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Abstract In Stolyar (Queueing Systems 50 (2005) 401-457)
a dynamic control strategy, called greedy primal-dual (GPD)
algorithm, was introduced for the problem of maximizing
queueing network utility subject to stability of the queues,
and was proved to be (asymptotically) optimal. (The network
utility is a concave function of the average rates at which the
network generates several “commodities.”) Underlying the
control problem of Stolyar (Queueing Systems 50 (2005)
401-457) is a convex optimization problem subject to a set
of linear constraints.

In this paper we introduce a generalized GPD algorithm,
which applies to the network control problem with additional
convex (possibly non-linear) constraints on the average com-
modity rates. The underlying optimization problem in this
case is a convex problem subject to convex constraints. We
prove asymptotic optimality of the generalized GPD algo-
rithm. We illustrate key features and applications of the al-
gorithm on simple examples.

Keywords Queueing networks - Dynamic scheduling -
Resource allocation - Convex optimization - Non-linear
constraints - Greedy primal-dual algorithm

AMS Subject Classifications: 90B15 - 90C25 - 60K25 -
68M12

1 Introduction

This paper is a natural progression of [15], where a dynamic
control strategy, called greedy primal-dual (GPD) algorithm,
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was introduced for the problem of maximizing queueing net-
work utility subject to stability of the queues, and was proved
to be (asymptotically) optimal. This problem accommodates
a large variety of communication network applications, in-
cluding the utility based network congestion control [9, 11]
and many resource allocation problems in wireless systems.
(See [15] for a review of the model applications.) Underlying
the network control problem addressed in [15] is a convex
optimization problem subject to a set of linear constraints.
However, as we will illustrate in Sections 3 and 7, some net-
work control problems arising in applications are such that
the underlying optimization problems are convex, but with a
set of convex (not necessarily linear) constraints. In this pa-
per we introduce a generalization of GPD control algorithm
and prove its asymptotic optimality for such more general
problems.

More specifically, the model in [15] is such that each
control action has associated impact on the network queues
(namely, it determines the rates of exogenous arrivals, service
rates, and routing of served customers between the queues),
and also generates certain amounts of several commodities
(which can be amounts of traffic, “costs,” etc.). The utility of
the network is a concave function of the vector x of average
commodity generation rates. (Utility function need not be
strictly concave.) As demonstrated in [15], the convex opti-
mization problem that underlies the network control problem
of maximizing utility subject to queueing stability, has the
following form:

max H(x) (1)
xeVv

subject to

Gi(x)<0, jed, @)
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where V C RY is a compact convex system rate region, H is
a concave utility function, and all constraints (2) are linear,
corresponding to the queueing stability requirement—one
constraint per queue. The GPD algorithm of [15] is asymp-
totically optimal in that, under this algorithm, the commodity
rates converge to an optimal solution of the underlying prob-
lem (1)—(2). The algorithm is of primal-dual type, so that,
roughly speaking, commodity rates are primal and (rescaled)
queue lengths are dual variables for the problem (1)—(2). (In
an independent parallel effort to [15], papers [7, 10, 12] pro-
pose algorithms for related network control problems. The
algorithms of [7, 10, 12] are of dual type and, unlike the
GPD algorithm, they additionally require that utility func-
tion is separable with respect to individual commodity rates
Xn, i.e. H(x) =Y, H,(x,), with each function H,(-) being
strictly concave and increasing.)

Suppose now that the network control problem is as above,
but there are additional convex constraints on the average
commodity rates. Then, the underlying optimization prob-
lem still has the form (1)—(2), but the set of constraints (2)
is extended to include additional ones with G; being just
convex, possibly non-linear. In Section 6 of this paper we
introduce a generalized GPD algorithm, that is applicable to
such more general problems, and prove its asymptotic op-
timality. For each additional (convex) constraint in (2) the
algorithm creates and “maintains” a virtual queue length,
which (after appropriate rescaling) converges to an opti-
mal dual variable (Lagrange multiplier) for the constraint.
The specific update rule for the virtual queues correspond-
ing to convex constraints, is the key new part of the gen-
eralized GPD algorithm, compared to that of [15]. Just as
the rest of the algorithm, this update rule (see (51)) is very
“parsimonious”—it only requires the knowledge of the val-
ues and gradients of the constraint functions at a single
point given by the current (estimated) average commodity
rates.

The meaning of the GPD algorithm asymptotic optimal-
ity, as will be explained in more detail in Section 6.5, is
roughly as follows. Given a fixed (small) parameter 8 > 0 of
the algorithm, within a time interval of the order of 1/8 the
algorithm brings the system from any initial state to a regime
in which average commodity rates (over 1/8 long time in-
tervals) are (close to) optimal. Depending on the time-scale
relevant to a specific application, those average rates may
be long- or short-term averages, or even be considered as
“instantaneous” rates.

At this point, we would like to emphasize that standard and
well studied algorithms for convex optimization (cf. [3, 5]),
including, for example, the classical Arrow-Hurwicz-Uzawa
primal-dual algorithm [2], are often inapplicable to the dy-
namic control of queueing networks problems we address in
this paper, as well as in [15]. (This will be discussed in de-
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tail in Section 3.1, using the application example described
there.)

As in [15], the key part of the proof of GPD algorithm
asymptotic optimality is the analysis of the dynamic system
whose trajectories (called GPD-trajectories) arise as asymp-
totic limits of the network evolution under the GPD algo-
rithm. The main result of this paper (Theorem 1) shows that
the GPD-trajectories are attracted to the optimal primal-dual
solution pairs for the problem (1)—(2).

The summary of the main contributions of this paper is as
follows.

® We extend the GPD algorithm of [15] and the proof of its
asymptotic optimality to a much broader queueing network
control problem, allowing general convex constraints on
the average commodity rates. From the technical point of
view, the key contributions are the introduction of the new
update rule for the virtual queue lengths (corresponding to
convex constraints) and proof of the attraction property of
the resulting (more general) GPD-trajectories.

® Using examples, we demonstrate that additional convex
constraints may indeed arise in applications, and show that
in many cases the general GPD algorithm specializes to a
rather simple distributed dynamic network control strategy.

® We believe that our main results contribute to the convex
optimization theory as well, since the GPD algorithm can
naturally be viewed as a dynamic mechanism for solving
rather general convex optimization problems. Our main
focus here is on devising and analyzing an algorithm that
can be used for dynamic control of queueing networks in
cases where standard convex optimization techniques can-
not be applied. (An interesting question is to compare the
efficiency of the GPD algorithm to that of standard con-
vex optimization methods, when both are applied to “con-
ventional” convex optimization problems. This question,
however, is outside the scope of this paper, and may be a
subject of future research.)

The rest of the paper is organized as follows. Section 2
introduces some basic notation. In Section 3, to motivate
our general model, we describes two examples of network
control problems that involve non-linear convex constraints.
In Section 4 we formally define GPD-trajectories associated
with problems of type (1)—(2), and formulate our main result,
Theorem 1. Section 5 is the proof of Theorem 1. In Section 6
we introduce our general resource allocation model, define
the GPD algorithm, and prove its asymptotic optimality. (To
simplify exposition, in most of Section 6 we restrict ourselves
to a model that is a special case of that of [15], but consider
a more general problem for it. The general form of GPD
algorithm, that applies to the queueing network model of [15]
and the more general problem, is presented in Section 6.6.)
In Section 7 we return to the examples of Section 3, to show
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solutions provided by the GPD algorithm and illustrate its
key features. We should note that Sections 4-5 and Section 6
are virtually independent, and can be read in any order. (It
may help if reader skims through Section 4 before reading
Section 6.) We also note that although all the model and
algorithm definitions and result formulations do not require
familiarity with paper [15], virtually all proofs heavily rely
on those in [15].

2 Basic notation

We denote by R, Ry, and R_, the sets of real, real non-
negative and real non-positive numbers, respectively. Corre-
sponding N-times product spaces are denoted R", Rﬁ , and
RY . The space R" is viewed as a standard vector-space, with
elements x € RV being row-vectors x = (xi, ..., xy). The
scalar product of x, y € RV is

N

Xy = anyn 5
n=1

and the norm of x is

Xl =+x-x.
We denote by

plx,y) = llx =yl

the distance between vectors x and y in RY, and by
p(x, V) = inf p(x, y)
yeV

the distance between a vector x € RY andaset V € RN. If
(x(t), t = 0)and V isavector function and a set, respectively,
in RV, the convergence x(¢) — V means that p(x(t), V) —
Oast — oo.

For a set V and a scalar function W(v), v e V,

arg max W(v)
veV

denotes the subset of vectors v € V which maximize W (v).
For &,n€ R, we denote £ An=min{é, n}, Evn=

max({&, n},&" = max(&, 0};foré € Randn € Ry, 51, =¢§

ifn>0,and[§]j]r=§+ifn=0.

Abbreviation u.o.c. means uniform on compact sets con-
vergence of functions. The term almost everywhere (a.e.)
means almost everywhere with respect to Lebesgue measure.

We denote by Dg~ [0, 0o) the Skorohod space of functions
with domain [0, co), taking values in RN, N > 1, which

are right-continuous and have left-limits. The subspace of
Dgn [0, 00) consisting of continuous functions is denoted
by Cg~[0, 00); notation CRQI [0, c0) is used for the subset
of Cgn[0, 00) consisting of functions with values in Rﬁ .
(Topologies, o -algebras, and norms on these spaces are spec-
ified later, where and when necessary.)

3 Motivating examples

In this section we describe two examples of dynamic network
control problems, that have non-linear convex constraints,
which can be accommodated by the extended GPD algo-
rithm, introduced and proved to be asymptotically optimal in
Section 6. (These constraints cannot be handled by the GPD
algorithm of [15].) We formally introduce and discuss the
models and the corresponding problems. We will return to
these examples later in Section 7, where we demonstrate that
the extended GPD algorithm can be applied to both prob-
lems to produce (asymptotically) optimal dynamic control
algorithms.

The example of Section 3.1 is rather simple. Its purpose
is to, first, remind (following [15]) why standard methods
of convex optimization are not applicable to many prob-
lems of queueing network control and, second, illustrate
that additional convex constraints can naturally arise in such
problems. The example of Section 3.2 describes convex con-
straints of a different type; it will also allow us to illustrate (in
Section 7) that the GPD algorithm often allows a “distributed
implementation” in a network.

3.1 Example 1

We consider a model where a wireless network “base sta-
tion” (or an “access point”, or simply a network node) sends
data flows to several wireless (mobile) data users. The basic
problem is to dynamically schedule data transmissions to the
users so as to minimize average power consumption subject
to the constraint that the aggregate traffic flow “utility” is
above certain minimum level.

An important feature of the model is that the users share
radio channel, with the base station dynamically allocat-
ing data transmission rates and transmission powers to the
users. Moreover, the channel capacity is asynchronously
time-varying with respect to different users. In other words,
roughly speaking and assuming for simplicity that the trans-
mission power is fixed, at one point in time the available
transmission rate may be high for one user and low for an-
other, in which case there is an incentive to “opportunisti-
cally” allocate a larger fraction of channel time to the former
user transmission; and at a different time point the situation
may be reversed. Thus, base station can utilize opportunistic
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scheduling (cf. [1, 16]) to improve overall efficiency of the
radio channel.

Formally, the model is as follows. A base station sends
data traffic to a finite set ' = {1, ..., N} of wireless users,
indexed by n. We assume that the time is slotted, indexed
by t=0,1,2,..., and use slot duration as the time unit.
The state m(t) of the wireless channel follows an irreducible
Markov chain with the finite state space M. When the channel
state is m € M, the scheduling decisions k available to the
base station form a finite set K (m). If the base station chooses
decision k € K (m) in time slot ¢, then in this slot it sends the
amounts of data (say, the number of bytes) b, (k) > 0 to the
users n € N, and this action consumes the amount w(k) of
energy. (Note that, in principle, a scheduling decision may
be such that several users transmit data simultaneously. The
situation where only one user is allowed to transmit at a time
is a special case.)

Let us denote by x, the average rate of flow n (i.e., the
average value of b, over time), and by x( the average power
usage (that is the average value of w). Finally, the “utility” of
flownis H,(x,), where H,(z), z > 0,is acontinuously differ-
entiable concave function. (For example, a common choice
of a utility function is H,(z) = log z - in fact, it is used by the
standard scheduling algorithms in some commercial wireless
technologies [4]. See [8, 9] for a general rationale for using
concave utility functions of the traffic rates.) The problem is
to find a dynamic scheduling strategy which minimizes the
average power consumption, subject to some lower bound on
the aggregate utility. Namely, the problem is to

minimize xq 3)
subject to

> Hy(xn) =A™, )
neN

where 2™ is a given constant.
The convex optimization problem underlying control
problem (3)—(4) is as follows:

max —X0 (5)
X=(X0,X],...,XN)EV

subject to

- Z H,(x,) + h™™ < 0, (6)
neN

where V. C RV*+! is the region of all possible vectors of av-
erage rates x = (xg, Xp, - .., Xxy) under all scheduling strate-
gies. The region V is a convex compact set, as explained later
in Section 6 (and in the previous work, cf. [13, 15]).
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Although the underlying problem (5)—(6) looks fairly stan-
dard, the “standard” convex optimization algorithms (cf.
[2, 3, 5]) cannot be applied to devise a control strategy solv-
ing problem (3)—(4). One difficulty is that region V is not
given explicitly. In our case, for example, it depends on the
stationary distribution of the channel state process m(¢) and
on the sets of available scheduling decisions in each state.
In typical wireless applications, none of this information is
known in advance and in fact may change over time. This es-
sentially precludes the use of scheduling algorithms utilizing
some kind of advance “off-line” optimization. Standard dy-
namic primal-dual algorithms (cf. [2, 5]) can not be applied
either, because—roughly speaking—they require that at ev-
ery step primal variables (average rates x, in our case) and
dual variables are changed in certain directions. Our model
however is such that in each time slot the base station has
to pick one of the scheduling decisions (with correspond-
ing b,’s and w) out of the finite number of instantaneously
available choices. A scheduling strategy which would at-
tempt to produce the desired short-term average traffic rates
(so that x,,’s are moved in the desired direction) would again
require a priori knowledge of the stationary distribution of
the channel state process, and thus would be infeasible to
implement.

This difficulty (of V not being known explicitly) can be
overcome by the GPD algorithm of [15] as long as the addi-
tional explicit constraints (4) are linear, by introducing vir-
tual queues and mapping such constraints into the stability
requirements of the queues. (For example, Section 5.2 of
[15] gives an asymptotically optimal algorithm for maximiz-
ing aggregate utility ) H,(x,) subject to the average power
usage constraint xo < w™*). However, the constraint (4) on
the minimum utility is typically non-linear—that is why for
the problem (3)—(4) we need to apply the extended GPD al-
gorithm of this paper. An asymptotically optimal algorithm
for (3)—(4) will be given in Section 7.1.

Remark. The extended GPD algorithm (as defined in
Section 6.6) applies to the following more general model as
well. We can assume that the traffic sent to users n € A has
to further go through (“be processed by”) a complex (time-
varying) network of (interdependent) nodes. The “processing
network” is then a queueing network of the type studied in
[15] and described in Section 6.6 of this paper. The more
general problem is to minimize average power usage by the
base station (or several base stations) subject to the con-
straint on the utility of the flows and the constraint that net-
work queues remain stable. The extension of the algorithm
given in Section 7.1 is straightforward. We do not consider
the more general problem here in order to focus attention
on the additional convex constraints in the simplest possible
scenario.
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3.2 Example 2 subject to

The second example is a system where multiple wirelessdata G, (x) = Z C, (x(li)) —d, <0, neN. (8)
users access a wireline communication network via access LeR~1(n)

points. Each user sends data flow that starts at one of the
access points, follows a fixed route through the wireline net-
work, and terminates at one of its nodes. The data rates of
the flows are not given in advance, but rather allocated to the
flows by the network. In particular, each access point con-
trols transmissions from “its” users and can utilize oppor-
tunistic scheduling (as discussed in Section 3.1). The goal
of the network is to maximize system utility, which is a con-
cave function of the flows’ average rates, under the constraint
that a “congestion cost” (say, average delay) along each flow
route stays below a predefined bound. As we will see, these
route congestion cost constraints are typically convex non-
linear, and thus solving the problem requires the extended
GPD algorithm of Section 6.

The formal model is as follows. There is a finite set N' =
{1, ..., N} of traffic sources, or wireless users, indexed by
n. There is a finite set Z of wireless access points i, via
which users access a wireline network. (The opportunistic
scheduling model that governs how users transmit data to
access points will be described shortly.) The wireline network
consists of a finite set £ of communication links, indexed by
£. Each user generates a traffic flow that goes through one
of the access points i € Z, follows a fixed route through the
wireline network, and terminates at one of its nodes; we use
notation R(n) for the set of links £ traversed by flow n, and
notation R~!(£) for the set of flows traversing link £.

Let us denote by x, the average rate of flow n, and by
xO =3 - () *n the average rate of the total data flow
traversing link £.

Each link has corresponding “congestion cost” Cy(x®),
where C(z), z >0, is a non-decreasing convex continu-
ously differentiable function with C,(0) = 0. (For a general
discussion of such link cost functions see the comments ac-
companying expression (46) in [8], or Section 2 in [9].) To be
specific, suppose that congestion cost has the meaning of av-
erage packet (queueing) delay at the link, for example having
form Cy(z) = C;ﬁ -, where ¢, is the link (constant) capacity
and a, > 0 is a fixed parameter.

Finally, the “utility” of flow n is H,(x,), where H,(z), z >
0, is a continuously differentiable concave function. (Again,
see [8, 9] for a rationale for the utility function concavity
assumption.) The problem is to allocate average flow rates
x = (x1,...,xy) in a way such that the total utility of all
flows is maximized subject to some pre-defined upper bounds
on the average packet delays along each route. Namely, the
control problem is to

maximize Z H,(x,) @)

In other words, the problem is to maximize network utility
subject to (quality of service) constraints (8) defined in terms
of average end-to-end flow delays.

So far, we did not specify the model for how traffic is sent
over wireless links from users to their corresponding access
points. This model is same as the opportunistic scheduling
model described in Section 3.1, except we do not consider
power consumption (and the traffic is going from users to
access points, not vice versa); formally, the model is as fol-
lows. Denote by N; the subset of users sending traffic via
access point i. (Given our assumptions, sets ; for different
i do not intersect, and U; ; = N.) We assume that the time
is slotted, indexed by t = 0, 1, 2, ..., and use slot duration
as the time unit. The state m;(¢) of the wireless channel be-
tween access point i and the set V; of “its” users follows
an independent irreducible aperiodic Markov chain with the
finite state space M;. Each access pointi € Z schedules data
transmissions of users in ; independently of other access
points. When the channel state (of access pointi)ism; € M;,
the available scheduling decisions k; form a finite set K; (m;).
If access point i chooses decision k; € K;(m;) in time slot #,
then in this slot each node n € N; sends the amount of data
(number of bytes) b, (k;) > 0 to the access point.

The convex optimization problem underlying control
problem (7)—(8) is as follows:

max Z H,(x,) ©)
subject to
G,(x) <0, neN, (10)

where V C RV is the region of all possible vectors of (long-
term) average rates at which flows can be transmitted (over
radio channels) to their corresponding access points. The
region V is a convex compact set.

Let us compare the control problem (7)—(8) with the ex-
tensively studied problem (originally posed in [8]) of maxi-
mizing network utility (7) subject to link capacity constraints

x© <, el (11)

There are two substantial differences. First, the statement
of problem (7) and (11) usually assumes that traffic sources
are able to generate traffic at any rate at any time, inde-
pendently of each other. (Therefore, the convex optimiza-
tion problem underlying (7) and (11) is: max, . RY > Hu(xn)
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subject to (11).) In our model, analogously to the model of
Section 3.1, the instantaneous rates at which sources can
transmit data are dependent on each other and on the random
state of the corresponding channel. Consequently, as already
discussed in Section 3.2, the region V in (9) is defined only
implicitly, which typically precludes the use of standard con-
vex optimization techniques for a dynamic control. (It is im-
portant to emphasize that the region V here defines implicit
constraints on joint average rates at which traffic can possi-
bly be injected by the sources into the network, before the
network link capacity constraints (11) or end-to-end delay
constraints (8).) If the constraints (8) would be linear, as they
are in (11), this difficulty can be resolved by using the GPD
algorithm of [15]. However, and this is the second difference
from the problem (7) and (11), the constraints (8) are convex
non-linear, which requires the extended GPD algorithm of
this paper. An asymptotically optimal distributed algorithm
for (7)—(8) will be given in Section 7.2.

4 Greedy primal-dual dynamic system
4.1 Optimization problem

Consider a convex compact subset V C RN of a finite-
dimensional space RY, N > 1. (We will use notation
N ={1,..., N} for the set of indices of vectors & =
(&, ...,Ex) € RN.) Assume that V C V, where V € RV
is open and convex, and we have a concave continuously
differentiable (“utility”) function H(v), v € V.

Consider the following optimization problem:

rpea‘} H(v) (12)
subject to

Giv =<0, VjeJ, (13)
where J ={1,..., J} is a finite set of indices, and each

G;(v),ve V, is a convex continuously differentiable func-
tion.
The problem (12)—(13) can be equivalently written as

max H(v),
ve‘/cmzd

where
verd = yvn{ue V|G;(v) <0,¥j e T}

Clearly, V" is a convex compact set, when non-empty.
Optimization problem (12)—(13) is feasible when

Vcond # @, (14)
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in which case we denote by V* C V the convex compact
subset of its optimal solutions. (If H 1is strictly concave, the
optimal solution is unique.) Also, we denote by Q* the con-
vex closed set of optimal solutions g* € R 4]_ to the following
convex optimization problem, dual to the problem (12)—(13):

min |:max(H(v) —y- G(v))], (15)

yeR{ | veV
where we used notation
G(v) = (G1(v),...,G (V).

Next, in Section 4.2, we define a dynamic system, which, as
we will show, “solves” problem (12)—(13) under the follow-
ing non-degeneracy assumption, which is slightly stronger
than (14):

VNive V|G;) <0, YjeJ}#0. (16)

The dynamic system “solves” (12)—(13) in the sense that
(assuming (16)) its trajectories converge to the (saddle) set
V* x Q*.

Note that, under assumption (16), set Q* is compact. In-
deed, the optimal value of the problem (12)—(13) is

H(") = rgleagc(H(v) -q"-G(v)) (I7)

for any v* € V* and any ¢* € Q*. Set O* must be bounded,
because otherwise, given condition (16), we could make the
RHS of (17) arbitrarily large by choosing g* € Q* with large
norm [lg*||.

4.2 Dynamic system definition

We define a trajectory of the greedy primal-dual dynamic
system, or GPD-trajectory, as a pair of absolutely continuous
functions (x, q) = ((x(?), t > 0),(g(?), t = 0)), with x(z)

taking values in R" and ¢(¢) taking values in R, satisfying
the following conditions:

(i) Forallr > 0,
x(t) eV, (18)
and for almost all # > 0,

x'(t) = v(t) — x(1), 19)

where

u(t) € arg max [VH(x(t)) - qu(t)VGj(x(t)):| .

veV j

(20)
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(ii)) We have

q(0) = 0, ey

qj(t)>0,vt >0, and q}(t): [G;x(@)+VG;(x(1))

(w(t) — x(t))]jj(,) ae.int >0, jelJ. (22)

The above definition of GPD-trajectories is a generalization
of the corresponding definition in [15], which was restricted
to the case when all G ;(-) were linear. (In fact, in [15], there
are exactly N constraint functions G, (v) = v,, one for each
primal variable v,. However, extension to an arbitrary finite
set of linear constraint functions G;(-) is just a matter of
introducing new variables, as in (26) below.) The interpre-
tation of the dynamic system is analogous to that given in
Section 3.2 of [15]: functions x(#) and ¢(¢) are “dynami-
cally changing” primal and dual variables, respectively, for
the problem (12)—(13). The term “greedy” refers to condi-
tion (20), which states that “control” v(¢) is always chosen
within the “set of controls” V, so as to greedily maximize
Vi [H(x()) — Zj q;()Gj(x())] - x'(¢),1.e., the partial time
derivative of the Lagrangian H(x(¢)) — ) ;450G j(x(2))
with respect to primal variables x(t) only. The queueing in-
terpretation given in [15] is basically also valid. The key
generalization is the expression for the derivative qj’- (t) of
a dual variable (queue length) in (22). Assuming ¢;(t) > 0
for simplicity, the derivative q} (t) is not G j(v(t)), but rather
the value at point v(¢) of the first order (linear) approxima-
tion of function G ;(-) about point x(¢). Given the form (22)
of the derivatives of dual variables (queue lengths) q;(t),
an alternative interpretation of condition (20) is that control
v(?) always greedily maximizes the time derivative of func-
tion H(x (1)) — (1/2) Zj qu-(t), with respect to both x(t) and
q(t). (See Lemma 1.)

4.3 Global attraction property of GPD-trajectories

The following theorem, showing that GPD-trajectories are
such that (x(¢), (1)) is attracted to the saddle set V* x Q~,
is the main result of this paper.

Theorem 1. Under the non-degeneracy condition (16), the
following holds.

(i) For any GPD-trajectory (x, q), ast — 00,

x(t) > V¥, (23)

q(@t) — q* for some q* € Q*. 24)

(ii) Let compact subsets V5 C V and QU C R_{_ be fixed.
Then, the convergence
x(1),q)) > V* x Q*ast — o0, (25)

of GPD-trajectories is uniform with respect to initial con-
ditions (x(0), ¢(0)) € V5 x QF.

Theorem 1 is a generalization of Theorem 2 of [15] in that it
allows non-linear constraint functions G ;(-). We note that, in
the case when all G j(-) are linear, our Theorem 1 is equiv-
alent to Theorem 2 of [15]. To see this, it is sufficient to
introduce new variables

vy =G, ..,on), J=1,...,J, (26)
replace set V with the extended set V' = V x R, extend
H in the natural way to be a function of v € V!, and replace
V with set

VeXl = {U = (Ul,...,UN,UN+1, ..

(v, ...,vy) € V} C V&

B UN+J)

Then, the optimization problem (12)—(13) is equivalent to the
problem

max H(v) 27
veyext

subject to

uvy; <0, j=1,...,J. (28)

It is easy to verify that vectors v* € V' and ¢* € Ri
are a pair of optimal solutions to the problem (27)-(28)
and its dual if and only if (v}, ..., vy) € V* and ¢* € Q%
where V* and Q* are the optimal sets for (12)—(13) and
its dual. However, problem (27)—(28) and its corresponding
GPD-trajectories are within the framework of Theorem 2
of [15], as shown in [15], Section 3.8.1. Since we have
the obvious one-to-one correspondence between GPD-
trajectories (as defined in this paper) for the problem (12)-
(13) (with all G (-) linear) and GPD-trajectories (as defined
in [15]) for the problem (27)—(28), the desired equivalence is
established.

5 Proof of Theorem 1
The outline of this section is as follows. First, in Section 5.1,

we establish some basic properties of the family of GPD-
trajectories (including their existence), which hold regardless
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of conditions (14) and (16); we also make a simple observa-
tion (using function F defined in (31)) that, under condition
(16), trajectories (g(¢), t > 0) remain bounded. Section 5.2
contains the key proof of statement (i), outlined at the be-
ginning of that section. Given statement (i) of the theorem,
the proof of statement (ii) repeats the corresponding proof in
[15], with a minor adjustment specified in Section 5.3.

5.1 Basic properties of GPD-trajectories

Unless specified otherwise, throughout this Section 5.1 we
do not assume condition (14) (or condition (16)).

The following theorem summarizes basic properties of
GPD-trajectories, and is a generalization of Lemmas 12 and
13 of [15].

Theorem 2.

(i) For any x(0) € V and any q(0) € Ri, there exists a
GPD-trajectory (x, q) having (x(0), g(0)) as initial con-
dition.

(ii) The set of GPD-trajectories (x, q) is such that, for arbi-
trary compact convex set V5, V. C VH C V, uniformly
on x(0) € VY, both x and q are Lipschitz continuous,
and in addition x(t) € VU forall t > 0.

(iii) The set of GPD-trajectories is closed (in the topology of
u.o.c. convergence).

(iv) Letcompactsets V5 € V and QF c R i be fixed. Then,
the set of the GPD-trajectories with x(0) € V5 and
q(0) = f(0) e QD is compact.

W) If (x,q) is a GPD-trajectory, then, for any 7 > 0,
its shifted (to the left) version ©.(x,q) is also a
GPD-trajectory. (Formally, [®.(x, q)](t) = (x(t + 1),
q(t +1)), t=0.)

Proof of Theorem 2 follows closely the development in
Section 3.6 of [15], with some adjustments, which we de-
scribe here.

Let us denote by L gv (0) the subset of Cgn [0, 00), consist-
ing of Lipschitz continuous functions f such that f(0) =0
and f'(z) € V almost everywhere. We define operator A,
as operator which takes ( £, x(0), g(0)) € Lgy(0) x V x R_{
into A;(f, x(0), ¢(0)) = (x, g) € Cgn[0, 00) X Cg:[0, 00).
The image function x is defined (the same way as
in [15]) as the unique solution of the differential
equation

x'(t)= f't)—x@), t >0, ae.,

with initial condition x(0). The components of function g €
C R! [0, 0o) are defined (more generally than in [15]) via g(0)
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and the image function x as follows:

q;(t) = ;) — [OAOEE{, llfj(é)], 120, je€J, (29

where

V() = q;(0) +/Ol[Gj(X(é))+VG,-(X(§))~(f’(§)—X(é))]dé
=4q,;0) + /Ot Gj(x(§)dg + [G j(x(1)) — G j(x(0))].

Let us denote Cy; [0, 00) = {x € Cgn[0, 00) | x(t) € vV, t>
0}. We define multivalued operator .4,, which takes (x, ¢) €
Cyl0, 00) x Cgs[0, 00) to the set Az (x, g) S Lgv(0), as fol-
lows: function f € Aj(x, ¢) if and only if f € Lg~(0) and

f/(t) € arg max [VH(x(t)) - Y q,(t)VG j(x(t))] v,
J

veV

t >0, ae.

Clearly, (x,q) is a GPD-trajectory if and only if
Ai(f, x(0), q(0)) = (x,q) and f € Ax(x,q) for some f.
This in turn is equivalent to the existence of a fixed point
f of the operator Ay A;(f, x(0), ¢(0)). Such fixed points
in fact exist, which is shown using Kakutani theorem,
analogously to the way it is done in [15]. This proves
statement (i).

Statements (ii)—(v) are proved completely analogously to
the proof of the corresponding statements of Lemmas 12—13
of [15]. In particular, the proof of (ii) relies in an essential
way on the fact that (by Proposition 1 in the Appendix), for
any GPD-trajectory (x, q),
p(x(1), V) < p(x(0), V)e™, =0, (30)
and x(¢) for all # > 0 is contained within the (compact) con-
vex hull of V U {x(0)}. O

Let us call a time point ¢ > O regular (for given GPD-
trajectory (x, q)) if proper derivatives x'(¢) and ¢'(¢) exist,
and conditions (19), (20), (22) hold for this . Almostall ¢ > 0
are regular. To simplify notation, throughout the rest of this
entire Section 5 we adopt a convention that any expression
or statement involving any of the functions x’(¢), ¢'(¢), or
v(?), holds under the additional assumption that ¢ is a regular
point, even if we do not state it explicitly.

Let us introduce the following function:

1 -
Fo.y)=Hw) =y}, veV, yeR]. (31)
jed
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Lemma 1. For any GPD-trajectory, at any (regular)t > 0,

d
EF(x(t)’ q(1)) = VH(x(1)) - (v(t) — x(1))

- qu(t)[Gj(X(t))+ VG (@) (v@) —x@)] (32)
J
and

veV

v(r) € argmax VH(x(1)) - (v — x(1)) — Y _ q;()[G ;(x(1))
J
+VG;x@) - (v—x(@)] (33)

(Expressions (32) and (33) imply that, given x(t) and q(t),
v(t) is a point in V maximizing (d/dt)F(x(t), q(t)).)

If, in addition, (14) holds (that is, V* is non-empty), then
for any v* € V*

d
5, F@(®,9(®) = VH&(@) - (v = x(1))

> H@")—H(x(1)). (34)

Proof: Expression (32) follows directly from (19) and (22).
Inclusion (33) is equivalent to (20). The first inequality in (34)
follows from condition (33) and the fact that (by subgradient
inequality)

Gi(x(1)+ VG,(x() - (v* —x(1) = G;(v") <0,
and the second one is again the subgradient inequality. [

Lemma 2. Under non-degeneracy condition (16), for any
compact V5 C V and any compact Q- C Ri, uniformly
on the GPD-trajectories with (x(0), g(0)) € VH x oY,

sup [[g(1)]| < oc.

>0

Proof is essentially same as that of Lemma 4 in [15]. The
key point here is that, if we pick arbitrary v’ € V such that
G;(v") < Oforall j, we have (by (32)-(33))

d
EF(x(t), q()) = VH(x(1) - (v — x(1))

Y g OIG;(x(1) + VG (x(1)) - (v — x(1)]
J

> VH(x(1) - (v = x(1) — Y q;()G;(v),
J

and therefore, since x(#) stays within a compact set (by
Theorem 2(ii)), function F(x(z), g(t)) is strictly increasing
when ||g(2)]| is large. a

5.2 Proof of Theorem 1(i)

Throughout this Section 5.2, we always assume that non-
degeneracy condition (16) holds.

The outline of the proof is analogous to that given in
Section 3.5 of [15]. First, in Lemma 3 we give a characteri-
zation of optimal dual solutions g* € Q*, convenient for our
purposes. According to Lemma 1, “control” v(¢) is always
chosen within the “set of controls” V so as to maximize the
derivative of F'(x(t), ¢(t)). However, the key difficulty is that
F(x(t), q(t)) is not necessarily non-decreasing along a GPD-
trajectory. To overcome this, we introduce a different func-
tion F*, defined in (37), which happens to be non-decreasing
as long as x(¢) € V. (Although x(¢) € V does not necessar-
ily hold, we know from (30) that x(¢) converges to V, and
this convergence is fast. This, roughly speaking, “reduces”
our situation to the case x(t) € V.) Using F* allows us to
prove in the key Lemma 6 the convergence of x(¢) to a set
Vma& C vV, which contains V*, and the convergence of g(t)
to some point within Q*. (The proof of Lemma 6 is more in-
volved than the corresponding proof in [15]. In particular, we
need to consider additional component B4(¢) of the derivative
of F*(x(t), q(t)) and establish (43) to prove Lemma 6(v).)
In Lemma 7, using the fact that g(¢) converges, we prove
that x(¢) — RT, which implies x(¢) — yeond — v RN,
Finally, in Lemma 8 we prove the convergence x(¢) — V*,
using the fact that function F(x(¢), g(¢)) is non-decreasing
when x(¢) — Veond,

Recall that, under condition (16), both optimal sets V*
and Q* are compact. By Kuhn-Tucker theorem, for any pair
of optimal primal and dual solutions, v* € V* and ¢* € Q*,
the complementary slackness condition holds:

q"-Gw*)=0. (35)

Note that there always exists v* € V* for which the subset of
J € J with G ;(v*) < 0is the maximum possible; this subset
we denote by J' © c 7. Thus, a vector q*€R i satisfies the
complementary slackness condition (35) for all v* € V* if
and only if

q; =0forj e JO. (36)

For an optimal point v* € V*, let C*(v*) denote the nor-
mal cone to V at v*. (It may have any dimension from
0 to N. A zero-dimensional cone is the one containing
the single vector O - this is the case when v* lies in the
interior of V.) We know that (v*, ¢*) € V* x Q* if and
only if (v*, g*) is a saddle point of the Lagrangian H (v) —
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y-G),veV,ye Ri, for the pair of primal problem
(12)—(13) and its dual (15). This implies the following prop-
erty, recorded here for future reference.

Lemma 3. Assume non-degeneracy condition (16). Then,
the following holds for any fixed v* € V*. Vector g* € Q* if
and only ifg* € R{, VH(*) — Zje] q;VG;(v*) € C*(v")
and the complementary slackness condition (35) (or, condi-

tion (36)) holds.

Let us fix arbitrary optimal dual solution ¢* € Q%, and asso-
ciate with it the following function

1
F'v.y) = Hw) = ¢" - G0 = 5 3 () 4},
jed

veV, yeR] (37)
As will be shown below in Lemmas 5 and 6, the func-
tion F*(x(t), q(t)) is “asymptotically non-decreasing” along
GPD-trajectories. (If x(0) € V, it is in fact non-decreasing.
See the remark following the proof of Lemma 6.) This prop-
erty makes it the key “tool” in proving Theorem 1(i).

We also denote

H*(v) = H@w) —q" - Gv),

and so F*(v,y) = H*(v) — (1/2) Y, (yn — q;f)z. Function
H*(v) is the Lagrangian H(v) — y - G(v) of the problem
(12)—(13), with the dual variable y equal to g* € Q*. This
implies that the convex compact set

V™ = arg max H*(v)
veV

contains all optimal solutions to the problem (12)—(13), i.e.
V* C V™ and H*(v*) = H(*) for any v* € V*. Within
VX function H*(v) is constant and therefore H (v) is linear.
(This is because if either H(-) or at least one of the functions
G ;(-) with strictly positive q;‘ would not be linear within the
convex set V™ function H*(v) could not be constant—in
fact could not be linear—on V™; recall that — H(-) and all
G;(-) are convex.) Then, by Proposition 2 (in Appendix),
V H(v) is constant within V™ For future reference, we
record these facts in the following lemma.

Lemma 4. For arbitrary fixed optimal dual solution q* €
Q* and its associated function H*(-) and set V™, we have:

(i) Vmax 2 V*’
(i) VH(v) is constant within V™,
(iii) H*(v*) = H(v*) for any v* € V*.
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Now we can proceed with the main part of the proof of
Theorem 1(i). From this point on in this Section 5.2 we con-
sider a fixed GPD-trajectory (x, q).

Lemma 5. Consider F*(-, -) associated with arbitrary q* €
Q*. Then, for all (regular) t > 0,

d
— F*(x(1), (1)) = Y(x(2), q(1), v(1))

7 (38)

where, forv e V,

Y (x(1), q(1), v)
= VH(x(1)) - (v(t) — x(1))

—[Zq;‘fvc;,(x(r))] (= x(1)
J

= (g0 = )G ;(x(1) + VG jx(1)) - (v — x(D))].
J

Consequently, for any (regular) t > 0,

v(t) € argmax Y (x(t), g(1), v).
veV

(39)

Proof: Inequality (38) is obtained by writing out the ex-
pression for %F*(x(t), q(t)), and observing that g;(t) =
0 implies —(g;(t) — q}“) > 0. Inclusion (39) follows from
the definition of a GPD-trajectory, because the term in
Y(x(¢), q(¢), v) involving v is

[VH(X(I)) - ZCIJ(I)VG,-(X(I))] ‘v, O
j

Lemma 6. Consider F*(-, -) associated with arbitrary fixed
q* € Q. Letv* € V* be fixed and such that G ;(v*) < 0 for
each j € J©. The following properties hold, as t — oo.

1) x(t) —» V™ Consequently,
VH(x(t)) — VH(@").

(i) gj(t) — O forevery j € JO.

(iii) [VH(x(0) — X2, 4,0V G (x(e)] — C* ).

@iv) Both F*(x(t),q(t)) and H*(x(t)) converge (to

constants). Consequently, Zn(qn(t) —q; )2
= |lq(t) — q*||* converges.

W) q@t) = q**, for some fixed element g** € Q.

by Lemma 4(i)—(ii),

some

Proof: All statements of the lemma will follow from the
representation of the lower bound Y (x(¢), g(t), v(¢)) of the
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derivative dit F*(x(t), q(¢)). Letus use the following notation:

Wj = W/‘(x(t), U*)
= VG;(x(®) - (0" —x(1) = [G;(v") — G j(x(1))].

By the subgradient inequality, for any j € 7 and any ¢ > 0,
W; < 0 and, moreover,

VG;(x(t)) # VG;(v*) implies W; < 0. (40)

(This is because W; = 0 implies that G;(-) is linear along

the segment L connecting points x(#) and v*, which in turn

implies, by Proposition 2, that VG ;(§) is constant along L.)
Then, we can write:

Y(x(1), q(1), v(?))
=Y (x(1),q(),v") + [Y(x(1),q (), v(t))— Y (x(2),q(t),v")]
=VHx®)  (v" —x(1) — ZQj(t)Wj
J

3 GG W) — G — Y (4;(0) — 4G (")
J J

+[Y(x(1), q(t), v(®)) — Y(x(), q(t), v¥)]
= B(t) + Ba(t) + B3(t) + By(1),

where

Bi()=VH(x()) - (v" — X(l))—z q;1G;(v") — G (x(0)]
j

> H*(v*) — H*(x(1)),
Byt)==> (q;() —q}) G;(v") ==Y  q;()G;(v*) = 0,

J jeJ©

Biy(t)=Y (x(1), (1), v(1)) — Y (x(1), (1), v™)
= [VH(X(t)) - qu(l)VGj(X(t))]
j

(@) —v) >0,
By(t)=—=_q;(OW; = 0,
J

As in [15], we use further breakdown of B(t), as follows.
We denote by x*(¢) the normal projection of x(¢) onto V;
namely, x*(¢) is the (unique) point of V which is the closest
to x(¢). According to (30),

Ix(@) — x* @I < [x(0) — x*(O)lle”", 7= 0.

We have
Bi(t) > H*(v*) — H*(x(t)) = By1(¢) + Bp2(1),

where Bii(t) = H*(v*) — H*(x*(t)) > 0 and Bp(t) =
H*(x*(t)) — H*(x(2)). For the function Bj,(t),t > 0, the
following estimate holds for any pair 0 < #; <1, < oc:

/ |Bua(s)lds < / Cullx*(s) — x(s)]lds

n 3]

=G /2 lx*(0) — x(0)|le*ds

= Ci[lx*(0) — x(0)[[e ™"
= GilIx*(0) = x(0)]| < oo, (41)

— e*fz]

where C| > 0 is a uniform upper bound on ||V H*(x(s))||
and ||VH*(x*(s))| over all s > 0. (For example, C; can be
chosen as the maximum of ||V H*(&)|| over all £ in the convex
hull of V U {x(0)}.)

Given the above representation of Y (x(¢), g(t), v(¢)), the
proof of statements (i)—(iii) essentially repeats the proof of
statements (i)—(iii)) of Lemma 6 in [15], using functions
Bi1, Bz, B> and Bj3 (and the fact that By is non-negative).
For example, the estimate of B;(f) (in addition to its non-
negativity), takes the following form: for any €, > O there
exists sufficiently small €, > 0 such that

Bs(t) > €, aslong as

P ([VH(X(I))—Z q_,-(t)VGj(x(t))], C*(v*)> >€. (42)
j

(And the proof of (42) is same as that of its special case in
[15], with ¢(¢) replaced by Zj q;(t)VG;(x(1)).)

Proof of (iv): Convergence of H*(x(t)) follows directly
from (i). Function F*(x(¢),g(t)) is absolutely contin-
uvous (in fact—Lipschitz), bounded, and its derivative
(d/dt)F*(x(t), q(t)) > Bi(t). The derivative lower bound
implies that F*(x(¢), ¢(¢)) can be represented as a sum
of some non-decreasing function and the non-increasing
function

/ [Bi2(s) A 0]ds.
0

The latter function converges then
F*(x(t), q(t)) converges as well.

To prove (v), consider any limiting point (x**, g**) of
the trajectory (x(¢), q(t)),t > 0, which exists as t — oo,

since the trajectory is bounded. We must have [V H (v*) —

(by (41)), and
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Z,’ q;‘*VGj(x**)] € C*(v*), by (i) and (iii). Using function
B4(t) and property (40), it is easy to observe that (x**, ¢**)
must be such that, for any j € J,

q; IVG;(x™) = VG (vl = 0. (43)

(Otherwise, F*(x(t), q(t)) would go to +o00.) This implies
that

[VH(U*) —~ Zq;*vcj(v*)}
J
= |:VH(U*) — Zq;*vcj(x**)} € C*(v™).
J

‘We also know that q;‘* = Oforevery j € J O, by (ii). There-
fore, by Lemma 3, g** € Q*. Note that properties (i)—(iv) of
this Lemma hold for any a priori fixed ¢g* € Q¥, including
q**. Therefore, by (iv), ||g(¢) — ¢**|| converges, and it can
only converge to 0. O

Remark. As seen from the proof of Lemma 6, x(0) €
V implies that F*(x(t), g(¢)) is non-decreasing. Indeed,
in this case x(¢t) € V for all + > 0 and therefore Bj,(t) =
H*(x*(t)) — H*(x(t)) = 0. If x(0) € V, function F*(x(t),
q(1))is still “asymptotically non-decreasing,” due to estimate
(41), as shown in the proof of Lemma 6(iv).

Lemma 7. The following property holds:

limsup G;(x(¢)) <0, jeJ.

—>00

Consequently, as

YjieJ})

t— o0, x(t)—> V"™ N{G;v) =<0,

Proof: From (29), for any j € J and any pair 0 <t <1,
< 00, we have the inequality

qj(n) — q;t1) Z/ Gi(x(@®))dt +[Gj(x(12)) — G j(x(11))].

I

The rest of the proof is analogous to that of Lemma 7 in
[15]. O

Lemma 8. We have x(t) — V* as t — oo.
Proof: is analogous to that of Lemma 8 in [15]. O

The proof of Theorem 1(i) is complete.
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5.3 Proof of Theorem 1(ii)

This proof repeats that of Theorem 2 in [15] virtually verba-
tim. (In two places in the proof of Lemma 16 in [15], RY has
to be replaced by {v € RV | Gi(v)<0,VjeJ})

6 A dynamic resource allocation model

In this section we define and study a resource allocation
model such that each control action ‘“generates” certain
amounts of commodities. The “utility” of the system (under a
given control strategy) is a concave function H of the average
rates at which commodities are generated. The problem is to
find a control strategy which maximizes utility subject to a
number of given convex constraints on the vector of average
commodity generation rates. In Sections 6.1-6.3 we intro-
duce the model and the optimization problem formally. We
define a dynamic control policy, called Greedy-Primal Dual
(GPD) algorithm, in Section 6.4. (This algorithm is a gen-
eralization of the GPD algorithm, introduced in [15], which
was applicable to the problem with linear constraints.) In
Section 6.5 we prove asymptotic optimality of the algo-
rithm (as one of its parameters approaches 0). Finally, in
Section 6.6, we present the extension of the GPD algorithm,
such that it (asymptotically) solves the above problem for the
more general network model of [15].

6.1 The model

We consider a system consisting of a finite set of nodes
N*={1,2,...,N,}, N, > 1. (In the terminology of [15],
these are “utility” nodes.) The system operates in discrete
timet =0, 1, 2, ... as follows. (By convention, we will iden-
tify an integer time ¢ with the unit time interval [z, ¢ + 1),
which will sometimes be referred to as the time slot t.) The
system has a finite set of modes M. The sequence of modes
m(t), t =0,1,2,..., forms an irreducible (finite) Markov
chain with stationary distribution {m,,, m € M}, where all
7m > 0and ) m, = 1. (The mode process m(t) models the
underlying randomly changing system “environment,” and
is not affected by any network control.) When the network
mode is m € M, a finite number of controls is available,
which form set K (m). (We denote by K = U,, K(m) the fi-
nite set of all possible controls across all modes m € M.)
When a control kK € K(m) is chosen at time ¢, each node
n € N generates an amount b,(k) of certain commodity.
We will denote b(k) = (bi(k), ..., by, (k)).

Informally, the problem we are going to address is as fol-
lows. Let x* = (x{, ..., xy ) denote the average value of
b(k(t)) under a given dynamic control policy. We would
like to find a dynamic control policy which maximizes some
concave utility function H (x*), subject to the finite number
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of constraints

G,(x*) <0, jed. (44)

where all G (-) are convex.

Remark. The problem we just (informally) described is more
general than that considered for the network control model in
[15], in that here we have additional—possibly non-linear—
constraints (44). However, the system model defined above
is a special case of that in [15]. In Section 6.6 we will show
that all results of this Section 6 in fact easily generalize for
the (more general) network model of [15].

6.2 System rate region

In this section we define the system rate region V C RM,
which is the set of all possible long-term average values of
vector b(k(t)), where k(t) is control chosen at time ¢. For-
mally, the definition is as follows.

Suppose, for each network mode m € M, a probability
distribution ¢,, = (¢, kK € K(m)) is fixed, which means
that ¢,,x > 0 for all k € K(m), and ZkeK(m) ¢mr = 1. For
such a set of distributions ¢ = (¢,,, m € M), consider the
following vector

V@)= 7w Y bub(k).

meM keK(m)

If we interpret ¢, as the long-term average fraction of time
slots when control k£ € K (m) is chosen among the slots when
the network mode is m, then v(¢) is the corresponding vec-
tor of long-term average rates at which commodities are
generated. The system rate region V is defined as the set
of all possible vectors v(¢) corresponding to all possible
¢. Clearly, V is a convex compact (in fact—polyhedral)
subset of RV«, as a linear image of the compact polyhe-
dral set of all possible values of ¢. Rate region V may
turn out to be degenerate (i.e., have dimension less than
N,).

6.3 The underlying optimization problem

Let us denote by B C RN« the convex hull of the set
{b(k), k € K}. (Clearly, B is convex compact and B 2 V.)
Suppose an open convex set V.,V € B C V € RN, is fixed.

Suppose a continuously differentiable concave utility
function H(v) is defined on V. Consider the following opti-
mization problem:

ma‘zc H(v) 45)

subject to

Gi(v) <0, jed, (46)

where J = {1,2,..., J} is a finite set and each G;() is a
continuously differentiable convex function on V. Problem
(45)—(46) is feasible when

VNive V|G;) <0, VjeJ}#0, 47)
in which case we denote by V* the compact convex set of
optimal solutions of (45)—(46), and by O* C Ri the closed
convex set of optimal solutions to the problem dual to (45)-
(46).

We seek to find a dynamic control algorithm, such that,
when problem (45)—(46) is feasible, the corresponding aver-
age commodity rates x* € V*.

In the next Section 6.4 we introduce an algorithm (called
GPD algorithm), which is (asymptotically) optimal in the
sense that it (asymptotically) achieves the goal described
above, under the following non-degeneracy assumption,
which is slightly stronger than feasibility condition (47):
VNiveV|G;) <0, VjeJ}#0. (48)
(Under (48), Q* is a compact set, as well as V*. See
Section 4.1.)

Remark. Non-degeneracy assumption (48), or even a weaker
feasibility assumption (47), are not needed for any of the re-
sults of this Section 6, which are concerned with system
dynamics under GPD algorithm. Assumption (48) is only
invoked to apply Theorem 1 (which says that the dynamic
system in fact converges to an optimal state), and thus estab-
lish asymptotic optimality of the GPD algorithm. (See the
beginning of Section 6.5.)

6.4 Greedy primal-dual algorithm

Consider the following control policy. (Recall that H(-) is
the utility function defined in Section 6.3.)

Greedy primal-dual (GPD) algorithm. At time t choose a
control

k(t) € arg max |:VH(X(t)) ~ > BQ,()VG j(X(t)ﬂ - b(k),

keK (m(t)) 7

(49)

where running average X(t) of the values of vector b(k(t))
for utility nodes is updated as follows:

X+ 1) =1 —pB)X() + Bbk(1)), (50)
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with 8 > 0 being a (small) parameter, and where the “virtual
queue lengths” Q;(t), j € J, are updated as follows:

Q;t+1)=1[0,;t)+G;(X(1)
+VG(X(1)) - (blk(r)) — X()]*. (51)

The initial values X (0) € V and 0;0) >0, jeJ,arefixed
arbitrarily.

Remark. The initial condition X(0) € V and the update rule
(50) imply (by induction) that X(¢) € V forall t > 0. There-
fore, the (random) system evolution is well defined for all
t > 0, because all the functions in (49) and (51) are well
defined.

We will use notation Q(¢t) = (Q(¢), ..., Q,()). It fol-
lows from (51) that Q(r) € R for all 7.

6.5 Asymptotic optimality of GPD algorithm

The main result of this section (Theorem 3) is a generalization
of Theorem 3 in [15]. It shows that, as 8 | 0, the “fluid-
scaled” processes {(X(¢/B8), t =0), (BQ(t/B), t = 0)}
converge to a (generally speaking) random process
{(x(®),t = 0), (g(2), t = 0)} with sample paths being GPD-
trajectories (as defined in Section 4) for the optimization
problem (45)—(46). (This result, as well as all other results
of Section 6, does not use assumption (48), or even (47).)
But, according to Theorem 1, under the non-degeneracy as-
sumption (48), for all GPD-trajectories, as time t — 0o, we
have (x(1), g(¢)) — V* x Q*, where V* and Q* are the sets
of optimal solutions of the problem (45)—(46) and its dual,
respectively. In this sense, Theorems 3 and 1 demonstrate
asymptotic optimality of the GPD algorithm. (The proof of
Theorem 3 is a straightforward extension of that of Theorem
3 in [15], and will be omitted.)

Let us discuss what the asymptotic optimality of the
GPD algorithm means in terms of applications. Accord-
ing to the update rule (50), the value of X(r) is the ex-
ponentially weighted average of the past values of b(k(-)),
ie.,

X(0) =" Bl — BYblk(t — i)). (52)

i=0

Due to simplicity of rule (50), such averaging is widely
used in many applications (for example, in wireless sys-
tems utilizing opportunistic scheduling—cf. [4, 14, 16]);
X(t) has roughly the meaning of the average of the values
of b(k(-)) within time interval [t — 1/8, ¢]. Then, the com-
bination of Theorems 3 and 1 means that commodity rates,
measured as average commodity values over 1/B-long time
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intervals, converge (close to) their optimal values within a
time interval of the order of 1/B. (This point is discussed
in more detail and made precise in [14], where the “Gra-
dient” algorithm—a special case of GPD—is analized. We
note that, in our case, the avove statement is true as long
as initial values of Q; are bounded). In other words, under
the GPD algorithm, from any initial state (as long as Q; are
bounded), within time of the order of 1/ the system “makes
a transition” to an (almost) optimal regime in which aver-
age (over 1/B-long intervals) commodity rates are (close to)
optimal.

Depending on the time scales of the system, the average
rate X may in fact be a short-term average, or “instanta-
neous”, rate. Indeed, if the time slot is short, say 1.67 msec
(see [4]), and B = 1/600, then X represents roughly the av-
erage rate over a 1 sec interval. In the applications such
as opportunistic scheduling in wireless systems, it is typi-
cally infeasible for the “true instantaneous rate” (over each
scheduling slot) to be close to the optimal average rate, as
there is only a discrete set of available instantaneous rates
and, moreover, this set depends on the random state of the
radio channel. Therefore, in such applications the short-term
average rate X, as defined by (52), serves as a reasonable
notion of “instantaneous” rate.

6.5.1 Asymptotic regime: Fluid scaled processes

First, we need to define the asymptotic regime formally.
From this point on in the paper, we consider a sequence
of processes S# = (X#, Qf, m?), indexed by the value of
parameter B, with 8 | O along a sequence B = {f;, j =
1,2, ...} suchthat 8; > Oforall j. The initial state SP(0) =
(X£(0), 0#(0), mP(0)) is fixed for each 8 € BB, and it sat-
isfies the conditions specified in the GPD algorithm defi-
nition in Section 6.4. (Here and below, the processes and
variables pertaining to a fixed parameter S will be sup-
plied the upper index B. Expression B | O means that S
converges to O along the sequence I3, unless otherwise
specified.)

The probability law of the Markov chain m?(-) describing
the system mode process is same for each .

Before we introduce fluid-scaled version of the pro-
cess (for each B € B3), we need to augment the definition
of the process itself. First, let us extend the definition of
XA (t) to continuous time ¢ € R, by adopting the conven-
tion that X#(¢) is constant within each time slot [, [ + 1).
We do analogous domain extension for Qf(¢). Thus, each
B, we consider the (continuous time) process (X8, 0,
where

XP=XP), t>0), QF =(QP),t>0).
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For each B consider the following process (x#, ¢#), which is
a fluid-scaled version of (X?, QP):

Pty = xXP@/p),
q° @) = BOP/p).

(53)
(54)

Note that all component functions of (x?, ¢#) are piece-wise
constant, with the “time slot” of length 8.

6.5.2 Fluid scaled processes converge to processes
concentrated on GPD-trajectories

We will view random processes (x”, g?) as processes with
realizations in the Skorohod space Dgw.+s [0, 00) of functions
with domain [0, c0), taking values in RV« which are right-
continuous and have left-limits. The Skorohod topology and
corresponding Borel o -algebra on Dgw,+s [0, 00) are defined
in the usual way. (Cf. [6] for the definitions.)

Theorem 3. Consider the sequence of processes {(x?, g?)}
with B | 0 along set B. Assume that (x?(0), g?(0)) —
(x(0), g(0)), where (x(0), g(0)) € V x R_{_ is a fixed vector.
Then, the sequence {(x?, q’8 )} is relatively compact and any
weak limit of this sequence (i.e., a process obtained as a weak
limit of a subsequence of {(x?, g®)}) is a process with sam-
ple paths (x, q) being with probability 1 GPD-trajectories
(with initial state (x(0), q(0))) for the optimization problem
(45)—(46) (with N = N, N = N,,).

As mentioned above, the proof of Theorem 3 is a straightfor-
ward generalization of that of Theorem 3 in [15].

6.6 A more general network model

As we mentioned earlier, all results of this Section 6 can
be easily extended for the case where the system model of
Section 6.1 is replaced by the more general queueing network
model of [15]. Next, we specify the more general network
model and the corresponding GPD algorithm. After that, we
explain how the asymptotic optimality of the generalized
algorithm is proved.

The network model of [15] is the model of Section 6.1
augmented as follows. In addition to the N, “utility”
nodes forming set N* = {1, 2, ..., N,}, there are also N,
“processing” nodes forming set N7 = {N, +1,..., N}.
Each processing node n € AN/? has associated queue,
formed by customers waiting for processing (or service)
by the node. The corresponding queue length at time ¢t
is denoted by Q,(t), n € NP. (Recall that the variables
Q) for j € J we called “virtual” queue lengths.) If
control k € K(m) is chosen at time 7, associated with it
(in addition to the generated commodity amounts vector

b(k) = (bi(k), ..., by, (k))) is the following sequence of
actions (which occur in the order listed):

(a) each processing node n € NP serves integer number
Un(k) > 0 of customers from its queue (or the entire
queue n content, if it is less than w,(k)), which are then
randomly and independently routed to other process-
ing nodes (including possibly self) with probabilities
Puek), £ € NP, Y ven Pre(k) < 1, or leave the system
with probability 1 — >, s, Pre(k);

(b) an integer number A, (k) > 0 of exogenous customers ar-
rive into each processing node queue n € N7,
We make a non-restrictive in most applications assump-
tion that if k € K (m) is a control allowed in mode m, then
a “version” of this control, with w, (k) replaced by O for
any subset of processing queues, is also allowed.

The problem is to find a dynamic control policy which
maximizes the concave utility function H(x*) (where x* is
the average value of b(k(t))), subject to the finite number of
convex constraints (44), and subject to the additional condi-
tion that the queues at the processing nodes remain stable,
that is (informally speaking) the processes Q, (), t > 0, for
all n € A/? remain bounded.

Let us use notation

bu(k) = hn(k) = pa(R)+ Y pe®)peatk), n € N7, k € K.
LeN?

The meaning of b, (k) is simple: this is the average increment
0, + 1) — Q,(¢) of the queue length at a processing node
n, that would be caused by control k at time ¢, assuming that
all processing node queues at time t are “large enough.”

We are now in position to define the (generalized) GPD
algorithm.

GPD algorithm. At time t choose a control
k(t) € arg max [VH(X(t)) - Z ,BQj(t)VGj(X(t)§| - b(k)
keK (m(1)) 7

— > BOWOB(K)
neNr

(35)

where 8 > Qis a(small) parameter, X (t) is updated as in (50)
and “virtual queue lengths” Q;(t), j € J, are updated as
in (51). The initial values X(0) € V and Q;(0) > 0, j € J,
are fixed arbitrarily.

Obviously, this algorithm is a generalization of the
algorithm defined in Section 6.4, in that it applies to a
more general model. The GPD algorithm (55) is also
more general than that defined in [15], in that it applies
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to a more general problem, allowing additional—possibly
non-linear—constraints (44).

The asymptotic optimality of the GPD algorithm (55),
under the appropriate non-degeneracy condition, which
combines (48) and the non-degeneracy condition in [15],
is proved analogously to the way it is done for its special
case (49). The rate region is defined exactly the same way as
for the model in [15]; and the analog of Theorem 3 is proved,
again, analogously to the proof of Theorem 3 in [15]. The key
circumstance here is that, although algorithm (55) applies to a
more general model, the corresponding underlying optimiza-
tion problem and the dynamic system arising in the asymp-
totic limit under the GPD algorithm (55), are still within
the framework of our Section 4, with N' = N* U NP (As in
[15], the stability constraint for each queue n € AP “trans-
lates” into a linear constraint in the underlying optimization
problem, and rescaled Q, “becomes” the dual variable cor-
responding to this constraint.) Thus, the analog of Theorem 3
for the GPD algorithm (55) along with Theorem 1 (exactly
as it is in Section 4) establish asymptotic optimality of the
algorithm.

7 Examples of Section 3: Solutions
7.1 Example 1

Base station maintains the average rate estimate X, per each
user n € N, and the single virtual queue length Q, corre-
sponding to constraint (4). Specialization of the GPD algo-
rithm to the problem (3)—(4) is such that the scheduling de-
cision k() in slot ¢ is chosen according to the following rule:

k(t) € argmax —w(k) + BO(1) Y Hy(Xy())by(k),  (56)
keK (m(t)) neN

and the 0, and X,,’s are updated as
Xn(t + 1) = b (k(1)) + (1 — B)X,(1), (57)

0.t +1) = [Q(l) - Z[Hn(Xn(t)) + H,(X,(1))
neN

+
X (b (k(1)) — Xn(1))] + hmi“} ; (58)

where B > 0 is a small parameter.

Our general results in Section 6 show that this algorithm
is close to optimal if B is small. Note that the base station
schedules wireless transmissions dynamically, based only on
the current state of the radio channel and a small number of
variables, updated according to very simple rules; it does
not need to know the stationary distribution of the channel
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state, and it only needs to know the set of scheduling decision
available in the current state of the channel. Thus, the above
algorithm “solves” the underlying optimization problem (5)—
(6) without the explicit knowledge of the region V.

7.2 Example 2
7.2.1 Formal solution

Let us first describe the special case of the GPD algo-
rithm, which (asymptotically) solves the problem (7)—(8) of
Section 3.2, assuming that all the variables can be updated
in every time slot and are globally known. There are two
variables—average rate estimate X, and virtual queue length
Q,—corresponding to each traffic source n. Then the algo-
rithm is such that the scheduling decision k;(#) by access
point i in slot ¢ is chosen according to the following rule:

ki(r) € argmax an(k,-)[H,;(xn(t))

kieKi(m;(t)) neN;

-8 Q<‘>(r>c,;<x<“(r)>], (59)

LeR (M)

and X, and Q, are updated as
Xu(t +1) = Bb,(t) + (1 — B)X,(0), (60)

Ou(t +1) = [Qnu) + Y 1Cx ) + Cux Oy

(eR(n)

+
x (1) — X))l - dn} : (61)

where, to simplify notation, we write b, (¢) to mean b, (k;(t))
with the appropriate i (such that n € N;), and denote

OO = Y b,

seER(L)
0Yn = Y 0.0,
SER-1(0)
xOm= Y X0,
seR-1(0)
Note that (60) implies
XO¢+1) =00+ 0 - BHXO®). (62)

Remark. We ignored the fact that each utility function C,(z)
is defined only for 0 < z < ¢y, and not for all real z. This
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“difficulty” is not essential. First, given the setting of this
example, Cy(z) does not need to be defined for negative z at
all. Second, we can always replace C, with a continuously
differentiable function coinciding with it in [0, z,] and say
linearin [z,, 00). If we choose z, < ¢, to be sufficiently close
to ¢y, so that Cy(z,) is large enough, the optimal solutions of
the original and modified problems are the same.

7.2.2 Distributed implementation

The idea of a “distributed” implementation of the algorithm
is suggested by the form of expressions (59)—(62). Let us
rewrite them as follows:

ki(t) € argmax Z by (k) H,(Xu(1)) — BW1 (D], (63)
ki€Ki(mi(1) peq;

X, (1 + 1) = Bb,(t) + (1 — B)X,,(0), (64)

0u(t + 1) = [Qu(t) + Wau(t) — dy] ", (65)

Wia) = Y W@, (66)
LeR(n)

Waa) = Y w70, (67)
LeR(n)

XOw+1) = b1 + (1 - BXO), (68)

w9 = 0VmC, (xO)), (69)

W30 () = Co(XO0) + Ci(XO0) (bO1) — XO1)).
(70)

Then a distributed algorithm is as follows. Each access point i
“maintains” variables X,,, Q,,, W; , and W, , for “its” sources
n. Each link £ maintains variables X©, 5 and Q®, which
in turn determine Wl(e) and WZ(K). Clearly, for each source n,
the access point can update X,, by simply observing traffic
it transmits. However, the updates of Q, and W, , depend
on the values of Wl(e) and Wf) on the links £ € R(n) along
the route of flow n. Similarly, while each link ¢ can up-
date X® and b® by simply observing the aggregate amount
of traffic passing through the link, the updates of Q re-
quire the knowledge of Q, for the flows feeding this link. A
“light-weight” mechanism for such an information exchange
between traffic sources and links can be, for example, as fol-
lows. Periodically, say every t slots, T > 1, the access point
i sends a small high priority (“signaling”’) message along the
route of each of its flows n. The message along flow n route
contains the current value of Q,, and also “data fields” W ,
and W, , initialized to 0. When a signaling message of flow
n passes through link ¢, the link, first, uses the value of Q,, to
update its Q) and, second, increments fields Wy ,, and W,,
by the current values of Wl(z) and Wz(e), respectively. When

a signaling message reaches destination, it is sent back to
the source. When an access point i receives back a signaling
message for flow n, it takes the value of the field W , as the
new value of this variable, and it uses the field W, , to update
On.

We will not provide further specifics or describe numerous
possible modifications of the mechanism described above,
because we believe they can be filled in by an interested
reader. We only note that the delays in updating variables,
depending in particular on the “update frequency” 1/, do
not “destroy” the asymptotic optimality of the algorithm, as
long as such delays are bounded—it is easy to see that the
dynamic system obtained by rescaling and taking the limit
as B — 0 is exactly the same as the dynamic system under
the original (delay free) algorithm (63)—(70).

We do want to emphasize the “distributed nature” of the
above algorithm. Indeed, traffic sources and access points
need not know the form of congestion cost functions along
the flow routes, or in fact the exact routes themselves. Access
points schedule wireless transmissions dynamically, based
on the current state of the radio channel to its users (along with
their corresponding variables X,,, W, ,, and utility functions
H,). Wireline network links do not need to know the utility
functions of the flows, or congestion cost functions on the
other links. In fact, if the network design can assure that,
within each window of 1 slots, each link receives exactly
one signaling message per each flow passing through the
link, the link does not need to maintain the list of flows it
currently serves; otherwise, the link can maintain some form
of such a list.

Appendix: Auxiliary elementary facts

The following Proposition 1 is Lemma20in [15]. Note thatin
the differential inclusion (71) itis only required that v(z) € V.
(There are no other conditions on v(¢).)

Proposition 1. Suppose V is a convex compact subset of
a finite-dimensional space RN. Suppose a vector-function
(x(t), t > 0), taking values in R, is absolutely continuous,
satisfying the following differential inclusion for almost all
t>0:

x'(t) = v(r) — x(2), (i) eV. (71)

Then

(i) Both x(t) and the distance p(x(t), V) are Lipschitz
continuous in [0, 00);
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(i1) The distance p(x(t), V) is non-increasing, and more-
over, for almost all t > 0,

d
EP(X(t), V)= —p(x(0), V), (72)
which implies that

p(x(1), V) < p(x(0), V)e™ .

(iii) The entire trajectory (x(t), t > 0) is contained within
the convex hull of V U {x(0)}.

The following elementary fact is the Proposition 1 of [15].

Proposition 2. Suppose H(v) is a continuously differen-
tiable concave function with convex open domain V. C RV,
N > 1, and let L be the line segment connecting two points
v, v® e V. If H(v) has the same value along segment L,
then VH(WW) = VHW®). (Consequently, if H(v) is linear
along L, then V H(v) is the same for all v € L).
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