�) � �p
�

! n (3.3)

where �1 < n <1. Then the stationary distribution F (�) of the scaled process

q(�) =
Q(�) � �p

�
(3.4)

converges weakly to a distribution with density

�(x) �
( c1p

2�
e�x

2=2 if x � n,

c2
b
p
2�
e�(x�a)2=2b2 if x > n,

(3.5)

and

lim
�!1

p
��(�)(d�+ x

p
�e) = �(x) (3.6)

where

b2 =
�

�
; (3.7)

a = (1� b2)n; (3.8)

c1 =
�
�(n) + e�na=2b(1� �(nb))

��1

(3.9)

c2 = c1be
�na=2; (3.10)

and �(x) is the CDF for the standard Normal.

Proof: We assume that

N � N (�) = d�+ n
p
� e:

The state space of the process Q(�)(t) is S = f0; 1; 2; : : :g. For each � and corre-

sponding N (�) we will consider two truncated state spaces

S
(�)
� = f0; 1; 2; : : : ; N � 1g
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and

S
(�)
+ = fN;N + 1; N + 2; : : :g:

Consider the scaled process, q(�)(t) given by (3.4). The state space for q(�)(t) is

therefore

s(�) = fk=p�; k = : : : ;�2;�1; 0; 1; 2; : : :g: (3.11)

For convenience, the state space s(�) is considered to be in�nite from the left. We

also break down s(�) into two subsets, which are the scaled sets corresponding to

S
(�)
� and S

(�)
+ respectively,

s
(�)
� = f� 2 s(�); � < ng

and

s
(�)
+ = f� 2 s(�); � � ng:

Let F (�)(y); y 2 <, the real numbers, be the stationary distribution function of

the scaled process q(�)(t), and p(�)(�); � 2 s(�), denote the stationary probability of
the state �. So

p(�)(�) � �(�)(�+ �
p
�): (3.12)

(We will omit upper index (�) where it will not cause confusion.)

To prove Theorem 3.1 we need the following results, which are proved in the

Appendix.

Lemma 3.1.1. The sequence of distributions F (�); � = 1; 2; : : : ; is relatively com-

pact.

Lemma 3.1.2. For any points a1 < a2, a1; a2 2 <, consider sequences of states

�
(�)
1 ! a1, �

(�)
2 ! a2, where �

(�)
1 ; �

(�)
2 2 s(�). Then

lim
�!1 ln

p(�)(�
(�)
2 )

p(�)(�
(�)
1 )

= �
Z a2

a1

g(y)dy

where

g(y) =

�
y y < n

n+ �(y � n) y � n:
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Consider any limiting point (in the sense of weak convergence) F of the se-

quence of distributions fF (�)g. To simplify notation we will assume that F (�) ! F .

From Lemma 3.1.2 it follows that the distribution F is absolutely continuous with

density of the form

f(y) =

�
c1�(y) y < n

c2��(�(y � (� � 1)n=�)) y � n;

where c1 and c2 are non-negative constants and �(y) is the standard normal density.

From Lemma 3.1.2 it follows also that f is continuous at n. Using the continuity

at n along with
R
f(y)dy = 1 speci�es c1 and c2. (It can be easily obtained from

Lemma 3.1.2 that the convergence (3.6) is uniform in any �nite interval x 2 [a1; a2].)

For many applications the heavy tra�c limit of the stationary distribution

of the process is su�cient. However, for estimating transient probabilities it is

necessary to use the limit (in the sense of weak convergence) of the sequence of

stochastic processes. (The weak convergence of stochstic processes will be denoted

by).) If one accepts that q(�)(t)) q(t) where q(t) is a di�usion then it is a simple

matter to derive the parameters of q(t). We sum this up as

Conjecture 3.1. Under the scaling (3.4), we have

q(�)(t)) q(t); (3.13)

where q(t) is a di�usion process on �1 < x <1 with drift function

d(x) =

���x if x � n,

��n� �(x� n) if x > n,
(3.14)

and variance function

�2(x) = 2�; �1 < x <1: (3.15)

The stationary distribution of q is � given by (3.5).

An illustration of �(x) is given in Figure 2.
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4. Heavy Tra�c Limit for the Mobile Phone System Model.

Our model for the mobile phone system is an Erlang-c with N servers and two

impatient customer types, corresponding to \call setups" and \handover requests".

Each type has the same service rate, �, but their quitting rates, �1 and �2 may di�er.

When a type 2 customer quits, it becomes a type 1 customer with probability p.

As before, we will assume that � = 1, and therefore � = �.

Clearly, Q(t) is a simple birth-death process when Q(t) � N . However, unless

�1 = �2, knowledge of Hi(t), i = 1; 2, (the number of waiting type i customers) is

necessary when Q(t) > N for the process to be Markovian. The transition diagram

for the process (Q(t); ~H(t)) is given in Figure 3.

Suppose, �!1 in such a way that ratios �i=� = �i are held constant, �1+�2 =

1. Although Q(�)(t) is not a Markov process, it does have a stationary distribution.

And as �!1 the stationary distributions of the scaled processes q(�)(t) converge

to a limiting distribution, which is su�cient to compute most performance measures

since (as we will show) in the limit H1(t) and H2(t) remain in a �xed ratio. We

sum this up in the following theorem.

Theorem 4.1. Let �!1, with the ratios �i=� = �i �xed, and

lim
�!1

N (�) � �p
�

! n:

Then the stationary distribution F (�) of the scaled process

q(�)(t) =
Q(�)(t)� �p

�
:

converges weakly to a distribution with density �(x) speci�ed by (3.5)-(3.10), using

� = �1�1 + (1� p)�2�2; (4.1)

where

�1 =
�1�2

�1�2 + �2�1
; �2 =

�2�1
�1�2 + �2�1

: (4.2)

Furthermore, if G(�) is the conditional distribution of (H
(�)
1 ; H

(�)
2 ) under the condi-

tion H(�) > 0, then for any � > 0,

lim
�!1

G(�)

�
f(x; y) : jx

y
� �1�2
�2�1

j < �g
�
= 1; (4.3)
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i.e. in heavy tra�c we have H1

H2
= �1�2

�2�1
whenever H(t) > 0.

Sketch of the proof: (The complete proof of the theorem and all supplementary

results is in the appendix.)

Relative compactness of the sequence of distributions F (�) is shown the same

way as in the one dimensional case (Lemma 4.1.1).

For any �, explicit expressions analogous to (3.1) and (3.2) can be written for

the distribution �(�). The di�erence is that instead of the constant � we use ��
(�)
j ,

where

��
(�)
j = �1�

(�)
j + (1� �)�2(1� �

(�)
j )

and �
(�)
j is the conditional mean

�
(�)
j = E(

H
(�)
1

H(�)
j H(�) = j)

We prove (Theorem A.2 in the appendix) that as � ! 1 the conditional ratio

H
(�)
1 =H(�) under the condition that H(�) > 0, converges to the constant �1 given

by (4.2). This allows us to prove that �
(�)
j as a function of j also converges to the

constant �1 (Lemma 4.1.4 in the appendix). The second statement in Theorem 4.1

also follows from Theorem A.2.

As in the previous section, if we accept that q(�)(t)) q(t), where q(t) is a dif-

fusion process, then it is a simple matter to derive its drift and variance parameters.

We have

Conjecture 4.1. Under the scaling (3.4) we have

q(�)(t)) q(t);

where q(t) is a one dimensional di�usion process on �1 < x < 1 with drift

function d(x) given by (3.14) and variance function �2(x) given by (3.15), where

� is given by (4.1). The stationary distribution of q is � given by Theorem 4.1.

Furthermore,

��
1
2 (H

(�)
1 (t); H

(�)
2 (t))) (h1(t); h2(t));

where

(h1(t); h2(t)) = (�1; �2)h(t);

�i is given by (4.2), and

h(t) = [q(t)� n]+:
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5. Approximations for the Performance Measures.

For the mobile phone system model described in Section 2, let

� = �1�1 + �2(1� p)�2;

where �i is given by (4.2), and let b2, a, c1 and c2 be given by (3.7)-(3.10). Let

�(x); x 2 < be the probability density speci�ed by (3.5). For large � equation (3.6)

yields
p
��(�)(d �+ x

p
� e) � �(x);

or equivalently, for large t and large �,

P (Q(�)(t) 2 [k1; k2]) �
Z k2��p

�

k1��p
�

�(x)dx:

In particular, the probability that a customer is blocked is

B(�) = P (Q(�) � N (�)) �
Z 1

n

�(x)dx = c2(1� �(nb)); (5.1)

where,

n =
N (�) � �p

�
:

Similarly, we can write

E(Q(�)) � �+
p
�E(q) =�+

p
�

Z 1

�1
x�(x)dx

=�+
p
� (c2[b�(nb) + a(1� �(nb))]� c1�(n)) ; (5.2)

and

E(H(�)) � p
�E(h) =

p
�

Z 1

n

(x� n)�(x)dx

=
p
�c2b[�(nb)� b(1� �(nb))]: (5.3)

A customer is said to be \dropped" if it leaves the queue before gaining service.

Since E(H
(�)
i ) = �iE(H

(�)); i = 1; 2, the rate type i customers are dropped is

��i = �i�iE(H
(�)); (5.4)
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which can be approximated by using (5.3), and

P (type i customer dropped) =
��i
�i
; i = 1; 2: (5.5)

For type 2 customers it may be better to de�ne a dropped call to be one that is

caused by some reason other than the call terminating on its own. In that case we

would have

��2 = (�2 � �)�2E(H
(�)):

From (5.1) we see that in heavy tra�c the blocking probability remains O(1).
However, since ��i � O(p�) and �i � O(�), from (5.5) we see that the probability

that a type i customer is dropped is O(�� 1
2 ).

Finally, the system utilization is the expected number of busy servers,

�� = E(Q(�) �H(�));

which can be approximated from (5.2) and (5.3).

APPENDIX

A.1. Technical Details for the Proof of Theorem 3.1.

Proof of Lemma 3.1.1: Consider the scaled process q(t) on the truncated state

space s
(�)
� . (This means that the non-scaled process is considered on the state

space S
(�)
� , corresponding to the loss system with N � 1 servers.) The stationary

distribution F
(�)
� of such a truncated process is the truncation of the distribution

F (�) :

F
(�)
� (y) =

�
F (�)(y)=F (�)(n�) if y < n;

1 if y � n;

so, the distribution F
(�)
� is an upper bound for the distribution F (�), i.e.

F (�)(y) � F
(�)
� (y); y 2 <:

It is well known (e.g. Whitt [4]) that the distribution F
(�)
� converges to the

distribution

F�(y) =
�
�(y)=�(n) if y < n;

1 if y � n;

(the standard normal distribution � truncated from the right at point n.)
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Thus, for any � > 0 there exists su�ciently small y such that

lim sup
�!1

F (�)(y) � lim
�!1

F
(�)
� (y) < �:

Similarly, denote by F
(�)
+ the stationary distribution of the process q(t) con-

sidered on the state space s
(�)
+ . This distribution is a truncated (from the left at

point n) version of the distribution F (�). So, it is a lower bound for the distribution

F (�). The sequence of distributions F
(�)
+ ; � = 1; 2; : : : , converges to the normal

distribution with mean (� � 1)n=� and variance 1=�, truncated from the left at n.

Thus,

lim
y!1

lim inf
�!1

F (�)(y) = 1

The density of the sequence of distributions F (�) has been proven. This implies its

relative compactness. The proof is complete.

Proof of Lemma 3.1.2: The process q(�)(t) is a birth and death process. So,

W � ln
�(�)(�2)

�(�)(�1)
=
X
�2G

ln
�

�(�)

where

G � s(�)[�1 + 1=
p
�; �2];

s(�)[x1; x2] � f� 2 s(�)j� 2 [x1; x2]g;
and

�(�) =

�
�+ �

p
� if �+ �

p
� < N;

N + (�+ �
p
��N)� if �+ �

p
� � N:

Since N = �+ n
p
�+ �(�); 0 � �(�) < 1, we have

�(�)

�
= 1 + g(�)=

p
�+ 
(�)=�

where j
(�)j � j1� �j <1. Thus,

ln
�

�(�)
= �g(�)p

�
+O(1

�
):

The function g is bounded on any �nite interval, so

W = �
X
�2G

g(�)=
p
�+ o(1)! �

Z a2

a1

g(y)dy:

The proof is complete.
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Technical Details of the Proof of Theorem 4.1.

Proof of Theorem 4.1:

For notational simplicity we will assume throughout this proof (and all supple-

mentary results) that p = 0 and �1 = �2 = 1. With obvious modi�cations the proof

holds in the general case.

We will again consider the scaled process q(�)(t) given by (3.4) and the scaled

state space s(�). Although q(�)(t) is not Markovian, the process (q(�); �(�))(t) is

Markov, where �(�) is the fraction of type 1 customers among all customers waiting

(not being served) at time t, i.e.

�(�) =

� H1

H if H > 0;

0 otherwise:

The condition fH > 0g is equivalent to f�+p
�q(�) > Ng.

The process (q(�); �(�))(t) has a stationary distribution, which induces a sta-

tionary distribution of q(�). As before, this later distribution is denoted by F (�),

with F (�)(y); y 2 <, the corresponding distribution function.

Lemma 4.1.1. The sequence of distributions F (�); � = 1; 2; : : : ; is relatively com-

pact.

Proof: The argument here repeats the proof of the Lemma 3.1.1. The only di�er-

ence is that for the truncated process de�ned on s
(�)
+ , we have to let � = minf�1; �2g

to get majorization from above.

Consider any limiting point (in the sense of weak convergence) F of the se-

quence of distributions fF (�)g . To simplify notation we will assume that F (�) ! F .

Lemma 4.1.2. Lemma 3.1.2 with � = �1�1 + �2�2 holds for the two-dimensional

case.

The �rst statement of Theorem 4.1 follows from Lemmas 4.1.1 and 4.1.2. The

second statement of Theorem 4.1 follows from Theorem A.2 below.

Proof of Lemma 4.1.2:

To prove Lemma 4.1.2 we need two supplementary results.
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Lemma 4.1.3. For any �xed interval [a1; a2] there exists a constant A > 0, such

that

lim inf
�!1

min
�2s(�)[a1;a2]

p
�p(�) � A;

where p(�) is given by (3.12).

Proof: The proof consists of the following observations:

(a) As a corollary of Lemma 3.1.2; for any �nite interval [a1; a2] there exists a

constant C such that

max
�1;�22s(�)[a1;a2]

fracp(�2)p(�1)

and if a1 " a and a2 # a then C # 1.
(b) As a corollary of (a),

F (a2)� F (a1�) > 0:

(c) The number of elements in the set s(�)[a1; a2] grows as (a2 � a1)=
p
�.

Lemma 4.1.4. For any a1; a2 such that n < a1 < a2 <1, we have

lim
�!1

E(�)[j�� �1jIfa1 � q � a2g] = 0;

where E(�) is mathematical expectation with respect to the istribution F (�) of the

vector (q; �). (We use the same notation for the distribution of the vector (q; �)

and the distribution of q.)

(The proof of Lemma 4.1.4 depends on some further results and is postponed.)

Proof of the Lemma 4.1.2. continued:

It is easy to see using statement (a) of the proof of Lemma 4.1.3, that it is

su�cient to consider the case n < a1 < a2 <1 (note that �+�
p
� > N and H > 0

in this case). Our notations here is consistant with the notation in the proof of

Lemma 3.1.2. We have

W � ln
p(�2)

p(�1)
=
X
�2G

ln
�

��(�)
;

where

��(�) = N + (�+ �
p
��N) ���;
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��� = ���1 + (1� ��)�2 = (�1 � �2)�� + �2;

and

�� = E(�)[�jq = �]:

Thus,
��(�)

�
= 1 + [n+ ���(� � n)]=

p
�+ 
(�)=�;

where ��� � maxf�1; �2g and j
(�)j � j1 � ���j < 1 . The coe�cient of 1=
p
� is

uniformly bounded for � 2 G. Thus,

W =�
X
�2G

[n+ ���(� � n)]=
p
�+ o(1) =

�
X
�2G

[n+ �(� � n)]=
p
��

X
�2G

(� � n)(�1 � �2)(�� � �1)=
p
�+ o(1):

Let

W1 =
X
�2G

(�� � �1)=
p
� =

X
�2G

(�� � �1)p(�)=(
p
�p(�)):

Due to lemma 4.1.3, for large �,

p
�p(�) � A > 0:

Thus,

jW1j � 1

A

X
�2G

j�� � �1jp(�) � 1

A
E(�)[j�� �1jIfa1 � q � a2g]! 0; as �!1

Then, following the proof of Lemma 4.1.2 we have

lim
�!1W = �

Z a2

a1

g(y)dy:

The proof is complete.

Proof of Lemma 4.1.4:

Lemma 4.1.4 is a corollary of Theorem A.2 (below) via the following argument.

Let F
(�)
+ (y) be the conditional distribution of the process q(�) under the con-

dition that q � n:

F
(�)
+ (y) =

(
F (�)(y)�F (�)(n�)

1�F (�)(n�)
if y � n;

0 if y < n:
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Then F
(�)
+ is also a stationary distribution of the process q(�) restricted to the

state space s
(�)
+ . In terms of the original (non-scaled) process, truncation means

that we will look at the two-dimensional birth-death process

~H(�)(t) = (H
(�)
1 ; H

(�)
2 )(t); t � 0;

where Hi is the number of i-customers waiting in the queue (if any). When the

number of waiting customers H = H1 +H2 drops to 0, the service in the system is

interrupted until the next customer arrival. The process

~X(�)(t) = (X
(�)
1 ; X

(�)
2 )(t) � ~H(�)(t=

p
�); t � 0

is the process ~H(�)(t) being slowed down by a factor of
p
�. But, of course, the

process ~X(�)(t) has the same stationary distribution as ~H(�)(t) does. Consider also

the scaled process

x(�)(t) =
1p
�
~X(�)(t):

Thus, the relation between the processes x(�)(t) and q(�)(t) s given by the equation

jjx(�)(t)jj � jx(�)1 (t)j+ jx(�)2 (t)j � q(�)(t=
p
�)� n� �(�)=

p
�

where 0 � �(�) < 1. The transition diagram for the process ~X(�)(t) is shown in

the Figure A.1. The birth intensities of the process ~X(�)(t) are described by the

(constant) vector
p
�(�1; �2), and death intensities by the vector

M( ~X) =
p
�(
Xi

X
IfX > 0g(1 + np

�
+

(�)

�
) + �i

Xi

�
; i = 1; 2);

where j
(�)j � 1. If the arbitrary constant c > 0 is �xed and �!1, then

M( ~X) =
p
�(
Xi

X
IfX > 0g+  

(�)
i ( ~X); i = 1; 2);

where both  
(�)
1 ;  

(�)
2 ! 0 uniformly in the domain X=

p
� � c.

Each process x(�)(t) is a process with state space being a subset of <2
+. So,

each x(�)(t) can be viewed as a process with the state space (<2
+;B(<2

+)) and its

stationary distribution G(�) can be viewed as a measure on (<2
+;B(<2

+)).
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Theorem A.1. Let T > 0 be �xed and

x(�)(0)! x0 2 <2
+

Then the process x(�)(t) converges to the deterministic process x(t) de�ned as the

solution of the di�erential equation

_x(t) = v(x(t)); 0 � t � T;

where the vector v(x) = (v1; v2)(x); x 2 <2
+ is de�ned as follows:

v(x) =

�
(�i � xi

jjxjj ; i = 1; 2) if x 6= 0;

0 if x = 0:

More precisely, for any � > 0,

lim
�!1

Pr f sup
t2[0;T ]

jjx(�)(t)� x(t)jj � �g = 0:

Theorem A.1 can be obtained, for example, as a corollary of Theorem 1 in [2].

The sequence of stationary distributions G(�), � = 1; 2; : : :, is relatively compact

due to Lemma 4.1.1.

Theorem A.2. Let G be any limiting point (in the sense of weak convergence in

(<2
+;B(<2

+))) of the distribution sequence G(�), � = 1; 2; : : :. Then

G(fx1 = �1jjxjjg) = 1

Proof: It follows from Theorem 8.5.1 in [3] and Theorem A.1 that G must be a

stationary distribution of the deterministic process x(t). For any � > 0, the sample

path of x(t) starting from any point x0, not on the line fx1 = �1jjxjjg, reaches the
�-neighborhood of the line fx1 = �1jjxjjg in �nite time and then never leaves it. So,

any �-neighborhood of that line has G-measure 1. This implies that the measure of

the line itself is 1. The proof is complete.
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