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Abstract

We consider the following queueing system which arises as a model of a wireless link shared
by multiple users. Multiple flows must be served by a “channel” (server). The channel capacity
(service rate) changes in time randomly and asynchronously with respect to different flows. In
each time slot, a scheduling discipline (rule) picks a flow for service based on the current state of
the channel and the queues.

We study a scheduling rule, which we call the exponential rule, and prove that this rule is
throughput-optimal, i.e., it makes the queues stable if there exists any rule which can do so. In the
proof we use the fluid limit technique, along with a separation of time scales argument. Namely,
the proof of the desired property of a “conventional” fluid limit involves a study of a different
fluid limit arising on a “finer” time scale.

In our companion paper [12] it is demonstrated that the exponential rule can be used to
provide Quality of Service guarantees over a shared wireless link.
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1 Introduction

The primary motivation of this work is the problem of scheduling transmissions of multiple data
users (flows) sharing the same wireless channel (server). The unique feature of this problem is the
fact that the capacity (service rate) of the channel varies with time randomly and asynchronously for
different users. The variations of the channel capacity are due to different (and random) interference
levels observed by different users, and also due to fast fading [3, 14], of a radio signal received by a
moving user. At the very high level, the problem is: How to schedule transmission of different users
in a rational way, so that the wireless channel is utilized efficiently? We will refer to this general
problem and the corresponding queueing model as the variable channel scheduling problem (model).

The variable channel scheduling problem arises, for example, in the 3G CDMA High Data Rate
(HDR) system [4], where multiple mobile users in a cell share the same CDMA wireless channel. On
the downlink (the link from cell base station to users), time is divided into fixed size (1.67 msec) time
slots. This slot size is short enough so that each user’s channel quality stays approximately constant
within one time slot. In each time slot, one user is scheduled for transmission. Each user constantly
reports to the base station its “instantaneous” channel capacity, i.e., the rate at which data can be
transmitted if this user is scheduled for transmission. In HDR system (and in the generic variable
channel model as well) a “good” scheduling algorithm should take advantage of channel variations
by giving some form of priority to users with instantaneously better channels.

In this paper, we study a scheduling algorithm which explicitly uses information on the state of
the channel and the queues. We call it the Ezponential (EXP) rule. Our main result is that
The EXP rule is throughput optimal, i.e., it renders queues stable in any system for which stability
is feasible at all, with any other rule.

The specific variable channel scheduling model we study is the same as that in [2] (and its
extended version [1]), where a scheduling rule called Modified Largest Weighted Delay First (M-
LWDF) was proposed and proved to be throughput optimal. The Exponential rule was introduced
in [1], but not studied analytically.

In a companion paper [12], we study the EXP rule using simulations, and show that this policy,
in conjunction with a token queue mechanism allows us to support a mixture of real-time and non-real
time data over HDR with high efficiency.

As in [2], our main tool for proving stability results is the fluid limit technique [11, 6, 5, 13, 7].
However, in this paper, the use of this technique is much less conventional. To prove the desired
property of a “conventional” fluid limit process, we use a “separation of time scales” argument which
leads to the analysis of another fluid limit, on a “finer” (space and time) scale. We believe, this
approach and the constructions we use, are of independent interest.

In the next section we introduce the precise model and formulate the main result. At the end
of that section, we describe the layout of the rest of the paper.



2 Variable Channel Scheduling Model. Main Result

2.1 The Model and Notations

The system consists of N input flows (of discrete customers) which need to be served by a single
channel (or server). We will denote by N = {1,... , N}, both the set of flows and its cardinality.
Each flow has its own queue where customers wait for service.

The channel operates in discrete time. A time interval [¢,¢ 4+ 1), with ¢ = 0,1,2,..., we will
call the time slot t. There is a finite set of channel states M = {1,... , M}, and the channel state
is constant within each time slot. Associated with each state m € M is a fixed vector of data rates
(p, ... ,pR), where all p* are strictly positive integers. The meaning of 4! is as follows. If in a
given time slot ¢ the channel is in state m and all service (in this time slot) is allocated to queue
i, then p" type ¢ customers are served from those already present at time ¢ (or the entire queue 4
content at ¢, whichever is less). Note that what we call a “channel state” here is actually a collection
of channel states with respect to individual flows.

However, the service in any time slot may be split according to a (generally speaking random)
stochastic vector o = (o1,... ,0n), 0; > 0,Vi, >, 0; = 1. If in a given time slot ¢ the channel is in
state m and a “split” vector o is chosen, then for each queue 4, [o;uf"] type ¢ customers are served
from those already present at time ¢ (or the entire queue 7 content at ¢, whichever is less). Here and
below |-] denotes the integer part, and [-] - the ceiling of a number.

The random channel state process m is assumed to be an irreducible discrete time Markov chain
with the (finite) state space M. (See Feller [9] for the definitions of irreducibility, aperiodicity, and
ergodicity of countable discrete time Markov chains.) The (unique) stationary distribution of this
Markov chain we denote by m = (z!,...  «M).

Denote by A4;(t) the number of type i customers arrived in time slot t. We will adopt a convention
that all arrivals in the time slot ¢ actually happen at time ¢, but those arrivals are not available for
service until time slot ¢ + 1. We assume that
The aggregate arrival process A = {(A1(t),... ,An(t)),t = 1,2,...} can be described by a finite
number of regenerative processes with finite mean regeneration cycles.

Let us denote by \;, 2 = 1,..., N, the mean arrival rate for flow i, i.e., the mean number of
type ¢ customers arriving in one time slot.

In addition, we will assume that the average input rates converge to their mean rates exponen-
tially fast. Namely, we make the following

Assumption 2.1 For any i € N and any v > 0, there exists a constant a = a(v) > 0 such that the
following estimate holds. Uniformly on the initial state of the input process, for all sufficiently large
n’

n
Pr{% S Ait) = M| > v < e
1

To simplify notation, let us assume that each input process A; is an ergodic (discrete time)
Markov chain with countable state space, and the input processes are mutually independent. (Ex-



tension of the proofs to more general input flows described above is straightforward.) In this case,
Assumption 2.1 is satisfied, for example, if all A;(¢) are i.i.d. random variables with a finite expo-
nential moment, or if each A;(-) is a finite state Markov chain.

The random process describing the behavior of the entire system is S = (S(t), t =0,1,2,...),
where

S(t) ={Un(t),... . Uigpy(1)), i =1,...,N; m(t) },

Q;(t) is the type i queue length at time ¢, and U () is the current delay of the k-th type ¢ customer
present in the system at time ¢. (Within each type, the customers are numbered in the order of their
arrivals.) We will denote by W;(t) = U;1(t) the delay of flow i at time ¢ (with W;(¢) = 0 if Q;(¢t) =0
by convention).

2.2 A Scheduling Rule. Throughput Optimality.

A mapping H which takes a system state S(¢) in a time slot into a fixed probability distribution
H(S(t)) on the set of stochastic vectors o, will be called a scheduling rule, or a queueing discipline.
So, if we denote by D;(t) the number of type i customers served in the time slot ¢, then according
to our conventions, for each time ¢,

Qi(t+1) = Qi(t) — D;i(t) + Ai(2), Vi,

where D;(t) = min{Q;(t), Lai(t),uzn(t)J} and o(t) is chosen randomly according to the distribution
H(S(t)).

Our assumptions imply that with any scheduling rule, S is a discrete time countable Markov
chain. To avoid trivial complications, we make an additional (not very restrictive) technical as-
sumption that we will only consider scheduling rules H such that the Markov chain S is aperiodic
and irreducible. By stability of the Markov chain S (and stability of the system) we understand its
ergodicity, which (in the case of aperiodicity and irreducibility) is equivalent to the existence of a
stationary distribution.

A scheduling rule H we will call universally stable, or throughput optimal, if it makes a system
stable if the stability is feasible at all with any other rule. More precisely, a rule H is throughput-
optimal if for any fized system, the existence of a rule (possibly dependent on the system) which
makes it stable, implies that the system is also stable under the rule H.

2.3 Exponential Rule. Main Result

Let an arbitrary set of positive constants vi,...,vn, a1,...,an, and positive constants § and
n € (0,1) be fixed. The following two related rules we will call Exponential.
The Exponential (Queue length) rule (EXP-Q) chooses for service in time slot ¢ a single queue

a;Q;(t)

i €1(S(t)) = arg max; 1i(t) exp (m) ’



where p;(t) = u;n(t) and Q(t) = (1/N) Y, a;Q;(t). Similarly, the Exponential (Waiting time) rule
(EXP-W) chooses for service a queue

a; Wi (t) )
B+

i €i(S(1)) = argmaxy, u(t) exp (

where W (t) = (1/N) >, a;W;(t).

Remark 2.1 1. Formally speaking, in the definition of the EXP rule, we also need to specify a
“tie-breaking” convention. For example, we can assume the the queue i = max{j : j € i(S(t))} is
chosen.

2. Note that without loss of generality we can assume 1 = 1. We will use this convention later in
the paper.

The main result of this paper is the following

Theorem 2.1 An EXP rule (either EXP-Q or EXP-W), with any fized set of positive parameters
B, n€(0,1), and v;,a;, i € N, is throughput optimal.

2.4 Layout of the Rest of the Paper

In the next section we discuss the necessary and sufficient condition for a system to be stable. This
condition is closely related to Static Service Split (SSS) scheduling rules. We study the properties
of SSS rules which are needed for the proof of our main result. In Section 4 we first introduce
preliminaries of the fluid limit technique, and then prove Theorem 2.1. The key element of the proof
is a local fluid limit argument.

3 Necessary and Sufficient Stability Condition: Static Service Split
Rule

From this point on, we consider a fixed system, with a fixed set of the parameters.

Suppose a stochastic matrix ¢ = (¢, m € M,i =1,...  N) is fixed, which means that ¢,,; > 0
for all m and ¢, and ); ¢ = 1 for every m. Consider a Static Service Split (SSS) scheduling rule
[2], parameterized by the matrix ¢. When the channel is in state m, the SSS rule chooses for service
a (single) queue 7 with probability ¢,,;. Clearly, the vector v = (v1,... ,un) = v(¢), where

_E:m S m
v = Trquluia

gives the long term average service rates allocated to different flows. This observation makes the
following necessary and sufficient stability condition very intuitive. The proof of this result is available
in [2].



Theorem 3.1 For a given set of system parameters, a scheduling rule H under which the system is
stable exists if and only if there exists a stochastic matriz ¢ such that

A< vi(gﬁ), Vi . (1)

In the rest of this paper, we assume that the system parameters are such that stability of the
system is feasible, i.e., condition (1) holds for some ¢ and, consequently, the SSS rule associated with
this ¢ makes system stable.

An SSS rule associated with a stochastic matrix ¢* we will call mazimal if the vector v(¢*) is

not dominated by v(¢) for any other stochastic matrix ¢. (We say that vector v is dominated by
2 (1) 2
<wv

vector v@ if vgl) < ;" for all 4, and the strict inequality v; .~ holds for at least one i.)
Remark 3.1 We note that any fixed mazimal SSS rule can not be throughput optimal, because
throughput-optimality requires that a rule makes stable any system for which stability is feasible.

(And the necessary and sufficient condition for such feasibility is given by Theorem 3.1.)

We next present a very useful characterization of a maximal SSS rule. The following result is
proved in [2].

Theorem 3.2 Consider a mazimal SSS rule associated with a stochastic matriz ¢*. Suppose in
addition that all components of v* = v(¢*) are strictly positive. Then there exists a set of strictly
positive constants a;, 1 =1,2,... ,N such that

¢r.i > 0 implies i € arg mjax oy (2)

The theorem says that basically a maximal SSS rule simply chooses for service at any time ¢ the

queue ¢ for which ozi,u;n(t) is maximal. It does not specify what to do in case of a tie (when ajpst is
same for multiple queues); as a result the same set of {a;} may (and typically will) correspond to
different maximal SSS rules.

3.1 A “Diagonal Drift” Maximal SSS Rule

In this section, we show that there exists a maximal SSS rule which keeps the (weighted) difference
of the arrival rates and service rates equal. Let us define

G = {y = (- un) | 0 Sy Smaxpr®, ai(hi —y) = a;(dy —y;) Vi, j € N}
G = {y € G | 3 SSS rule parameterized by ¢ s.t. v(¢) > y}

where {a;} are arbitrary positive constants. Then, we have the following simple result.

Lemma 3.1 There exists a unique maximal element y* in é\, and a mazimal SSS rule ¢* such that

y* =v(g").

Roughly speaking, each maximal SSS rule ¢* described in the lemma, provides the maximal
absolute value negative drift along the diagonal a;Q; = a;Q;, Vi, ;.



Proof. The existence of a matrix ¢ such that condition (1) holds, immediately implies that the set
G is non-empty. Since Gisa completely ordered bounded set, we can consider y* = sup G , where the
supremum is component-wise. Using compactness of the set of possible matrices ¢ and continuity of
the mapping v(¢), we easily establish the existence of ¢* such that y* < v(¢*), and therefore y* € G.
The equality y* = v(¢*) must hold. Indeed, if the strict inequality vy} < v;(¢*) would hold for at
least one 7, we could always “adjust” elements of the matrix ¢* to produce another matrix ¢** such
that y < v;(¢**) for all ¢, which would contradict the maximality of y*. The same argument shows
the maximality of the SSS rule associated with ¢*. |

4 Throughput Optimality of the Exponential Rule

In this section, we prove that the exponential rule is throughput-optimal. The detailed proof will be
for the EXP-Q only. The proof for the EXP-W is virtually same, but requires a slight adjustment
which we will sketch at the end of this section.

Consider the system we fixed earlier in this paper. We remind that for this system the necessary
and sufficient condition described in Theorem 3.1 holds. Suppose now that this system operates
under an EXP-Q scheduling rule with a fixed set of parameters 5 > 0, n € (0,1), and a; > 0, 7, > 0
for i € N. Without loss of generality, we assume that y; = 1. Also, just to make the proof more
readable, we put n = 1/2. (The proof for any 0 < n < 1 is obtained by trivial modifications.) Then
the EXP-Q rule is given by

aiQi(t)
B+4/Qt)
From this point on, let us fix a matrix ¢* (and the corresponding maximal SSS), as in Lemma
3.1, with the constants a; being the parameters of the EXP-Q rule. Let us denote

" =ai(yf — M) = ai(vi(¢*) — N;), Vie N . (3)

i €1(S(t)) = argmaxy; pi(t) exp

For this matrix ¢*, let us fix a corresponding set of positive constants {«;}, as in Theorem 3.2.
Without loss of generality we assume a; = 1.

Let us define b; by
fyiebi = o ,1EN.
Note that by = 0 (since oy = 1 by the convention adopted earlier).

To prove Theorem 2.1, it will suffice to prove the following “narrower” statement.
Lemma 4.1 The fized system described above is stable.

The proof will use the fluid limit technique. In the next subsection we describe preliminaries
needed to use the technique. In the following subsection, we apply the technique to prove Lemma 4.1.
Our application of the fluid limit technique is not straight forward. It involves a separation of time
scales argument: namely, it requires the analysis of fluid limit processes on two different time scales.



4.1 Fluid Limit Technique Preliminaries

Let us define the norm of the state S(t) as follows:
N

ISl =" Qi) -
i

Let S denote a process S with an initial condition such that |[S™(0)|| = n. In the analysis to
follow, all variables associated with a process S will be supplied with the upper index (n).

The following theorem is a corollary of a more general result of Malyshev and Menshikov [10].

Theorem 4.1 Suppose there exist € > 0 and an integer T > 0 such that for any sequence of processes
S n=1,2,..., we have

lim sup E[L|S™ (nT) ] <1 . (4)
n

n— 00

Then S is ergodic.

It was shown by Rybko and Stolyar [11] that an ergodicity condition of the type (4) naturally
leads to a fluid-limit approach to the stability problem of queueing systems. This approach was
further developed by Dai [6], Chen [5], Stolyar [13], and Dai and Meyn [7]. As the form of (4)
suggests, the approach studies a fluid process s(¢) obtained as a limit of the sequence of scaled
processes =S (") (nt),t > 0. At the heart of the approach (in its standard form) is a proof that s(t)
starting from any initial state with norm ||s(0)|| = 1 reaches 0 in finite time 7" and stays there.

The first thing we need to do is to define what the scaling %S’ (") (nt) means in our setting. In
order for this scaling to make sense, we will need an alternative definition of the process.

To this end, let us define the following random functions associated with the process S (t). Let

Fi(n) (t) be the total number of type-i customers that arrived by time ¢ > 0, including the customers

present at time 0; and Fz-(n) (t) be the number of type-i customers that were served by time ¢ > 0.
Obviously, ﬁi(n)(()) = 0 for all . As in [11] and [13], we “encode” the initial state of the system; in
particular, we extend the definition of Fi(n) (t) to the negative interval ¢ € [—n,0) by assuming that
the customers present in the system in its initial state S (0) arrived in the past at some of the time
instants —(n — 1), —(n — 2),...,0, according to their delays in the state S(0). By this convention
Fi(n)(—n) = 0 for all < and n, and Zf\;l Fi(n)(()) = n. Also, denote by G (t) the total number of
time slots before time ¢ (i.e., among the slots 0,1,... ,¢ — 1), when the channel was in state m; and
by G’g;? (t) the number of time slots before time ¢ when the channel state was m and the channel was
allocated to serve queue 7. Then the following relations obviously hold:

QM =F" ) - F™@®), t>0, i=1,2,...,N, (5)

)

Finally, let

~n n 1 n
A" = @@ —bi\/ﬁ Q5" (1)
i

8



It is clear that the process S = (S (t),t > 0) is a projection of the process X" =
(F) F0) g G Q™) where

GM = (Gi(t), t>0, meM),
G = (G™M), t>0, meM, i=1,2,...,N),
Q™ =@™®), t>0, i=1,2,...,N),
In other words, a sample path of X(™ uniquely defines the sample path of S(™).

Let us also adopt the convention
Y(t) = Y([t), for Y =™, FM E" G0, a0), Q1

with ¢ > —n for Y = Fi(n) and ¢ > 0 for all other functions. This convention allows us to view the
above functions as continuous-time processes defined for all ¢ > 0 (or ¢ > —n), but having constant
values in each interval [¢,7 + 1).

Now consider the scaled process z(™ = (f(), f) g gn) ¢™), where

g™ = (g (t), t>0, me M),

m

g = (@), t>0, meM, i=12...,N),

and the scaling is defined as

From (5) we get:

dMt)y= My - fMw), t>0, i=1,2,...,N. (6)

The following lemma states the convergence to and basic properties of a “fluid limit” process,
and is a variant of Theorem 4.1 in [6] or Theorem 7.1 in [13].

Lemma 4.2 The following statements hold with probability 1. For any sequence of processes X (™,
there exists a subsequence X®)| {k} C {n}, such that for each i, 1 <i < N and m € M,

(B @),t > —1) = (fi(t),t > 1) (7)

)



(FP (1), 8> 0) > (fi(#),t > 0)
(FP ().t > 0) = (fi(#), > 0)
(¢ (1), > 0) = (4i(t),% > 0)
(@™ (1), > 0) = (aiqs(1), £ > 0)
(958 (1), > 0) = (gm(t),t > 0)

(%) (1), > 0) = (Gns(t), ¢ > 0)

u.0.cC.

u.o.c.

u.0.cC.

u.o.c.

u.0.cC.

u.o.c.

®)

9)
(10)
(11)
(12)

(13)

where the functions f; are non-negative non-decreasing right continuous with left limits (RCLL) in
[—1,00), the functions f;, fi, gm,Gmi are non-negative non-decreasing Lipschitz-continuous in [0, 00),
functions q; are continuous in [0,00), “=7 signifies convergence at continuity points of the limit, and

»

“u.o.c.” means uniform convergence on compact sets, as k — oo. The limiting set of functions

z=(f,f,9,4:9)

also satisfies the following properties:

and for all 1, 1 <i< N and m € M,

ngz - gm )

for any interval [t1,t3] C [0,00),

f( fz tl Z Nz gmz t2

meM
if gi(t) > 0 for t € [t1,12] C [0,00), then

f( fz tl Z Nz gmz t2

meM

10

gmi (tl)) )

gmi (tl)) )



Proof. It follows from the strong law of large numbers that, with probability 1 for every i,

(£ @) — £™M0), £>0) = (At, t>0) wo.c.

) 7

So, to prove (8), (14), and (15) it suffices to choose a subsequence {k} C {n} such that for every

i, lim fi(k)(O) exists, and denote the limit by f;(0). Since all fi(k) are non-decreasing, we can always
choose a further subsequence such that (7) holds.

The properties (12) and (18) follow from the ergodicity of the channel state process.

Also, for any fixed 0 < t; < tg, for every i, m, and any n, we have (using the notation p* =
maxy,; 47" ):

FiM () — f < ST @l (82) — g5 (1) + 1/n) < (b — 1+ 1/m)
meM

From this inequality we deduce the existence of a subsequence (of the subsequence already chosen)
such that the convergences (9) and (13) take place, and (22) holds.

The relations (16), (17), (20), and (21), follow from the corresponding relations which trivially
hold for the prelimit functions (with index (n)). The convergence (10) and identity (19) trivially
follow from identity (6). Convergence (11) follows from (10) as the (scaled by 1/n) /- term goes to
Z€ro 1.0.C., as 1N — 0.

Suppose, g;(t) > 0 for t € [t1,t2] C [0,00). Let us fix § € (0, minyey, 4,1¢i(t)). The Lipschitz
continuity of ¢;(-), along with u.o.c. convergence of ql(k) to g;, implies that (with probability 1) the
sequence X (®) is such that for all sufficiently large k, the following inequalities hold:

i (k) m
min t) > 0k > max p;
tE[LtlkJ,tngrl]Q *) mXMz
The latter property implies that if the queue ¢ was chosen for service anywhere in the interval
[[t1k], t2k + 1] when the channel state was m, then exactly ;" type ¢ customers were served. So, we
must have
B (eta) = B (tr) = 3 i (G o) — G ()] < 2max i
meM
Scaling the last inequality by &k and taking the limit & — oo we get (23).

Since some of the component functions included in z, namely f;(-), fz(), Im(*)s gmi(*), ¢i(+), are
Lipschitz in [0, 00), they are absolutely continuous. Therefore, at almost all points ¢ € [0,00) (with
respect to Lebesgue measure), the derivatives of all those functions exist. We will call such points
reqular.

4.2 More Preliminaries

Let arbitrary v > 0 and 7' > 0 be fixed. For each n, let us cover the interval [0,nT] with Pp =
LnT/niJ + 1 equal non-overlapping n%—long intervals [(i — l)n%,z’ni), 1 < i < Pf. Define for each
j=1,2,... ,N,and each m=1,2,... ,M,

11



A;-’n, the number of arrivals from flow j in the time interval [(i — l)ni,in%),
B the number of (full) time-slots that the channel is in state m in the time interval [(i —

l)n%,m%)

Let us denote

i,
Aj

1
n4

E}Tv) = | {

1<i<Pn

Bi,n

1
1<i<pp (| T4

Also, let Q. denote the set of strictly positive rational numbers.

Lemma 4.3 The following properties hold:

Pr| | ﬁGEy(T,u) = 0 VjeEN, (24)

v, 7€Q4 k=1n=k
o0 o0
Ppri | NUGuTwv)] = 0 VmeM. (25)
v, 7€Q4 k=1n=k

Equivalently, with probability 1, for oll rational T > 0 and v > 0, there exists finite k such that for
alln >k,

Ai,n
J )
max — — A\ <v, (26)
JEN, 1<i<PR | 1
By
max — -1 <v. (27)
meM, 1<i<Pl| pi

Proof Fix any rational 7" > 0 and v > 0. Fix any j € N. According to Assumption 2.1 on the
arrival process, the following large deviations estimate holds. There exists a = a(v,j) > 0 and a
ki1 = ki(v, j) such that for all n > k;, uniformly on 1 < i < Pf,

Ai',n
Pr ( -\

1
ni

> V) < exp(—n%a) (28)

Hence, for all n > kq,
1
Pr (E}(T,v)) < Pftexp(—nia),
and therefore

ZPr (E}(T,v)) < oo .

12



By Borel-Cantelli lemma, it follows that

Pr (ﬂ U E;?(T,y)> =0.

k=1n=k
This implies property (24), since the first union in (24) is over a countable set.

The proof of (25) is essentially same: a large deviation estimate analogous to (28) follows from
the fact that the channel state process m is a finite irreducible Markov chain (see [8]). [

4.3 Proof of the Main Result

We now in position to prove Lemma 4.1 and therefore our main result, Theorem 2.1.

Theorem 4.2 With probability 1, a limiting set of functions, as in Lemma 4.2, satisfies the following
additional condition. At every reqular point t > 0,

max a;q;(t) >0 implies (maxa;q;(t)) < —€",
1 1

where
€ =ai(yr — A1) >0
is defined by (3).

Consequently, there exists T' > 0 such that, with probability 1, a limiting set of functions is such that
> 4i(t) =0 for any t > T.

Proof. The subset of outcomes (i.e., elements of the underlying probability space) for which the
statements of both Lemma 4.2 and Lemma 4.3 hold, has probability 1. Consider this subset.
Suppose statement of the theorem does not hold. Then there exists an outcome within the specified
subset, such that a subsequence of scaled processes converges to a “fluid limit” (i.e., a set of limiting
functions as in Lemma 4.2) satisfying the following property. For some fixed regular point ¢ > 0 and
a constant 71 < €*, we have h(t) = max; ¢;(t) = max; a;q;(¢t) > 0 and h'(t) > —n;. Let us prove that
this assumption leads to a contradiction.

If the assumption holds, then there exist constants 0 > 0, & > 0, and 72 € (11, €*), such that
h(s) > ¢, Vselt,t+4d],

and

M0 —h)

For each n, let us now divide the interval (¢, 4+ d] into /n intervals, each of length %. (Since

/n may not be an integer, we should divide into, say, [1/n] intervals. To avoid trivial complications
and heavy notation, we assume that \/n is integer. It will be clear that we do not lose the correctness
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of the argument.) Note that in the “unscaled time” (i.e. on the time scale of the original process S),
each subinterval is of length dy/n.

Let us denote
W™ () = max g (1) ,

and fix any constant 1 € (12, €*). From the Dirichlet principle, for all sufficiently large n, in at least
one of the subintervals (of length %), the average rate of change of h(")(.) is greater than or equal to

(=n). We pick such a subinterval [s(), s(") 4-§/,/n] for each n. Let us choose a further subsequence
of the sequence of indices {n} (which we will still denote by {n}), such that s — s, for some fixed
s € [t,t + 6]. Obviously, the right end-point s + §/y/n of the subinterval also converges to s. Let
us recall the notation

() = -G ) = Q" (nt) — b /@ () ]

where

_ 1 .
") = 5 > aiQ)"
J

From the subsequence {n}, we choose a further subsequence such that the order of values of

@én)(s(")),i € N, remains the same. For example, without loss of generality let us assume that

@M (s™y > > g (s™)

Finally, for each i € N, consider the following processes:

ot (z) = V[ (™ + z/vn) — @M (s™)], = € [0,4]

and choose a subsequence such that for each i,

oq™(0) = 04;(0)

where ,q;(0) = 0 (by our construction), and each other ,g;(0) is either finite non-positive or —oo.
Let us consider only the case when all ,¢;(0) are finite. (If not, it is easy to observe that the flows
with ,g;(0) = —oo receive no service at all in the (unscaled) time interval [ns(™,ns™ + \/nd]. So
the same argument, restricted to the remaining subset of flows applies.)

(n)

We notice that a process ,g; ’(-) is obtained from the process QZ(-n)(-) by the time “speedup”

of v/n and the “space” scaling by the factor 1/4/n (in addition to the centering). Thus, it is very

natural that as n — oo, the sequence of processes {Oqgn)(-), i € N}, all defined in the interval [0, ¢],
should converge (over a subsequence of {n} to another - “local” - fluid limit. The Proposition 1

formulated below formalizes this observation.

Let us define the following functions, all defined z € [0, ], and associated with the (unscaled)
time interval [ns(™, ns(™ 4 \/nd):

NS Z( (x) is the number of type i customers arrived in the (unscaled) interval [ns ") 4 /nx);
\/ﬁofﬁ () is the number of type i customers served in the (unscaled) interval [ns(™, ns(™ + /nz];
\/ﬁoggn) () is the number of (complete) time slots in the (unscaled) interval [ns(™), ns(™ + \/_:1:] in
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which the channel was in state m;
\/ﬁ{gfzz) () is the number of (complete) time slots in the (unscaled) interval [ns(™,ns™ + /nz], in
which the channel was in state m and the service was allocated to queue 1.

Proposition 1. There exists a further subsequence of {n} such that the following additional
properties hold for each i € N and m € M:

f(z), 0< 2 <8) = Nz, 0<2<3) woc (29)
(0™ (), 0< 2 <6) = (72, 0<2<0) woc (30)
(3™ (), 0< 2 <6) = (Gom(x), 0< 7<) wo.c. (31)
AAn) ~

B

(), 0<2<0) = (ofi(z), 0<z <0) = (Z it eGmi(x), 0 <z <J) w.o.c. (32)

(" (2), 0< 2 < 6) = (ogi(x), 0< 2 <8) = (oq;(0) + a;s(Niz — of3(z)), 0< 2 <3) o ”
33

where all the functions .g,,;(-) and sz() are non-decreasing Lipschitz continuous with value 0 at
x =0, and all functions ,q;(-) are Lipschitz continuous, and in addition

N
> oGmi(z) =a"z .
i=1

The proof of Proposition 1 is completely analogous to the proof of Lemma 4.2. The convergence
properties (29) and (30) trivially follow from the fact that we consider an element of probability
space for which the properties (26) and (27) hold.

Let us denote

o) (2) = max ¢\ (x), z € [0,4] ,
and
Oh(x) = maXOQi($)7 e [075] .

It follows from Proposition 1 that ,Ah(-) is a Lipschitz continuous function, and from our construction
that
oh(8) — oh(0) > —né .
A point z € (0,9) we will call regular if the derivatives of all the functions ¢h(-), «q;(*), oGmi(*),
and <>fi(-), exist in this point. Almost all points (with respect to Lebesgue measure) of the interval
(0,9) are regular.
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We will now show that in each regular point z € (0,4), oh'(z) < —e*. This will imply that
oh(0) — oh(0) < —€*6, which is the desired contradiction.

For each n consider the (unscaled) time interval [ns(™ ns(™ + \/nd], and consider how the
coefficient of 11;(t) (in the EXP-Q rule) behaves in this interval. Obviously, multiplying the coefficients
of all p;(t) by the same positive function of time (not necessarily a constant), does not change the
EXP-Q scheduling rule. Therefore, the following functions '?i(n)(-) can be regarded as the coefficients
of p;(t). For every n, i € N, and z € [0, d], we have

Q" (ns™ + \/nz) — g™ (s™)
B+ Q" (ns + v/z)

5 () = i exp

— e alQ (ns ) 4 /nx) —b\/Q (ns(m —i-\/ﬁm)—nql +b\/Q (ns(™ + /nz)
Jn (% + Q" )(ns+\/ﬁl‘)>
e 3o/ T
= yjexp ozl (z) exp - —
B )@ s 4 i) B /@0 st 4 i)
vn n N n

Note that as n — oo the convergence

A (n)
Q" (s + )

n

1
= =) aigi(s) >0
N4

q(s)

is uniform on z € [0, 6], where

Therefore, we have

(" (2), 0 < 2 < 0) = (e exp(o;(2)/V/7()), 0< 2 <) wouc. . (34)

Now, consider any regular point 2 € (0,5). Consider the subset of flows I** C N for which
+q;(z) is maximal, i.e. ,q;(z) = oh(z). Also, let us denote

M*™ ={me M| ¢;,; >0 for at least one s € I**} .

For every m € M**, let us pick an element i(m) € I** for which ¢},; > 0. Observe that the value
of aj(m) u?(’”m) will be the same regardless of which of those elements we pick. From the form of the
EXP-Q scheduling rule and the uniform convergence (34) we can make the following observation.
There exists a small €; > 0 such that for any z € (z,x + €1) and any e, > 0, we have the following
estimate for all sufficiently large n,

> il (2) = o J (@) =

1eI**

> azZm 9 (2) = og') () >

seT**
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Z Z al:“‘z Ogmz ) Oggm)(x)) Z

meM** gel**

> w1 =€) (2 — &) it iy =

meM**
Yo mMl—e)(z—1) > P’ =
meM* el
(1 —€9)(z—x) Z Q;v;

3 ailofil2) —ofi(2)) > (z— ) > ami(¢") |

ie[** ie]**

Z Oézof Z aﬂ)z

iET** iET**

and therefore

Then, <>J/"\;(m) > v;(¢*) for at least one i € I'™*, and therefore ,q}(z) < —e* holds for this 4. Point z
is regular. By definition, in any regular point the derivatives ,h'(-) and oq}(-) for all ¢ € I** are all
equal. Thus

o (z) < —€* (35)

and we are done. (]

Proof of Lemma 4.1.

The results of this section imply the following property.

There exists T < 0o such that with probability 1, any subsequence of processes X has a further
subsequence (still denoted X)), such that

>l
i
This in particular means that w.p.1, any sequence of processes X (™ is such that

Jim S ()] =0,

which, along with the (easily verified) uniform integrability of the family {||S(™ (nT)||/n}, implies
lim B[~ S®) (nT)]]) = 0
n—oo n )

This verifies the condition (4), and we are done. [
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4.4 Proof for the EXP-W Rule: A Sketch

The proof for the EXP-W rule requires an additional preliminary step, which goes after Lemma, 4.2.
This step is analogous to the one in [2] for the M-LWDF rule. (But its proof for the EXP-W is
much simpler than that for the M-LWDF.) Namely, it needs to be shown that with probability 1
each limiting set of functions, described in Lemma 4.2, is such that by a finite time 77 > 0 all the
work present at time 0 has been served, i.e.,

t—wi(t) >0, Vt>1Ty, Vi,
where w; is the “=" limit of the (scaled) delay process (1 /n)Wi(n) (nt).

After this step, the rest of the proof for EXP-W essentially repeats the proof for EXP-Q, because
for ¢ > Ty the linear relation (Little’s law) ¢;(t) = \jw;(t) exists for both the “conventional” and
“local” fluid limits.

5 Conclusions

In this paper, we have studied the scheduling problem in a system with multiple flows served by a
single channel with capacity varying in time randomly and asynchronously with respect to different
flows. This problem arises, for example, in wireless communications.

We have proved that the EXP scheduling rule is throughput optimal. The rule also shows good
performance in “practical” situations (see [12]). This motivates an important subject of the future
work: a more detailed study of the EXP rule properties, beyond throughput optimality.
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