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Abstract

It is proved that a general open multi-class queueing network with the Global

preempt-resume Last-In-First-Out (G-LIFO) multi-channel discipline is stable under

the standard sub-criticality condition �j < rj . Here rj is the number of service channels

and �j =
X

(i;k)2Gj

�ivik the `nominal' load in node j; �i is the exogenous rate of arrival

of customers of class i and vik the mean service time of the class i customers at the kth

node on the route. Gj is the set of types (i; k) of the customers served in node j. This

result contrasts to examples of multi-class FIFO queueing networks where the nominal
sub-criticality condition does not guarantee stability.



1 The G-LIFO service discipline

Consider an open queueing network with several customer classes. The class of a customer
determines its route through the network and the distribution of the service time in each
node on the route. At the time of arrival from outside a customer enters the �rst node of its
route. After �nishing service in a given node, a customer instantly enters the next node of
its route; if it was the last node of the route, the customer leaves the network. The queueing
discipline adopted in this paper is multi-channel Global preempt-resume Last-In-First-Out
(G-LIFO). This means that customers in each node are served in the inverse order of their
exogenous arrival times (i.e., times of arrival in the network); a new customer interrupts the
current service if the customer under service is `older'. More precisely, suppose that a new
customer, say A, with an exogenous arrival time t, enters a given node (from outside or
after being served in the previous node of its route). If there is an idle channel in the node,
the newcomer takes it. Otherwise, two cases can occur: a) all customers under service are
`younger' than A, i.e., have exogenous times � t, and b) the `oldest' customer under service
has an exogenous time t0 < t; call it A0. In case a) customer A waits until the time when
(i) one of the channels completes service and (ii) all other waiting customers (regardless
of whether their service was interrupted or not) have their exogenous times < t. Then A
occupies the available channel. In case b) A interrupts the service of customer A0 and takes
over the corresponding channel. The interrupted service is then resumed at the �rst time
when a channel in the node completes service and all other waiting customers have their
exogenous times < t. All ties are broken at random (in the case of continuously distributed
random variables they occur with probability 0).

So, between points of exogenous arrival and end of service the network functions `smoothly':
customers under service diminish their residual service times at rate one, while the age
(i.e., the time lapsed from the time of exogenous arrival) of all customers present in the
network (i.e., served or waiting in the network nodes) increases at rate one. We show that
if the nominal load at each node in the network is strictly less than the number of channels
then the network is stable. By stability we mean ergodicity (more precisely, positive Harris
recurrence) of the underlying stochastic process.

This fact is in contrast with the well-known results (see [2], [3]) showing that in the case of
the FIFO (First-In-First-Out) discipline, the nominal sub-criticality condition is not enough
for stability of a multi-class network.

It has to be said that the G-LIFO discipline has its advantages (it is simple to implement,
distributes the workload evenly between the nodes of the route) and disadvantages (creates
a backlog of interrupted work).

It is easy to check that if the nominal sub-criticality condition is reversed in at least one node
j 2 J (in the sense that the nominal load is strictly greater than the number of channels in
the node) then the network is unstable.

The proofs given in this paper are based on the method of the 
uid limit [12, 5, 4, 13, 6],
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which reduces the problem of verifying of a stochastic network to verifying stability of a
corresponding deterministic 
uid network.

The argument we use to show stability of the 
uid network follows closely the one used by
Andrews et al. [1] to show stability of the network with Shortest-in-System discipline. (They
consider a network with possibly adversarial behavior of input 
ows with the constraints on
the input rates. The stability is understood as the property that the number of customers
in the network remains bounded as time goes to in�nity.) However, the \translation" of
the argument into the framework of a stochastic network is not straightworward, and this is
where the main contribution of this paper is.

2 The arrival and service times

We consider a network with a �nite set of nodes J = f1; 2; : : : ; Jg. Each network node
j is a multi-channel queue, with rj service channels of rate one. There are �nitely many
di�erent customer classes forming the set I = f1; 2; : : : ; Ig. The exogenous arrival 
ow of
customers of each class i 2 I is such that the inter-arrival times are i.i.d. random variables
�i(1), �i(2), : : :, with densities and a �nite non-zero mean equal to 1=�i. This means that �i
is the exogenous arrival rate for class i.

A class i customer has its prescribed route through the network,

|̂(i; 1); : : : ; |̂(i; k); : : : ; |̂(i; K(i));

where K(i) is the length and |̂(i; k) 2 J the kth node of the route. After completing service
in node |̂(i; k) the customer enters node |̂(i; k + 1) or { if k = K(i) { leaves the network.
A class i customer in k-th node of his route will be called a type (i; k) customer, or an
(i; k)-customer.

All service times of the customers are mutually independent and independent of their ex-
ogenous arrival times and the times they enter the nodes of their routes. Given i 2 I and
k 2 f1; .., K(i)g, the service times of (i; k)-customers are i.i.d., with mean vik > 0.

Denote by G the whole set of customers' types and by Gj the subset of G listing the types of
the customers to be served in node j 2 J :

G = f(i; k) j k = 1; 2; : : : ; K(i); i 2 Ig; Gj = f(i; k) 2 G j |̂(i; k) = jg:

We suppose that 8 j 2 J the nominal load in node j is less than rj, i.e.

�j �
X

(i;k)2Gj

�ivik < rj: (1)
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3 Stability. Preliminaries.

A state of the network is

X = f((Vi;k;m; Ai;k;m; m = 1; : : : ;Mi;k); (i; k) 2 G); (Ui; i 2 I)g:

Here (a) Mi;k is the number of the (i; k)-customers in the network, (b) Vi;k;m is the residual
service time and Ai;k;m the age of the m-th (i; k)-customer (for each type (i; k) we list the
(i; k)-customers in the ascending order of their age), (c) Ui is the residual inter-arrival time
for 
ow i. The number of customers in state X present in node j 2 J equals Nj(t) =X
(i;k): |̂(i;k)=j

Mi;k; we assume that min[rj; Nj(t)] `youngest' of them are under service and the

rest are waiting. The evolution of a state is then de�ned by the above description (see
Section 1); it is clear that X(t); t � 0, is a Markov process.

The norm of state X is de�ned as

kXk =
X
i

Ui +
X

(i;k)2G

Mi;k +
X

(i;k)2G

Mi;kX
m=1

(Vi;k;m + Ai;k;m):

We also impose the following technical conditions on the distribution of the inter-arrival time
�i(1), (cf. condition (25) in [9]). For each i 2 I; there exist an integer l � 1 and a function
p(y) � 0; y � 0; with

R1
0 p(y)dy > 0 such that

Prf�i(1) � yg > 0 for any y > 0 ; (2)

Prfc1 �
lX

n=1

�i(n) � c2g �
Z c2

c1

p(y)dy for any 0 � c1 � c2: (3)

Conditions (1){(3) are assumed throughout the paper.

The stability of a random process is understood as positive Harris recurrence (see, for ex-
ample, [10] or [5] for the exact de�nition.)

To prove stability of process X(t), we will use the \
uid limit" approach introduced in [12]
and further developed in [5], [4], [13], [6]. This approach is based on the following result.

Theorem 1 Suppose that there exists a constant T > 0 such that for any sequence of pro-
cesses X(an)(t), with initial states X(an)(0) of norm kX(an)(0)k = an ! 1 (n ! 1), the

expected value of
1

an
kX(an)(anT )k approaches 0:

lim
n!1

E[
1

an
kX(an)(anT )k = 0 (4)

Then the Markov process X is positive Harris recurrent.
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Theorem 1 for continuous-time countable Markov chains was proved by Rybko and Stolyar
[12] and generalized to the form presented above by Dai [5], following results of [10] (see
also [11]). For discrete-time countable Markov chains, Theorem 1 is a special case of a more
general result established by Malyshev and Menshikov [8] (see also [7]).

The 
uid limit approach works as follows. As the form of the condition (4) suggests, one
needs to consider a \
uid process" x(t) obtained as a limit of the sequence of scaled processes
1
an
X(an)(ant); an !1, and show that x(t) starting from any initial state with norm kx(0)k =

1 reaches 0 by some �xed �nite time T and stays there. As a rule, the latter property implies
(4) (see [5], [13]).

In the de�nitions that follow, customers' arrival always means their exogenous arrival. Also,
counting customers arrived by a time t, we include, when appropriate, customers present
at time 0. Consider random processes F

(an)
i (t), W

(an)
i;k (t), bF (an)

i;k (t1; t2), and cW (an)
i;k (t1; t2)

associated with process X(an)(t). 1) F
(an)
i (t), t � �an; is the number of the i-customers

arrived prior time t (as we consider process X(t) starting at t = 0 from a general non-empty
state, some customers have arrived before time 0 but not before time �an; see the de�nition
of norm kXk). 2) IMPORTANT CLARIFICATION HERE W

(an)
i;k (t), t � 0, is the total

amount of work (i.e., total required service time) intended for the node |̂(i; k), due to the
i-customers arrived into the network by time t, including customers present at time 0. 3)bF (an)
i;k (t1; t2), t1 � �an, t2 � 0, t1 < t2, is the total number of (i; k)-customers arrived by time

t1 and completely served in node bj(i; k) by time t2. 4) cW (an)
i;k (t1; t2), t1; t2 � 0, t1 < t2, is

the amount of time spent by the channels in node |̂(i; k) by time t2 while serving the (i; k)-
customers arrived before time t1. All these processes (and processes that are introduced
below) are assumed to be right-continuous with respect to t, t1 and t2.

4 Fluid Limit Properties

De�ne the scaled processes as follows

f
(an)
i (�) =

1

an
F

(an)
i (an�); � � �1;

w
(an)
i;k (�) =

1

an
W

(an)
i;k (an�); � � 0;

bf (an)
i;k (�1; �2) =

1

an
bF (an)
i;k (an�1; an�2); �1 � �1; �2 � 0; �1 < �2;

bw(an)
i;k (�1; �2) =

1

an
cW (an)

i;k (an�1; an�2); �1 � �1; �2 � 0; �1 < �2

Here, � , �1 and �2 are rescaled times; the original processes F
(an)
i (t), W

(an)
i;k (t), bF (an)

i;k (t1; t2)

and cW (an)
i;k (t1; t2) `live' in the time that is an times `faster'. We need one more process
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associated with f
(an)
i (�) and bf (an)

i;k (�1; �2). For �1 and �2 such that �1 � �1 < �2 and �2 � 0,
de�ne

g(an)i;k (�1; �2) = inff� � �2 : bf (an)
i;k (�; �)� bf (an)

i;k (�1; �) = f (an)
i (�)� f (an)

i (�1)g :

In other words, g
(an)
i;k (�1; �2) is an upper bound of the �rst time after �2 when all (i; k)-

customers arrived in the network in the rescaled-time interval (�1; �2] complete service by
node |̂(i; k).

The following lemma can be considered as a variant of Theorem 4.1 in [5] or Theorem 7.1 in
[13].

Lemma 1 Fix a sequence of processes fX(an)(t)g with initial states of norm kX(an)(0)k =
an ! 1 and a constant T1 > 1. Then with probability 1 any subsequence of fX(an)(t)g in
turn contains a subsequence fX(a0

m)(t); fa0mg � fangg such that as m ! 1, the following
limits hold for every type (i; k) 2 G:

(i)

f
(a0

m)
i (T1)! fi(T1); (5)

w
(a0

m)
i;k (T1)! wi;k(T1); (6)

where fi(T1) and wi;k(T1) are some non-negative constants.

(ii) Uniformly in � � T1 within a compact set,

f
(a0

m)
i (�)� f

(a0

m)
i (T1) ! �i(� � T1); (7)

w
(a0

m)
i;k (�)� w

(a0

m)
i;k (T1) ! �ivi;k(� � T1); (8)

bf (a0

m)
i;k (�; �)� bf (a0

m)
i;k (T1; �) ! �i(� � T1); (9)

bw(a0

m)
i;k (�; �)� bw(a0

m)
i;k (T1; �) ! �ivi;k(� � T1); (10)

g
(a0

m)
i;k (T1; �) ! �: (11)

Proof : The choice of T1 > 1 guarantees that all `initial' rescaled inter-arrival times are
over strictly before T1. By the functional strong law of large numbers we have that with
probability one, uniformly in s � 0 within a compact set, (i) for each i 2 I,

f
(an)
i (s+ U

(an)
i (0)=an)� f

(an)
i (U

(an)
i (0)=an) ! �is; (12)

and (ii) for each (i; k) 2 G,

w
(an)
i;k (s+ U

(an)
i (0)=an)� w

(an)
i;k (U

(an)
i (0)=an) ! �ivi;ks: (13)

Properties (5), (6), (7), and (8), follow from (12) and (13) if subsequence fa0mg is chosen

such that U
(a0

m)
i (0)=a0m converges for each i.
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Properties (9) and (10) follow from (11). The latter property is proved for each (i; k) by
induction on k = 1; 2; : : :. Below we show the proof for (i; 1) only (which establishes the
initial stage of induction); the completion of the induction step is a mere repetition of the
argument.

Fix class i 2 I and consider the type (i; 1) 
ow served by node j = |̂(i; k). Fix � > 0 and �
with T1 � � � � < � . We know from (8) that

limw
(a0

m)
i;1 (�)� w

(a0

m)
i;1 (� � �) = �ivi;1� :

Let � > 0 be another constant. Consider an (i; 1)-customer with a rescaled arrival time
within (� � �; � ]. The total workload able to \compete" for the service at node j with the
above customer in the interval (�; � + �], is at mostX

(l;k)2Gj

w
(a0

m)
l;k (� + �)� w

(a0

m)
i;1 (� � �)! �j(� + �) :

Choose � = �(�) > (�j=rj)(� + �) so that �(�) ! 0 as � ! 0 (e.g., �(�) = 2(�j=(rj � �j))�).
Then our (i; 1)-customer must be completely served strictly before rescaled time t + �.

Since any �xed interval (T1; t] can be broken down into a �nite number of �-length intervals,
and since �(�) ! 0 as �! 0, we obtain (11) for (i; 1), uniformly on compacts. This implies
properties (9) and (10) for our particular i and k = 1.

The induction in k (conducted in a similar fashion) completes the proof of the lemma.

Lemma 2 There exists a constant T > 0 such that for any � � T and any sequence of
processes fX(an)(t)g with initial states of norm kX(an)(0)k = an !1, with probability 1,

lim
n!1

1

an
kX(an)(an�)k = 0 : (14)

Proof : Let fX(an)(t)g be a sequence of processes as in Lemma 1. It su�ces to show the
existence of a (uniform, independent of the subsequence) constant T > 0 such that for any
� � T , with probability one any subsequence of fX(an)(t)g contains another subsequence
fX(a0

m)(t)g such that (14) holds.

Fix T1 > 0. With probability one, any subsequence contains another one, fX(a0

m)(t)g, such
that the assertion of Lemma 1 holds. Hence, in any rescaled-time interval (�1; �2] � (T1;1]
the total rescaled time that the channels in node j spend while serving customers arrived in
the network after T1 is asymptotically equal to �j(�2 � �1). This means that the remaining
time (rj � �j)(�2 � �1) is available for servicing the workload arrived at or before T1. This
implies the existence of T > 0 such that for all su�ciently large values of scaling parameter
a0m, all the customers arrived before time T1 will leave the network by time T .

It remains to observe that Lemma 1 implies that for any time t > T1, the contribution into
the scaled norm kX(a0

m)(a0mt)k=a
0
m of the customers arrived after rescaled time T1 vanishes

as a0m !1.
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5 Main Result

Lemma 2 and the uniform integrability of the family of random variables kX(a0

m)(a0mT )k=a
0
m

verify the condition in Theorem 1. (The uniform integrability is easily established by
majorizing the state norm at time t by that of a \worst case scenario". For example, the
numbers of customers are replaced by the total number of customers arrived by time t, and
the residual service times are replaced by the total service time of all customers arrived by
time t. Cf. [12, 5].) Thus we have proved the following

Theorem 2 Under conditions (1){(3), Markov process X(t), t � 0, for the network with
the G-LIFO discipline is positive Harris recurrent.
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