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Abstract In Stolyar (Queueing Systems 50 (2005) 401–457)

a dynamic control strategy, called greedy primal-dual (GPD)

algorithm, was introduced for the problem of maximizing

queueing network utility subject to stability of the queues,

and was proved to be (asymptotically) optimal. (The network

utility is a concave function of the average rates at which the

network generates several “commodities.”) Underlying the

control problem of Stolyar (Queueing Systems 50 (2005)

401–457) is a convex optimization problem subject to a set

of linear constraints.

In this paper we introduce a generalized GPD algorithm,

which applies to the network control problem with additional

convex (possibly non-linear) constraints on the average com-

modity rates. The underlying optimization problem in this

case is a convex problem subject to convex constraints. We

prove asymptotic optimality of the generalized GPD algo-

rithm. We illustrate key features and applications of the al-

gorithm on simple examples.

Keywords Queueing networks . Dynamic scheduling .

Resource allocation . Convex optimization . Non-linear

constraints . Greedy primal-dual algorithm
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1 Introduction

This paper is a natural progression of [15], where a dynamic

control strategy, called greedy primal-dual (GPD) algorithm,

A. L. Stolyar (�)
Bell Labs, Lucent Technologies, 600 Mountain Ave., 2C-322,
Murray Hill, NJ 07974
e-mail: stolyar@research.bell-labs.com

was introduced for the problem of maximizing queueing net-

work utility subject to stability of the queues, and was proved

to be (asymptotically) optimal. This problem accommodates

a large variety of communication network applications, in-

cluding the utility based network congestion control [9, 11]

and many resource allocation problems in wireless systems.

(See [15] for a review of the model applications.) Underlying

the network control problem addressed in [15] is a convex

optimization problem subject to a set of linear constraints.

However, as we will illustrate in Sections 3 and 7, some net-

work control problems arising in applications are such that

the underlying optimization problems are convex, but with a

set of convex (not necessarily linear) constraints. In this pa-

per we introduce a generalization of GPD control algorithm

and prove its asymptotic optimality for such more general

problems.

More specifically, the model in [15] is such that each

control action has associated impact on the network queues

(namely, it determines the rates of exogenous arrivals, service

rates, and routing of served customers between the queues),

and also generates certain amounts of several commodities
(which can be amounts of traffic, “costs,” etc.). The utility of

the network is a concave function of the vector x of average

commodity generation rates. (Utility function need not be

strictly concave.) As demonstrated in [15], the convex opti-

mization problem that underlies the network control problem

of maximizing utility subject to queueing stability, has the

following form:

max
x∈V

H (x) (1)

subject to

G j (x) ≤ 0, j ∈ J , (2)
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where V ⊂ RN is a compact convex system rate region, H is

a concave utility function, and all constraints (2) are linear,

corresponding to the queueing stability requirement—one

constraint per queue. The GPD algorithm of [15] is asymp-

totically optimal in that, under this algorithm, the commodity

rates converge to an optimal solution of the underlying prob-

lem (1)–(2). The algorithm is of primal-dual type, so that,

roughly speaking, commodity rates are primal and (rescaled)

queue lengths are dual variables for the problem (1)–(2). (In

an independent parallel effort to [15], papers [7, 10, 12] pro-

pose algorithms for related network control problems. The

algorithms of [7, 10, 12] are of dual type and, unlike the

GPD algorithm, they additionally require that utility func-

tion is separable with respect to individual commodity rates

xn , i.e. H (x) = ∑
n Hn(xn), with each function Hn(·) being

strictly concave and increasing.)

Suppose now that the network control problem is as above,

but there are additional convex constraints on the average

commodity rates. Then, the underlying optimization prob-

lem still has the form (1)–(2), but the set of constraints (2)

is extended to include additional ones with G j being just

convex, possibly non-linear. In Section 6 of this paper we

introduce a generalized GPD algorithm, that is applicable to

such more general problems, and prove its asymptotic op-

timality. For each additional (convex) constraint in (2) the

algorithm creates and “maintains” a virtual queue length,
which (after appropriate rescaling) converges to an opti-

mal dual variable (Lagrange multiplier) for the constraint.

The specific update rule for the virtual queues correspond-
ing to convex constraints, is the key new part of the gen-

eralized GPD algorithm, compared to that of [15]. Just as

the rest of the algorithm, this update rule (see (51)) is very

“parsimonious”—it only requires the knowledge of the val-

ues and gradients of the constraint functions at a single

point given by the current (estimated) average commodity

rates.

The meaning of the GPD algorithm asymptotic optimal-

ity, as will be explained in more detail in Section 6.5, is

roughly as follows. Given a fixed (small) parameter β > 0 of

the algorithm, within a time interval of the order of 1/β the

algorithm brings the system from any initial state to a regime
in which average commodity rates (over 1/β long time in-

tervals) are (close to) optimal. Depending on the time-scale

relevant to a specific application, those average rates may

be long- or short-term averages, or even be considered as

“instantaneous” rates.

At this point, we would like to emphasize that standard and

well studied algorithms for convex optimization (cf. [3, 5]),

including, for example, the classical Arrow-Hurwicz-Uzawa

primal-dual algorithm [2], are often inapplicable to the dy-
namic control of queueing networks problems we address in

this paper, as well as in [15]. (This will be discussed in de-

tail in Section 3.1, using the application example described

there.)

As in [15], the key part of the proof of GPD algorithm

asymptotic optimality is the analysis of the dynamic system

whose trajectories (called GPD-trajectories) arise as asymp-

totic limits of the network evolution under the GPD algo-

rithm. The main result of this paper (Theorem 1) shows that

the GPD-trajectories are attracted to the optimal primal-dual

solution pairs for the problem (1)–(2).

The summary of the main contributions of this paper is as

follows.� We extend the GPD algorithm of [15] and the proof of its

asymptotic optimality to a much broader queueing network

control problem, allowing general convex constraints on

the average commodity rates. From the technical point of

view, the key contributions are the introduction of the new

update rule for the virtual queue lengths (corresponding to

convex constraints) and proof of the attraction property of

the resulting (more general) GPD-trajectories.� Using examples, we demonstrate that additional convex

constraints may indeed arise in applications, and show that

in many cases the general GPD algorithm specializes to a

rather simple distributed dynamic network control strategy.� We believe that our main results contribute to the convex

optimization theory as well, since the GPD algorithm can

naturally be viewed as a dynamic mechanism for solving

rather general convex optimization problems. Our main

focus here is on devising and analyzing an algorithm that

can be used for dynamic control of queueing networks in

cases where standard convex optimization techniques can-

not be applied. (An interesting question is to compare the

efficiency of the GPD algorithm to that of standard con-

vex optimization methods, when both are applied to “con-

ventional” convex optimization problems. This question,

however, is outside the scope of this paper, and may be a

subject of future research.)

The rest of the paper is organized as follows. Section 2

introduces some basic notation. In Section 3, to motivate

our general model, we describes two examples of network

control problems that involve non-linear convex constraints.

In Section 4 we formally define GPD-trajectories associated

with problems of type (1)–(2), and formulate our main result,

Theorem 1. Section 5 is the proof of Theorem 1. In Section 6

we introduce our general resource allocation model, define

the GPD algorithm, and prove its asymptotic optimality. (To

simplify exposition, in most of Section 6 we restrict ourselves

to a model that is a special case of that of [15], but consider

a more general problem for it. The general form of GPD

algorithm, that applies to the queueing network model of [15]

and the more general problem, is presented in Section 6.6.)

In Section 7 we return to the examples of Section 3, to show
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solutions provided by the GPD algorithm and illustrate its

key features. We should note that Sections 4–5 and Section 6

are virtually independent, and can be read in any order. (It

may help if reader skims through Section 4 before reading

Section 6.) We also note that although all the model and

algorithm definitions and result formulations do not require

familiarity with paper [15], virtually all proofs heavily rely

on those in [15].

2 Basic notation

We denote by R, R+, and R−, the sets of real, real non-

negative and real non-positive numbers, respectively. Corre-

sponding N -times product spaces are denoted RN , RN
+ , and

RN
− . The space RN is viewed as a standard vector-space, with

elements x ∈ RN being row-vectors x = (x1, . . . , xN ). The

scalar product of x, y ∈ RN is

x · y
.=

N∑
n=1

xn yn ;

and the norm of x is

‖x‖ .= √
x · x .

We denote by

ρ(x, y)
.= ‖x − y‖

the distance between vectors x and y in RN , and by

ρ(x, V )
.= inf

y∈V
ρ(x, y)

the distance between a vector x ∈ RN and a set V ⊆ RN . If

(x(t), t ≥ 0) and V is a vector function and a set, respectively,

in RN , the convergence x(t) → V means that ρ(x(t), V ) →
0 as t → ∞.

For a set V and a scalar function W (v), v ∈ V ,

arg max
v∈V

W (v)

denotes the subset of vectors v ∈ V which maximize W (v).

For ξ, η ∈ R, we denote ξ ∧ η
.= min{ξ, η}, ξ ∨ η

.=
max{ξ, η}, ξ+ .= max{ξ, 0}; for ξ ∈ R and η ∈ R+, [ξ ]+η = ξ

if η > 0, and [ξ ]+η = ξ+ if η = 0.

Abbreviation u.o.c. means uniform on compact sets con-

vergence of functions. The term almost everywhere (a.e.)
means almost everywhere with respect to Lebesgue measure.

We denote by DRN [0, ∞) the Skorohod space of functions

with domain [0, ∞), taking values in RN , N ≥ 1, which

are right-continuous and have left-limits. The subspace of

DRN [0, ∞) consisting of continuous functions is denoted

by CRN [0, ∞); notation CRN+ [0, ∞) is used for the subset

of CRN [0, ∞) consisting of functions with values in RN
+ .

(Topologies, σ -algebras, and norms on these spaces are spec-

ified later, where and when necessary.)

3 Motivating examples

In this section we describe two examples of dynamic network

control problems, that have non-linear convex constraints,

which can be accommodated by the extended GPD algo-

rithm, introduced and proved to be asymptotically optimal in

Section 6. (These constraints cannot be handled by the GPD

algorithm of [15].) We formally introduce and discuss the

models and the corresponding problems. We will return to

these examples later in Section 7, where we demonstrate that

the extended GPD algorithm can be applied to both prob-

lems to produce (asymptotically) optimal dynamic control

algorithms.

The example of Section 3.1 is rather simple. Its purpose

is to, first, remind (following [15]) why standard methods

of convex optimization are not applicable to many prob-

lems of queueing network control and, second, illustrate

that additional convex constraints can naturally arise in such

problems. The example of Section 3.2 describes convex con-

straints of a different type; it will also allow us to illustrate (in

Section 7) that the GPD algorithm often allows a “distributed

implementation” in a network.

3.1 Example 1

We consider a model where a wireless network “base sta-

tion” (or an “access point”, or simply a network node) sends

data flows to several wireless (mobile) data users. The basic

problem is to dynamically schedule data transmissions to the

users so as to minimize average power consumption subject

to the constraint that the aggregate traffic flow “utility” is

above certain minimum level.

An important feature of the model is that the users share

radio channel, with the base station dynamically allocat-

ing data transmission rates and transmission powers to the

users. Moreover, the channel capacity is asynchronously

time-varying with respect to different users. In other words,

roughly speaking and assuming for simplicity that the trans-

mission power is fixed, at one point in time the available

transmission rate may be high for one user and low for an-

other, in which case there is an incentive to “opportunisti-

cally” allocate a larger fraction of channel time to the former

user transmission; and at a different time point the situation

may be reversed. Thus, base station can utilize opportunistic
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scheduling (cf. [1, 16]) to improve overall efficiency of the

radio channel.

Formally, the model is as follows. A base station sends

data traffic to a finite set N = {1, . . . , N } of wireless users,

indexed by n. We assume that the time is slotted, indexed

by t = 0, 1, 2, . . . , and use slot duration as the time unit.

The state m(t) of the wireless channel follows an irreducible

Markov chain with the finite state space M . When the channel

state is m ∈ M , the scheduling decisions k available to the

base station form a finite set K (m). If the base station chooses

decision k ∈ K (m) in time slot t , then in this slot it sends the

amounts of data (say, the number of bytes) bn(k) ≥ 0 to the

users n ∈ N , and this action consumes the amount w(k) of

energy. (Note that, in principle, a scheduling decision may

be such that several users transmit data simultaneously. The

situation where only one user is allowed to transmit at a time

is a special case.)

Let us denote by xn the average rate of flow n (i.e., the

average value of bn over time), and by x0 the average power

usage (that is the average value of w). Finally, the “utility” of

flow n is Hn(xn), where Hn(z), z ≥ 0, is a continuously differ-

entiable concave function. (For example, a common choice

of a utility function is Hn(z) = log z - in fact, it is used by the

standard scheduling algorithms in some commercial wireless

technologies [4]. See [8, 9] for a general rationale for using

concave utility functions of the traffic rates.) The problem is

to find a dynamic scheduling strategy which minimizes the

average power consumption, subject to some lower bound on

the aggregate utility. Namely, the problem is to

minimize x0 (3)

subject to∑
n∈N

Hn(xn) ≥ hmin, (4)

where hmin is a given constant.

The convex optimization problem underlying control

problem (3)–(4) is as follows:

max
x=(x0,x1,...,xN )∈V

−x0 (5)

subject to

−
∑
n∈N

Hn(xn) + hmin ≤ 0, (6)

where V ⊂ RN+1 is the region of all possible vectors of av-

erage rates x = (x0, x1, . . . , xN ) under all scheduling strate-

gies. The region V is a convex compact set, as explained later

in Section 6 (and in the previous work, cf. [13, 15]).

Although the underlying problem (5)–(6) looks fairly stan-

dard, the “standard” convex optimization algorithms (cf.

[2, 3, 5]) cannot be applied to devise a control strategy solv-

ing problem (3)–(4). One difficulty is that region V is not
given explicitly. In our case, for example, it depends on the

stationary distribution of the channel state process m(t) and

on the sets of available scheduling decisions in each state.

In typical wireless applications, none of this information is

known in advance and in fact may change over time. This es-

sentially precludes the use of scheduling algorithms utilizing

some kind of advance “off-line” optimization. Standard dy-

namic primal-dual algorithms (cf. [2, 5]) can not be applied

either, because—roughly speaking—they require that at ev-

ery step primal variables (average rates xn in our case) and

dual variables are changed in certain directions. Our model

however is such that in each time slot the base station has

to pick one of the scheduling decisions (with correspond-

ing bn’s and w) out of the finite number of instantaneously

available choices. A scheduling strategy which would at-

tempt to produce the desired short-term average traffic rates

(so that xn’s are moved in the desired direction) would again

require a priori knowledge of the stationary distribution of

the channel state process, and thus would be infeasible to

implement.

This difficulty (of V not being known explicitly) can be

overcome by the GPD algorithm of [15] as long as the addi-

tional explicit constraints (4) are linear, by introducing vir-

tual queues and mapping such constraints into the stability

requirements of the queues. (For example, Section 5.2 of

[15] gives an asymptotically optimal algorithm for maximiz-

ing aggregate utility
∑

n Hn(xn) subject to the average power

usage constraint x0 ≤ wmax). However, the constraint (4) on

the minimum utility is typically non-linear—that is why for

the problem (3)–(4) we need to apply the extended GPD al-

gorithm of this paper. An asymptotically optimal algorithm

for (3)–(4) will be given in Section 7.1.

Remark. The extended GPD algorithm (as defined in

Section 6.6) applies to the following more general model as

well. We can assume that the traffic sent to users n ∈ N has

to further go through (“be processed by”) a complex (time-

varying) network of (interdependent) nodes. The “processing

network” is then a queueing network of the type studied in

[15] and described in Section 6.6 of this paper. The more

general problem is to minimize average power usage by the

base station (or several base stations) subject to the con-

straint on the utility of the flows and the constraint that net-

work queues remain stable. The extension of the algorithm

given in Section 7.1 is straightforward. We do not consider

the more general problem here in order to focus attention

on the additional convex constraints in the simplest possible

scenario.
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3.2 Example 2

The second example is a system where multiple wireless data

users access a wireline communication network via access

points. Each user sends data flow that starts at one of the

access points, follows a fixed route through the wireline net-

work, and terminates at one of its nodes. The data rates of

the flows are not given in advance, but rather allocated to the

flows by the network. In particular, each access point con-

trols transmissions from “its” users and can utilize oppor-

tunistic scheduling (as discussed in Section 3.1). The goal

of the network is to maximize system utility, which is a con-

cave function of the flows’ average rates, under the constraint

that a “congestion cost” (say, average delay) along each flow

route stays below a predefined bound. As we will see, these

route congestion cost constraints are typically convex non-

linear, and thus solving the problem requires the extended

GPD algorithm of Section 6.

The formal model is as follows. There is a finite set N =
{1, . . . , N } of traffic sources, or wireless users, indexed by

n. There is a finite set I of wireless access points i , via

which users access a wireline network. (The opportunistic

scheduling model that governs how users transmit data to

access points will be described shortly.) The wireline network

consists of a finite set L of communication links, indexed by

�. Each user generates a traffic flow that goes through one

of the access points i ∈ I, follows a fixed route through the

wireline network, and terminates at one of its nodes; we use

notation R(n) for the set of links � traversed by flow n, and

notation R−1(�) for the set of flows traversing link �.

Let us denote by xn the average rate of flow n, and by

x (�) .= ∑
n∈R−1(�) xn the average rate of the total data flow

traversing link �.

Each link has corresponding “congestion cost” C�(x (�)),

where C�(z), z ≥ 0, is a non-decreasing convex continu-

ously differentiable function with C�(0) = 0. (For a general

discussion of such link cost functions see the comments ac-

companying expression (46) in [8], or Section 2 in [9].) To be

specific, suppose that congestion cost has the meaning of av-

erage packet (queueing) delay at the link, for example having

form C�(z) = a�

c�−z , where c� is the link (constant) capacity

and a� > 0 is a fixed parameter.

Finally, the “utility” of flow n is Hn(xn), where Hn(z), z ≥
0, is a continuously differentiable concave function. (Again,

see [8, 9] for a rationale for the utility function concavity

assumption.) The problem is to allocate average flow rates

x = (x1, . . . , xN ) in a way such that the total utility of all

flows is maximized subject to some pre-defined upper bounds

on the average packet delays along each route. Namely, the

control problem is to

maximize
∑

n

Hn(xn) (7)

subject to

Gn(x)
.=

∑
�∈R−1(n)

C�

(
x (�)

) − dn ≤ 0, n ∈ N . (8)

In other words, the problem is to maximize network utility

subject to (quality of service) constraints (8) defined in terms

of average end-to-end flow delays.

So far, we did not specify the model for how traffic is sent

over wireless links from users to their corresponding access

points. This model is same as the opportunistic scheduling

model described in Section 3.1, except we do not consider

power consumption (and the traffic is going from users to

access points, not vice versa); formally, the model is as fol-

lows. Denote by Ni the subset of users sending traffic via

access point i . (Given our assumptions, sets Ni for different

i do not intersect, and ∪iNi = N .) We assume that the time

is slotted, indexed by t = 0, 1, 2, . . . , and use slot duration

as the time unit. The state mi (t) of the wireless channel be-

tween access point i and the set Ni of “its” users follows

an independent irreducible aperiodic Markov chain with the

finite state space Mi . Each access point i ∈ I schedules data

transmissions of users in Ni independently of other access

points. When the channel state (of access point i) is mi ∈ Mi ,

the available scheduling decisions ki form a finite set Ki (mi ).

If access point i chooses decision ki ∈ Ki (mi ) in time slot t ,
then in this slot each node n ∈ Ni sends the amount of data

(number of bytes) bn(ki ) ≥ 0 to the access point.

The convex optimization problem underlying control

problem (7)–(8) is as follows:

max
x∈V

∑
n

Hn(xn) (9)

subject to

Gn(x) ≤ 0, n ∈ N , (10)

where V ⊂ RN is the region of all possible vectors of (long-

term) average rates at which flows can be transmitted (over

radio channels) to their corresponding access points. The

region V is a convex compact set.

Let us compare the control problem (7)–(8) with the ex-

tensively studied problem (originally posed in [8]) of maxi-

mizing network utility (7) subject to link capacity constraints

x (�) ≤ c�, � ∈ L. (11)

There are two substantial differences. First, the statement

of problem (7) and (11) usually assumes that traffic sources

are able to generate traffic at any rate at any time, inde-

pendently of each other. (Therefore, the convex optimiza-

tion problem underlying (7) and (11) is: maxx∈RN+

∑
n Hn(xn)
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subject to (11).) In our model, analogously to the model of

Section 3.1, the instantaneous rates at which sources can

transmit data are dependent on each other and on the random

state of the corresponding channel. Consequently, as already

discussed in Section 3.2, the region V in (9) is defined only

implicitly, which typically precludes the use of standard con-

vex optimization techniques for a dynamic control. (It is im-

portant to emphasize that the region V here defines implicit

constraints on joint average rates at which traffic can possi-

bly be injected by the sources into the network, before the

network link capacity constraints (11) or end-to-end delay

constraints (8).) If the constraints (8) would be linear, as they

are in (11), this difficulty can be resolved by using the GPD

algorithm of [15]. However, and this is the second difference

from the problem (7) and (11), the constraints (8) are convex

non-linear, which requires the extended GPD algorithm of

this paper. An asymptotically optimal distributed algorithm

for (7)–(8) will be given in Section 7.2.

4 Greedy primal-dual dynamic system

4.1 Optimization problem

Consider a convex compact subset V ⊂ RN of a finite-

dimensional space RN , N ≥ 1. (We will use notation

N .= {1, . . . , N } for the set of indices of vectors ξ =
(ξ1, . . . , ξN ) ∈ RN .) Assume that V ⊂ Ṽ , where Ṽ ⊆ RN

is open and convex, and we have a concave continuously

differentiable (“utility”) function H (v), v ∈ Ṽ .

Consider the following optimization problem:

max
v∈V

H (v) (12)

subject to

G j (v) ≤ 0, ∀ j ∈ J , (13)

where J ≡ {1, . . . , J } is a finite set of indices, and each

G j (v), v ∈ Ṽ , is a convex continuously differentiable func-

tion.

The problem (12)–(13) can be equivalently written as

max
v∈V cond

H (v),

where

V cond .= V ∩ {v ∈ Ṽ | G j (v) ≤ 0, ∀ j ∈ J }.

Clearly, V cond is a convex compact set, when non-empty.

Optimization problem (12)–(13) is feasible when

V cond �= ∅, (14)

in which case we denote by V ∗ ⊆ V the convex compact

subset of its optimal solutions. (If H is strictly concave, the

optimal solution is unique.) Also, we denote by Q∗ the con-

vex closed set of optimal solutions q∗ ∈ R J
+ to the following

convex optimization problem, dual to the problem (12)–(13):

min
y∈R J+

[
max
v∈V

(H (v) − y · G(v))

]
, (15)

where we used notation

G(v)
.= (G1(v), . . . , G J (v)).

Next, in Section 4.2, we define a dynamic system, which, as

we will show, “solves” problem (12)–(13) under the follow-

ing non-degeneracy assumption, which is slightly stronger

than (14):

V ∩ {v ∈ Ṽ | G j (v) < 0, ∀ j ∈ J } �= ∅. (16)

The dynamic system “solves” (12)–(13) in the sense that

(assuming (16)) its trajectories converge to the (saddle) set

V ∗ × Q∗.

Note that, under assumption (16), set Q∗ is compact. In-

deed, the optimal value of the problem (12)–(13) is

H (v∗) = max
v∈V

(H (v) − q∗ · G(v)) (17)

for any v∗ ∈ V ∗ and any q∗ ∈ Q∗. Set Q∗ must be bounded,

because otherwise, given condition (16), we could make the

RHS of (17) arbitrarily large by choosing q∗ ∈ Q∗ with large

norm ‖q∗‖.

4.2 Dynamic system definition

We define a trajectory of the greedy primal-dual dynamic
system, or GPD-trajectory, as a pair of absolutely continuous

functions (x, q) = ((x(t), t ≥ 0), (q(t), t ≥ 0)), with x(t)
taking values in RN and q(t) taking values in R J , satisfying

the following conditions:

(i) For all t ≥ 0,

x(t) ∈ Ṽ , (18)

and for almost all t ≥ 0,

x ′(t) = v(t) − x(t), (19)

where

v(t) ∈ arg max
v∈V

[
∇ H (x(t)) −

∑
j

q j (t)∇G j (x(t))

]
· v.

(20)
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(ii) We have

q(0) ≥ 0, (21)

q j (t) ≥ 0, ∀t ≥ 0, and q ′
j (t)= [G j (x(t))+∇G j (x(t))

·(v(t) − x(t))]+q j (t)
a.e. in t ≥ 0, j ∈ J . (22)

The above definition of GPD-trajectories is a generalization

of the corresponding definition in [15], which was restricted

to the case when all G j (·) were linear. (In fact, in [15], there

are exactly N constraint functions Gn(v) = vn , one for each

primal variable vn . However, extension to an arbitrary finite

set of linear constraint functions G j (·) is just a matter of

introducing new variables, as in (26) below.) The interpre-

tation of the dynamic system is analogous to that given in

Section 3.2 of [15]: functions x(t) and q(t) are “dynami-

cally changing” primal and dual variables, respectively, for

the problem (12)–(13). The term “greedy” refers to condi-

tion (20), which states that “control” v(t) is always chosen

within the “set of controls” V , so as to greedily maximize

∇x [H (x(t)) − ∑
j q j (t)G j (x(t))] · x ′(t), i.e., the partial time

derivative of the Lagrangian H (x(t)) − ∑
j q j (t)G j (x(t))

with respect to primal variables x(t) only. The queueing in-

terpretation given in [15] is basically also valid. The key

generalization is the expression for the derivative q ′
j (t) of

a dual variable (queue length) in (22). Assuming q j (t) > 0

for simplicity, the derivative q ′
j (t) is not G j (v(t)), but rather

the value at point v(t) of the first order (linear) approxima-

tion of function G j (·) about point x(t). Given the form (22)

of the derivatives of dual variables (queue lengths) q j (t),
an alternative interpretation of condition (20) is that control

v(t) always greedily maximizes the time derivative of func-

tion H (x(t)) − (1/2)
∑

j q2
j (t), with respect to both x(t) and

q(t). (See Lemma 1.)

4.3 Global attraction property of GPD-trajectories

The following theorem, showing that GPD-trajectories are

such that (x(t), q(t)) is attracted to the saddle set V ∗ × Q∗,

is the main result of this paper.

Theorem 1. Under the non-degeneracy condition (16), the
following holds.

(i) For any GPD-trajectory (x, q), as t → ∞,

x(t) → V ∗, (23)

q(t) → q∗ for some q∗ ∈ Q∗. (24)

(ii) Let compact subsets V � ⊂ Ṽ and Q� ⊂ R J
+ be fixed.

Then, the convergence

(x(t), q(t)) → V ∗ × Q∗ as t → ∞, (25)

of GPD-trajectories is uniform with respect to initial con-
ditions (x(0), q(0)) ∈ V � × Q�.

Theorem 1 is a generalization of Theorem 2 of [15] in that it

allows non-linear constraint functions G j (·). We note that, in
the case when all G j (·) are linear, our Theorem 1 is equiv-

alent to Theorem 2 of [15]. To see this, it is sufficient to

introduce new variables

vN+ j ≡ G j (v1, . . . , vN ), j = 1, . . . , J, (26)

replace set Ṽ with the extended set Ṽ ext = Ṽ × R J , extend

H in the natural way to be a function of v ∈ Ṽ ext, and replace

V with set

V ext = {v = (v1, . . . , vN , vN+1, . . . , vN+J )

|(v1, . . . , vN ) ∈ V } ⊂ Ṽ ext.

Then, the optimization problem (12)–(13) is equivalent to the

problem

max
v∈V ext

H (v) (27)

subject to

vN+ j ≤ 0, j = 1, . . . , J. (28)

It is easy to verify that vectors v∗ ∈ V ext and q∗ ∈ R J
+

are a pair of optimal solutions to the problem (27)–(28)

and its dual if and only if (v∗
1 , . . . , v

∗
N ) ∈ V ∗ and q∗ ∈ Q∗,

where V ∗ and Q∗ are the optimal sets for (12)–(13) and

its dual. However, problem (27)–(28) and its corresponding

GPD-trajectories are within the framework of Theorem 2

of [15], as shown in [15], Section 3.8.1. Since we have

the obvious one-to-one correspondence between GPD-

trajectories (as defined in this paper) for the problem (12)–

(13) (with all G j (·) linear) and GPD-trajectories (as defined

in [15]) for the problem (27)–(28), the desired equivalence is

established.

5 Proof of Theorem 1

The outline of this section is as follows. First, in Section 5.1,

we establish some basic properties of the family of GPD-

trajectories (including their existence), which hold regardless
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of conditions (14) and (16); we also make a simple observa-

tion (using function F defined in (31)) that, under condition

(16), trajectories (q(t), t ≥ 0) remain bounded. Section 5.2

contains the key proof of statement (i), outlined at the be-

ginning of that section. Given statement (i) of the theorem,

the proof of statement (ii) repeats the corresponding proof in

[15], with a minor adjustment specified in Section 5.3.

5.1 Basic properties of GPD-trajectories

Unless specified otherwise, throughout this Section 5.1 we

do not assume condition (14) (or condition (16)).

The following theorem summarizes basic properties of

GPD-trajectories, and is a generalization of Lemmas 12 and

13 of [15].

Theorem 2.

(i) For any x(0) ∈ Ṽ and any q(0) ∈ R J
+, there exists a

GPD-trajectory (x, q) having (x(0), q(0)) as initial con-
dition.

(ii) The set of GPD-trajectories (x, q) is such that, for arbi-
trary compact convex set V �, V ⊆ V � ⊂ Ṽ , uniformly
on x(0) ∈ V �, both x and q are Lipschitz continuous,
and in addition x(t) ∈ V � for all t ≥ 0.

(iii) The set of GPD-trajectories is closed (in the topology of
u.o.c. convergence).

(iv) Let compact sets V � ⊂ Ṽ and Q� ⊂ R J
+ be fixed. Then,

the set of the GPD-trajectories with x(0) ∈ V � and
q(0) = f (0) ∈ Q� is compact.

(v) If (x, q) is a GPD-trajectory, then, for any τ ≥ 0,
its shifted (to the left) version 	τ (x, q) is also a
GPD-trajectory. (Formally, [	τ (x, q)](t) = (x(τ + t),
q(τ + t)), t ≥ 0.)

Proof of Theorem 2 follows closely the development in

Section 3.6 of [15], with some adjustments, which we de-

scribe here.

Let us denote by L RN (0) the subset of CRN [0, ∞), consist-

ing of Lipschitz continuous functions f such that f (0) = 0

and f ′(t) ∈ V almost everywhere. We define operator A1,

as operator which takes ( f, x(0), q(0)) ∈ L RN (0) × Ṽ × R J
+

into A1( f, x(0), q(0)) = (x, q) ∈ CRN [0, ∞) × CR J+ [0, ∞).

The image function x is defined (the same way as

in [15]) as the unique solution of the differential

equation

x ′(t) = f ′(t) − x(t), t ≥ 0, a.e.,

with initial condition x(0). The components of function q ∈
CR J+ [0, ∞) are defined (more generally than in [15]) via q(0)

and the image function x as follows:

q j (t) = ψ j (t) −
[

0 ∧ inf
0≤ξ≤t

ψ j (ξ )

]
, t ≥ 0, j ∈ J , (29)

where

ψ j (t) = q j (0) +
∫ t

0

[G j (x(ξ ))+∇G j (x(ξ ))·( f ′(ξ )−x(ξ ))]dξ

= q j (0) +
∫ t

0

G j (x(ξ ))dξ + [G j (x(t)) − G j (x(0))].

Let us denote CṼ [0, ∞)
.= {x ∈ CRN [0, ∞) | x(t) ∈ Ṽ , t ≥

0}. We define multivalued operator A2, which takes (x, q) ∈
CṼ [0, ∞) × CR J+ [0, ∞) to the setA2(x, q) ⊆ L RN (0), as fol-

lows: function f ∈ A2(x, q) if and only if f ∈ L RN (0) and

f ′(t) ∈ arg max
v∈V

[
∇ H (x(t)) −

∑
j

q j (t)∇G j (x(t))

]
· v,

t ≥ 0, a.e..

Clearly, (x, q) is a GPD-trajectory if and only if

A1( f, x(0), q(0)) = (x, q) and f ∈ A2(x, q) for some f .

This in turn is equivalent to the existence of a fixed point

f of the operator A2A1( f, x(0), q(0)). Such fixed points

in fact exist, which is shown using Kakutani theorem,

analogously to the way it is done in [15]. This proves

statement (i).

Statements (ii)–(v) are proved completely analogously to

the proof of the corresponding statements of Lemmas 12–13

of [15]. In particular, the proof of (ii) relies in an essential

way on the fact that (by Proposition 1 in the Appendix), for

any GPD-trajectory (x, q),

ρ(x(t), V ) ≤ ρ(x(0), V )e−t , t ≥ 0, (30)

and x(t) for all t ≥ 0 is contained within the (compact) con-

vex hull of V ∪ {x(0)}. �

Let us call a time point t > 0 regular (for given GPD-

trajectory (x, q)) if proper derivatives x ′(t) and q ′(t) exist,

and conditions (19), (20), (22) hold for this t . Almost all t ≥ 0

are regular. To simplify notation, throughout the rest of this

entire Section 5 we adopt a convention that any expression

or statement involving any of the functions x ′(t), q ′(t), or

v(t), holds under the additional assumption that t is a regular

point, even if we do not state it explicitly.

Let us introduce the following function:

F(v, y) = H (v) − 1

2

∑
j∈J

y2
j , v ∈ Ṽ , y ∈ R J

+ . (31)
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Lemma 1. For any GPD-trajectory, at any (regular) t ≥ 0,

d

dt
F(x(t), q(t)) = ∇ H (x(t)) · (v(t) − x(t))

−
∑

j

q j (t)[G j (x(t)) + ∇G j (x(t)) · (v(t) − x(t))] (32)

and

v(t) ∈ arg max
v∈V

∇ H (x(t)) · (v − x(t)) −
∑

j

q j (t)[G j (x(t))

+ ∇G j (x(t)) · (v − x(t))]. (33)

(Expressions (32) and (33) imply that, given x(t) and q(t),
v(t) is a point in V maximizing (d/dt)F(x(t), q(t)).)

If, in addition, (14) holds (that is, V ∗ is non-empty), then
for any v∗ ∈ V ∗

d

dt
F(x(t), q(t)) ≥ ∇ H (x(t)) · (v∗ − x(t))

≥ H (v∗)−H (x(t)). (34)

Proof: Expression (32) follows directly from (19) and (22).

Inclusion (33) is equivalent to (20). The first inequality in (34)

follows from condition (33) and the fact that (by subgradient

inequality)

G j (x(t)) + ∇G j (x(t)) · (v∗ − x(t)) ≤ G j (v
∗) ≤ 0,

and the second one is again the subgradient inequality. �

Lemma 2. Under non-degeneracy condition (16), for any
compact V � ⊂ Ṽ and any compact Q� ⊂ R J

+, uniformly
on the GPD-trajectories with (x(0), q(0)) ∈ V � × Q�,

sup
t≥0

‖q(t)‖ < ∞.

Proof is essentially same as that of Lemma 4 in [15]. The

key point here is that, if we pick arbitrary v′ ∈ V such that

G j (v
′) < 0 for all j , we have (by (32)–(33))

d

dt
F(x(t), q(t)) ≥ ∇ H (x(t)) · (v′ − x(t))

−
∑

j

q j (t)[G j (x(t)) + ∇G j (x(t)) · (v′ − x(t))]

≥ ∇ H (x(t)) · (v′ − x(t)) −
∑

j

q j (t)G j (v
′),

and therefore, since x(t) stays within a compact set (by

Theorem 2(ii)), function F(x(t), q(t)) is strictly increasing

when ‖q(t)‖ is large. �

5.2 Proof of Theorem 1(i)

Throughout this Section 5.2, we always assume that non-

degeneracy condition (16) holds.

The outline of the proof is analogous to that given in

Section 3.5 of [15]. First, in Lemma 3 we give a characteri-

zation of optimal dual solutions q∗ ∈ Q∗, convenient for our

purposes. According to Lemma 1, “control” v(t) is always

chosen within the “set of controls” V so as to maximize the

derivative of F(x(t), q(t)). However, the key difficulty is that

F(x(t), q(t)) is not necessarily non-decreasing along a GPD-

trajectory. To overcome this, we introduce a different func-

tion F∗, defined in (37), which happens to be non-decreasing

as long as x(t) ∈ V . (Although x(t) ∈ V does not necessar-

ily hold, we know from (30) that x(t) converges to V , and

this convergence is fast. This, roughly speaking, “reduces”

our situation to the case x(t) ∈ V .) Using F∗ allows us to

prove in the key Lemma 6 the convergence of x(t) to a set

V max ⊆ V , which contains V ∗, and the convergence of q(t)
to some point within Q∗. (The proof of Lemma 6 is more in-

volved than the corresponding proof in [15]. In particular, we

need to consider additional component B4(t) of the derivative

of F∗(x(t), q(t)) and establish (43) to prove Lemma 6(v).)

In Lemma 7, using the fact that q(t) converges, we prove

that x(t) → R+
− , which implies x(t) → V cond = V ∩ RN

− .

Finally, in Lemma 8 we prove the convergence x(t) → V ∗,

using the fact that function F(x(t), q(t)) is non-decreasing

when x(t) → V cond.

Recall that, under condition (16), both optimal sets V ∗

and Q∗ are compact. By Kuhn-Tucker theorem, for any pair

of optimal primal and dual solutions, v∗ ∈ V ∗ and q∗ ∈ Q∗,

the complementary slackness condition holds:

q∗ · G(v∗) = 0. (35)

Note that there always exists v∗ ∈ V ∗ for which the subset of

j ∈ J with G j (v
∗) < 0 is the maximum possible; this subset

we denote by J (0) ⊆ J . Thus, a vector q∗ ∈ R J
+ satisfies the

complementary slackness condition (35) for all v∗ ∈ V ∗ if

and only if

q∗
j = 0 for j ∈ J (0). (36)

For an optimal point v∗ ∈ V ∗, let C∗(v∗) denote the nor-

mal cone to V at v∗. (It may have any dimension from

0 to N . A zero-dimensional cone is the one containing

the single vector 0 - this is the case when v∗ lies in the

interior of V .) We know that (v∗, q∗) ∈ V ∗ × Q∗ if and

only if (v∗, q∗) is a saddle point of the Lagrangian H (v) −
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y · G(v), v ∈ V , y ∈ R J
+, for the pair of primal problem

(12)–(13) and its dual (15). This implies the following prop-

erty, recorded here for future reference.

Lemma 3. Assume non-degeneracy condition (16). Then,
the following holds for any fixed v∗ ∈ V ∗. Vector q∗ ∈ Q∗ if
and only if q∗ ∈ R J

+, ∇ H (v∗) − ∑
j∈J q∗

j ∇G j (v
∗) ∈ C∗(v∗)

and the complementary slackness condition (35) (or, condi-
tion (36)) holds.

Let us fix arbitrary optimal dual solution q∗ ∈ Q∗, and asso-

ciate with it the following function

F∗(v, y) = H (v) − q∗ · G(v) − 1

2

∑
j∈J

(y j − q∗
j )2,

v ∈ Ṽ , y ∈ R J
+. (37)

As will be shown below in Lemmas 5 and 6, the func-

tion F∗(x(t), q(t)) is “asymptotically non-decreasing” along

GPD-trajectories. (If x(0) ∈ V , it is in fact non-decreasing.

See the remark following the proof of Lemma 6.) This prop-

erty makes it the key “tool” in proving Theorem 1(i).

We also denote

H∗(v)
.= H (v) − q∗ · G(v) ,

and so F∗(v, y) = H∗(v) − (1/2)
∑

n(yn − q∗
n )2. Function

H∗(v) is the Lagrangian H (v) − y · G(v) of the problem

(12)–(13), with the dual variable y equal to q∗ ∈ Q∗. This

implies that the convex compact set

V max .= arg max
v∈V

H∗(v)

contains all optimal solutions to the problem (12)–(13), i.e.

V ∗ ⊆ V max, and H∗(v∗) = H (v∗) for any v∗ ∈ V ∗. Within

V max, function H∗(v) is constant and therefore H (v) is linear.

(This is because if either H (·) or at least one of the functions

G j (·) with strictly positive q∗
j would not be linear within the

convex set V max, function H∗(v) could not be constant—in

fact could not be linear—on V max; recall that −H (·) and all

G j (·) are convex.) Then, by Proposition 2 (in Appendix),

∇ H (v) is constant within V max. For future reference, we

record these facts in the following lemma.

Lemma 4. For arbitrary fixed optimal dual solution q∗ ∈
Q∗ and its associated function H∗(·) and set V max, we have:

(i) V max ⊇ V ∗,

(ii) ∇ H (v) is constant within V max,

(iii) H∗(v∗) = H (v∗) for any v∗ ∈ V ∗.

Now we can proceed with the main part of the proof of

Theorem 1(i). From this point on in this Section 5.2 we con-

sider a fixed GPD-trajectory (x, q).

Lemma 5. Consider F∗(·, ·) associated with arbitrary q∗ ∈
Q∗. Then, for all (regular) t ≥ 0,

d

dt
F∗(x(t), q(t)) ≥ Y (x(t), q(t), v(t)) (38)

where, for v ∈ V ,

Y (x(t), q(t), v)

.= ∇ H (x(t)) · (v(t) − x(t))

−
[ ∑

j

q∗
j ∇G j (x(t))

]
· (v − x(t))

−
∑

j

(
q j (t) − q∗

j

)
[G j (x(t)) + ∇G j (x(t)) · (v − x(t))].

Consequently, for any (regular) t ≥ 0,

v(t) ∈ arg max
v∈V

Y (x(t), q(t), v). (39)

Proof: Inequality (38) is obtained by writing out the ex-

pression for d
dt F∗(x(t), q(t)), and observing that q j (t) =

0 implies −(q j (t) − q∗
j ) ≥ 0. Inclusion (39) follows from

the definition of a GPD-trajectory, because the term in

Y (x(t), q(t), v) involving v is[
∇ H (x(t)) −

∑
j

q j (t)∇G j (x(t))

]
· v. �

Lemma 6. Consider F∗(·, ·) associated with arbitrary fixed
q∗ ∈ Q∗. Let v∗ ∈ V ∗ be fixed and such that G j (v

∗) < 0 for
each j ∈ J (0). The following properties hold, as t → ∞.

(i) x(t) → V max. Consequently, by Lemma 4(i)–(ii),
∇ H (x(t)) → ∇ H (v∗).

(ii) q j (t) → 0 for every j ∈ J (0).
(iii) [∇ H (x(t)) − ∑

j q j (t)∇G j (x(t))] → C∗(v∗).
(iv) Both F∗(x(t), q(t)) and H∗(x(t)) converge (to

some constants). Consequently,
∑

n(qn(t) − q∗
n )2

= ‖q(t) − q∗‖2 converges.
(v) q(t) → q∗∗, for some fixed element q∗∗ ∈ Q∗.

Proof: All statements of the lemma will follow from the

representation of the lower bound Y (x(t), q(t), v(t)) of the
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derivative d
dt F∗(x(t), q(t)). Let us use the following notation:

W j = W j (x(t), v∗)

.= ∇G j (x(t)) · (v∗ − x(t)) − [G j (v
∗) − G j (x(t))].

By the subgradient inequality, for any j ∈ J and any t ≥ 0,

W j ≤ 0 and, moreover,

∇G j (x(t)) �= ∇G j (v
∗) implies W j < 0. (40)

(This is because W j = 0 implies that G j (·) is linear along

the segment L connecting points x(t) and v∗, which in turn

implies, by Proposition 2, that ∇G j (ξ ) is constant along L .)

Then, we can write:

Y (x(t), q(t), v(t))

= Y (x(t),q(t),v∗) + [Y (x(t),q(t),v(t))− Y (x(t),q(t),v∗)]

= ∇ H (x(t)) · (v∗ − x(t)) −
∑

j

q j (t)W j

−
∑

j

q∗
j [G j (v

∗) − G j (x(t))] −
∑

j

(q j (t) − q∗
j )G j (v

∗)

+ [Y (x(t), q(t), v(t)) − Y (x(t), q(t), v∗)]

= B1(t) + B2(t) + B3(t) + B4(t),

where

B1(t)=∇ H (x(t)) · (v∗ − x(t))−
∑

j

q∗
j [G j (v

∗) − G j (x(t))]

≥ H∗(v∗) − H∗(x(t)),

B2(t)=−
∑

j

(
q j (t) − q∗

j

)
G j (v

∗) =−
∑

j∈J (0)

q j (t)G j (v
∗) ≥ 0,

B3(t)=Y (x(t), q(t), v(t)) − Y (x(t), q(t), v∗)

=
[
∇ H (x(t)) −

∑
j

q j (t)∇G j (x(t))

]
· (v(t) − v∗) ≥ 0,

B4(t)=−
∑

j

q j (t)W j ≥ 0.

As in [15], we use further breakdown of B1(t), as follows.

We denote by x∗(t) the normal projection of x(t) onto V ;

namely, x∗(t) is the (unique) point of V which is the closest

to x(t). According to (30),

‖x(t) − x∗(t)‖ ≤ ‖x(0) − x∗(0)‖e−t , t ≥ 0.

We have

B1(t) ≥ H∗(v∗) − H∗(x(t)) = B11(t) + B12(t),

where B11(t) = H∗(v∗) − H∗(x∗(t)) ≥ 0 and B12(t) =
H∗(x∗(t)) − H∗(x(t)). For the function B12(t), t ≥ 0, the

following estimate holds for any pair 0 ≤ t1 ≤ t2 ≤ ∞:∫ t2

t1

|B12(s)|ds ≤
∫ t2

t1

C1‖x∗(s) − x(s)‖ds

≤ C1

∫ t2

t1

‖x∗(0) − x(0)‖e−sds

= C1‖x∗(0) − x(0)‖[e−t1 − e−t2 ]

≤ C1‖x∗(0) − x(0)‖ < ∞, (41)

where C1 > 0 is a uniform upper bound on ‖∇ H∗(x(s))‖
and ‖∇ H∗(x∗(s))‖ over all s ≥ 0. (For example, C1 can be

chosen as the maximum of ‖∇ H∗(ξ )‖ over all ξ in the convex

hull of V ∪ {x(0)}.)
Given the above representation of Y (x(t), q(t), v(t)), the

proof of statements (i)–(iii) essentially repeats the proof of

statements (i)–(iii) of Lemma 6 in [15], using functions

B11, B12, B2 and B3 (and the fact that B4 is non-negative).

For example, the estimate of B3(t) (in addition to its non-

negativity), takes the following form: for any ε1 > 0 there

exists sufficiently small ε2 > 0 such that

B3(t) ≥ ε2 as long as

ρ

([
∇ H (x(t))−

∑
j

q j (t)∇G j (x(t))

]
, C∗(v∗)

)
≥ ε1. (42)

(And the proof of (42) is same as that of its special case in

[15], with q(t) replaced by
∑

j q j (t)∇G j (x(t)).)

Proof of (iv): Convergence of H∗(x(t)) follows directly

from (i). Function F∗(x(t), q(t)) is absolutely contin-

uous (in fact—Lipschitz), bounded, and its derivative

(d/dt)F∗(x(t), q(t)) ≥ B12(t). The derivative lower bound

implies that F∗(x(t), q(t)) can be represented as a sum

of some non-decreasing function and the non-increasing

function

∫ t

0

[B12(s) ∧ 0]ds.

The latter function converges (by (41)), and then

F∗(x(t), q(t)) converges as well.

To prove (v), consider any limiting point (x∗∗, q∗∗) of

the trajectory (x(t), q(t)), t ≥ 0, which exists as t → ∞,

since the trajectory is bounded. We must have [∇ H (v∗) −
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∑
j q∗∗

j ∇G j (x∗∗)] ∈ C∗(v∗), by (i) and (iii). Using function

B4(t) and property (40), it is easy to observe that (x∗∗, q∗∗)

must be such that, for any j ∈ J ,

q∗∗
j ‖∇G j (x

∗∗) − ∇G j (v
∗)‖ = 0. (43)

(Otherwise, F∗(x(t), q(t)) would go to +∞.) This implies

that[
∇ H (v∗) −

∑
j

q∗∗
j ∇G j (v

∗)

]

=
[
∇ H (v∗) −

∑
j

q∗∗
j ∇G j (x

∗∗)

]
∈ C∗(v∗).

We also know that q∗∗
j = 0 for every j ∈ J (0), by (ii). There-

fore, by Lemma 3, q∗∗ ∈ Q∗. Note that properties (i)–(iv) of

this Lemma hold for any a priori fixed q∗ ∈ Q∗, including

q∗∗. Therefore, by (iv), ‖q(t) − q∗∗‖ converges, and it can

only converge to 0. �

Remark. As seen from the proof of Lemma 6, x(0) ∈
V implies that F∗(x(t), q(t)) is non-decreasing. Indeed,

in this case x(t) ∈ V for all t ≥ 0 and therefore B12(t) =
H∗(x∗(t)) − H∗(x(t)) ≡ 0. If x(0) �∈ V , function F∗(x(t),
q(t)) is still “asymptotically non-decreasing,” due to estimate

(41), as shown in the proof of Lemma 6(iv).

Lemma 7. The following property holds:

lim sup
t→∞

G j (x(t)) ≤ 0, j ∈ J .

Consequently, as t → ∞, x(t) → V max ∩ {G j (v) ≤ 0,

∀ j ∈ J }.

Proof: From (29), for any j ∈ J and any pair 0 ≤ t1 ≤ t2
< ∞, we have the inequality

q j (t2) − q j (t1) ≥
∫ t2

t1

G j (x(t))dt + [G j (x(t2)) − G j (x(t1))].

The rest of the proof is analogous to that of Lemma 7 in

[15]. �

Lemma 8. We have x(t) → V ∗ as t → ∞.

Proof: is analogous to that of Lemma 8 in [15]. �

The proof of Theorem 1(i) is complete.

5.3 Proof of Theorem 1(ii)

This proof repeats that of Theorem 2 in [15] virtually verba-

tim. (In two places in the proof of Lemma 16 in [15], RN
− has

to be replaced by {v ∈ RN | G j (v) ≤ 0, ∀ j ∈ J }.)

6 A dynamic resource allocation model

In this section we define and study a resource allocation

model such that each control action “generates” certain

amounts of commodities. The “utility” of the system (under a

given control strategy) is a concave function H of the average

rates at which commodities are generated. The problem is to

find a control strategy which maximizes utility subject to a

number of given convex constraints on the vector of average

commodity generation rates. In Sections 6.1–6.3 we intro-

duce the model and the optimization problem formally. We

define a dynamic control policy, called Greedy-Primal Dual

(GPD) algorithm, in Section 6.4. (This algorithm is a gen-

eralization of the GPD algorithm, introduced in [15], which

was applicable to the problem with linear constraints.) In

Section 6.5 we prove asymptotic optimality of the algo-

rithm (as one of its parameters approaches 0). Finally, in

Section 6.6, we present the extension of the GPD algorithm,

such that it (asymptotically) solves the above problem for the

more general network model of [15].

6.1 The model

We consider a system consisting of a finite set of nodes
N u = {1, 2, . . . , Nu}, Nu ≥ 1. (In the terminology of [15],

these are “utility” nodes.) The system operates in discrete

time t = 0, 1, 2, . . . as follows. (By convention, we will iden-

tify an integer time t with the unit time interval [t, t + 1),

which will sometimes be referred to as the time slot t .) The

system has a finite set of modes M . The sequence of modes

m(t), t = 0, 1, 2, . . . , forms an irreducible (finite) Markov

chain with stationary distribution {πm, m ∈ M}, where all

πm > 0 and
∑

πm = 1. (The mode process m(t) models the

underlying randomly changing system “environment,” and

is not affected by any network control.) When the network

mode is m ∈ M , a finite number of controls is available,

which form set K (m). (We denote by K
.= ∪m K (m) the fi-

nite set of all possible controls across all modes m ∈ M .)

When a control k ∈ K (m) is chosen at time t , each node

n ∈ N u generates an amount bn(k) of certain commodity.

We will denote b(k)
.= (b1(k), . . . , bNu (k)).

Informally, the problem we are going to address is as fol-

lows. Let x∗ = (x∗
1 , . . . , x∗

Nu
) denote the average value of

b(k(t)) under a given dynamic control policy. We would

like to find a dynamic control policy which maximizes some

concave utility function H (x∗), subject to the finite number
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of constraints

G j (x
∗) ≤ 0, j ∈ J , (44)

where all G j (·) are convex.

Remark. The problem we just (informally) described is more

general than that considered for the network control model in

[15], in that here we have additional—possibly non-linear—

constraints (44). However, the system model defined above

is a special case of that in [15]. In Section 6.6 we will show

that all results of this Section 6 in fact easily generalize for

the (more general) network model of [15].

6.2 System rate region

In this section we define the system rate region V ⊂ RNu ,

which is the set of all possible long-term average values of

vector b(k(t)), where k(t) is control chosen at time t . For-

mally, the definition is as follows.

Suppose, for each network mode m ∈ M , a probability

distribution φm = (φmk, k ∈ K (m)) is fixed, which means

that φmk ≥ 0 for all k ∈ K (m), and
∑

k∈K (m) φmk = 1. For

such a set of distributions φ
.= (φm, m ∈ M), consider the

following vector

v(φ) =
∑
m∈M

πm

∑
k∈K (m)

φmkb(k) .

If we interpret φmk as the long-term average fraction of time

slots when control k ∈ K (m) is chosen among the slots when

the network mode is m, then v(φ) is the corresponding vec-

tor of long-term average rates at which commodities are

generated. The system rate region V is defined as the set

of all possible vectors v(φ) corresponding to all possible

φ. Clearly, V is a convex compact (in fact—polyhedral)

subset of RNu , as a linear image of the compact polyhe-

dral set of all possible values of φ. Rate region V may

turn out to be degenerate (i.e., have dimension less than

Nu).

6.3 The underlying optimization problem

Let us denote by B ⊆ RNu the convex hull of the set

{b(k), k ∈ K }. (Clearly, B is convex compact and B ⊇ V .)

Suppose an open convex set Ṽ , V ⊆ B ⊂ Ṽ ⊆ RNu , is fixed.

Suppose a continuously differentiable concave utility
function H (v) is defined on Ṽ . Consider the following opti-

mization problem:

max
v∈V

H (v) (45)

subject to

G j (v) ≤ 0, j ∈ J , (46)

where J = {1, 2, . . . , J } is a finite set and each G j (·) is a

continuously differentiable convex function on Ṽ . Problem

(45)–(46) is feasible when

V ∩ {v ∈ Ṽ | G j (v) ≤ 0, ∀ j ∈ J } �= ∅, (47)

in which case we denote by V ∗ the compact convex set of

optimal solutions of (45)–(46), and by Q∗ ⊆ R J
+ the closed

convex set of optimal solutions to the problem dual to (45)–

(46).

We seek to find a dynamic control algorithm, such that,

when problem (45)–(46) is feasible, the corresponding aver-

age commodity rates x∗ ∈ V ∗.

In the next Section 6.4 we introduce an algorithm (called

GPD algorithm), which is (asymptotically) optimal in the

sense that it (asymptotically) achieves the goal described

above, under the following non-degeneracy assumption,

which is slightly stronger than feasibility condition (47):

V ∩ {v ∈ Ṽ | G j (v) < 0, ∀ j ∈ J } �= ∅. (48)

(Under (48), Q∗ is a compact set, as well as V ∗. See

Section 4.1.)

Remark. Non-degeneracy assumption (48), or even a weaker

feasibility assumption (47), are not needed for any of the re-

sults of this Section 6, which are concerned with system

dynamics under GPD algorithm. Assumption (48) is only

invoked to apply Theorem 1 (which says that the dynamic

system in fact converges to an optimal state), and thus estab-

lish asymptotic optimality of the GPD algorithm. (See the

beginning of Section 6.5.)

6.4 Greedy primal-dual algorithm

Consider the following control policy. (Recall that H (·) is

the utility function defined in Section 6.3.)

Greedy primal-dual (GPD) algorithm. At time t choose a
control

k(t) ∈ arg max
k∈K (m(t))

[
∇ H (X (t)) −

∑
j∈J

βQ j (t)∇G j (X (t))

]
· b(k),

(49)

where running average X (t) of the values of vector b(k(t))
for utility nodes is updated as follows:

X (t + 1) = (1 − β)X (t) + βb(k(t)), (50)
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with β > 0 being a (small) parameter, and where the “virtual
queue lengths” Q j (t), j ∈ J , are updated as follows:

Q j (t + 1) = [Q j (t) + G j (X (t))

+ ∇G j (X (t)) · (b(k(t)) − X (t))]+. (51)

The initial values X (0) ∈ Ṽ and Q j (0) ≥ 0, j ∈ J , are fixed
arbitrarily.

Remark. The initial condition X (0) ∈ Ṽ and the update rule

(50) imply (by induction) that X (t) ∈ Ṽ for all t ≥ 0. There-

fore, the (random) system evolution is well defined for all

t ≥ 0, because all the functions in (49) and (51) are well

defined.

We will use notation Q(t) = (Q1(t), . . . , Q J (t)). It fol-

lows from (51) that Q(t) ∈ R J
+ for all t .

6.5 Asymptotic optimality of GPD algorithm

The main result of this section (Theorem 3) is a generalization

of Theorem 3 in [15]. It shows that, as β ↓ 0, the “fluid-

scaled” processes {(X (t/β), t ≥ 0), (βQ(t/β), t ≥ 0)}
converge to a (generally speaking) random process

{(x(t), t ≥ 0), (q(t), t ≥ 0)} with sample paths being GPD-

trajectories (as defined in Section 4) for the optimization

problem (45)–(46). (This result, as well as all other results

of Section 6, does not use assumption (48), or even (47).)

But, according to Theorem 1, under the non-degeneracy as-

sumption (48), for all GPD-trajectories, as time t → ∞, we

have (x(t), q(t)) → V ∗ × Q∗, where V ∗ and Q∗ are the sets

of optimal solutions of the problem (45)–(46) and its dual,

respectively. In this sense, Theorems 3 and 1 demonstrate

asymptotic optimality of the GPD algorithm. (The proof of

Theorem 3 is a straightforward extension of that of Theorem

3 in [15], and will be omitted.)

Let us discuss what the asymptotic optimality of the

GPD algorithm means in terms of applications. Accord-

ing to the update rule (50), the value of X (t) is the ex-

ponentially weighted average of the past values of b(k(·)),
i.e.,

X (t) =
∞∑

i=0

β(1 − β)i b(k(t − i)). (52)

Due to simplicity of rule (50), such averaging is widely

used in many applications (for example, in wireless sys-

tems utilizing opportunistic scheduling—cf. [4, 14, 16]);

X (t) has roughly the meaning of the average of the values

of b(k(·)) within time interval [t − 1/β, t]. Then, the com-

bination of Theorems 3 and 1 means that commodity rates,

measured as average commodity values over 1/β-long time

intervals, converge (close to) their optimal values within a
time interval of the order of 1/β. (This point is discussed

in more detail and made precise in [14], where the “Gra-

dient” algorithm—a special case of GPD—is analized. We

note that, in our case, the avove statement is true as long

as initial values of Q j are bounded). In other words, under

the GPD algorithm, from any initial state (as long as Q j are

bounded), within time of the order of 1/β the system “makes

a transition” to an (almost) optimal regime in which aver-

age (over 1/β-long intervals) commodity rates are (close to)

optimal.

Depending on the time scales of the system, the average

rate X may in fact be a short-term average, or “instanta-

neous”, rate. Indeed, if the time slot is short, say 1.67 msec

(see [4]), and β = 1/600, then X represents roughly the av-

erage rate over a 1 sec interval. In the applications such

as opportunistic scheduling in wireless systems, it is typi-

cally infeasible for the “true instantaneous rate” (over each

scheduling slot) to be close to the optimal average rate, as

there is only a discrete set of available instantaneous rates

and, moreover, this set depends on the random state of the

radio channel. Therefore, in such applications the short-term

average rate X , as defined by (52), serves as a reasonable

notion of “instantaneous” rate.

6.5.1 Asymptotic regime: Fluid scaled processes

First, we need to define the asymptotic regime formally.

From this point on in the paper, we consider a sequence

of processes Sβ = (Xβ, Qβ, mβ), indexed by the value of

parameter β, with β ↓ 0 along a sequence B = {β j , j =
1, 2, . . .} such that β j > 0 for all j . The initial state Sβ(0) =
(Xβ(0), Qβ(0), mβ(0)) is fixed for each β ∈ B, and it sat-

isfies the conditions specified in the GPD algorithm defi-

nition in Section 6.4. (Here and below, the processes and

variables pertaining to a fixed parameter β will be sup-

plied the upper index β. Expression β ↓ 0 means that β

converges to 0 along the sequence B, unless otherwise

specified.)

The probability law of the Markov chain mβ(·) describing

the system mode process is same for each β.

Before we introduce fluid-scaled version of the pro-

cess (for each β ∈ B), we need to augment the definition

of the process itself. First, let us extend the definition of

Xβ(t) to continuous time t ∈ R+ by adopting the conven-

tion that Xβ(t) is constant within each time slot [l, l + 1).

We do analogous domain extension for Qβ(t). Thus, each

β, we consider the (continuous time) process (Xβ, Qβ),

where

Xβ = (Xβ(t), t ≥ 0), Qβ = (Qβ(t), t ≥ 0).
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For each β consider the following process (xβ, qβ), which is

a fluid-scaled version of (Xβ, Qβ):

xβ(t)
.= Xβ(t/β), (53)

qβ(t)
.= βQβ(t/β). (54)

Note that all component functions of (xβ, qβ) are piece-wise

constant, with the “time slot” of length β.

6.5.2 Fluid scaled processes converge to processes
concentrated on GPD-trajectories

We will view random processes (xβ, qβ) as processes with

realizations in the Skorohod space DRNu +J [0, ∞) of functions

with domain [0, ∞), taking values in RNu+J , which are right-

continuous and have left-limits. The Skorohod topology and

corresponding Borel σ -algebra on DRNu +J [0, ∞) are defined

in the usual way. (Cf. [6] for the definitions.)

Theorem 3. Consider the sequence of processes {(xβ, qβ)}
with β ↓ 0 along set B. Assume that (xβ(0), qβ(0)) →
(x(0), q(0)), where (x(0), q(0)) ∈ Ṽ × R J

+ is a fixed vector.
Then, the sequence {(xβ, qβ)} is relatively compact and any
weak limit of this sequence (i.e., a process obtained as a weak
limit of a subsequence of {(xβ, qβ)}) is a process with sam-
ple paths (x, q) being with probability 1 GPD-trajectories
(with initial state (x(0), q(0))) for the optimization problem
(45)–(46) (with N = N u, N = Nu).

As mentioned above, the proof of Theorem 3 is a straightfor-

ward generalization of that of Theorem 3 in [15].

6.6 A more general network model

As we mentioned earlier, all results of this Section 6 can

be easily extended for the case where the system model of

Section 6.1 is replaced by the more general queueing network

model of [15]. Next, we specify the more general network

model and the corresponding GPD algorithm. After that, we

explain how the asymptotic optimality of the generalized

algorithm is proved.

The network model of [15] is the model of Section 6.1

augmented as follows. In addition to the Nu “utility”

nodes forming set N u = {1, 2, . . . , Nu}, there are also Np

“processing” nodes forming set N p = {Nu + 1, . . . , N }.
Each processing node n ∈ N p has associated queue,

formed by customers waiting for processing (or service)

by the node. The corresponding queue length at time t
is denoted by Qn(t), n ∈ N p. (Recall that the variables

Q j (t) for j ∈ J we called “virtual” queue lengths.) If

control k ∈ K (m) is chosen at time t , associated with it

(in addition to the generated commodity amounts vector

b(k) = (b1(k), . . . , bNu (k))) is the following sequence of

actions (which occur in the order listed):

(a) each processing node n ∈ N p serves integer number

μn(k) ≥ 0 of customers from its queue (or the entire

queue n content, if it is less than μn(k)), which are then

randomly and independently routed to other process-

ing nodes (including possibly self) with probabilities

pn�(k), � ∈ N p,
∑

�∈N p pn�(k) ≤ 1, or leave the system

with probability 1 − ∑
�∈N p pn�(k);

(b) an integer number λn(k) ≥ 0 of exogenous customers ar-

rive into each processing node queue n ∈ N p.

We make a non-restrictive in most applications assump-

tion that if k ∈ K (m) is a control allowed in mode m, then

a “version” of this control, with μn(k) replaced by 0 for

any subset of processing queues, is also allowed.

The problem is to find a dynamic control policy which

maximizes the concave utility function H (x∗) (where x∗ is

the average value of b(k(t))), subject to the finite number of

convex constraints (44), and subject to the additional condi-
tion that the queues at the processing nodes remain stable,

that is (informally speaking) the processes Qn(t), t ≥ 0, for

all n ∈ N p remain bounded.

Let us use notation

b̄n(k)
.= λn(k) − μn(k)+

∑
�∈N p

μ�(k)p�n(k), n ∈ N p, k ∈ K .

The meaning of b̄n(k) is simple: this is the average increment

Qn(t + 1) − Qn(t) of the queue length at a processing node

n, that would be caused by control k at time t , assuming that
all processing node queues at time t are “large enough.”

We are now in position to define the (generalized) GPD

algorithm.

GPD algorithm. At time t choose a control

k(t) ∈ arg max
k∈K (m(t))

[
∇ H (X (t)) −

∑
j∈J

βQ j (t)∇G j (X (t))

]
· b(k)

−
∑

n∈N p

βQn(t)b̄n(k) , (55)

where β > 0 is a (small) parameter, X (t) is updated as in (50)
and “virtual queue lengths” Q j (t), j ∈ J , are updated as
in (51). The initial values X (0) ∈ Ṽ and Q j (0) ≥ 0, j ∈ J ,
are fixed arbitrarily.

Obviously, this algorithm is a generalization of the

algorithm defined in Section 6.4, in that it applies to a

more general model. The GPD algorithm (55) is also

more general than that defined in [15], in that it applies
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to a more general problem, allowing additional—possibly

non-linear—constraints (44).

The asymptotic optimality of the GPD algorithm (55),

under the appropriate non-degeneracy condition, which
combines (48) and the non-degeneracy condition in [15],

is proved analogously to the way it is done for its special

case (49). The rate region is defined exactly the same way as

for the model in [15]; and the analog of Theorem 3 is proved,

again, analogously to the proof of Theorem 3 in [15]. The key

circumstance here is that, although algorithm (55) applies to a

more general model, the corresponding underlying optimiza-
tion problem and the dynamic system arising in the asymp-
totic limit under the GPD algorithm (55), are still within
the framework of our Section 4, with N = N u ∪ N p. (As in

[15], the stability constraint for each queue n ∈ N p “trans-

lates” into a linear constraint in the underlying optimization

problem, and rescaled Qn “becomes” the dual variable cor-

responding to this constraint.) Thus, the analog of Theorem 3

for the GPD algorithm (55) along with Theorem 1 (exactly

as it is in Section 4) establish asymptotic optimality of the

algorithm.

7 Examples of Section 3: Solutions

7.1 Example 1

Base station maintains the average rate estimate Xn per each

user n ∈ N , and the single virtual queue length Q, corre-

sponding to constraint (4). Specialization of the GPD algo-

rithm to the problem (3)–(4) is such that the scheduling de-

cision k(t) in slot t is chosen according to the following rule:

k(t) ∈ arg max
k∈K (m(t))

−w(k) + βQ(t)
∑
n∈N

H ′
n(Xn(t))bn(k), (56)

and the Qn and Xn’s are updated as

Xn(t + 1) = βbn(k(t)) + (1 − β)Xn(t), (57)

Qn(t + 1) =
[

Q(t) −
∑
n∈N

[Hn(Xn(t)) + H ′
n(Xn(t))

× (bn(k(t)) − Xn(t))] + hmin

]+
, (58)

where β > 0 is a small parameter.

Our general results in Section 6 show that this algorithm

is close to optimal if β is small. Note that the base station

schedules wireless transmissions dynamically, based only on

the current state of the radio channel and a small number of

variables, updated according to very simple rules; it does

not need to know the stationary distribution of the channel

state, and it only needs to know the set of scheduling decision

available in the current state of the channel. Thus, the above

algorithm “solves” the underlying optimization problem (5)–

(6) without the explicit knowledge of the region V .

7.2 Example 2

7.2.1 Formal solution

Let us first describe the special case of the GPD algo-

rithm, which (asymptotically) solves the problem (7)–(8) of

Section 3.2, assuming that all the variables can be updated

in every time slot and are globally known. There are two

variables—average rate estimate Xn and virtual queue length

Qn—corresponding to each traffic source n. Then the algo-

rithm is such that the scheduling decision ki (t) by access

point i in slot t is chosen according to the following rule:

ki (t) ∈ arg max
ki ∈Ki (mi (t))

∑
n∈Ni

bn(ki )

[
H ′

n(Xn(t))

− β
∑

�∈R(n)

Q(�)(t)C ′
�(X (�)(t))

]
, (59)

and Xn and Qn are updated as

Xn(t + 1) = βbn(t) + (1 − β)Xn(t), (60)

Qn(t + 1) =
[

Qn(t) +
∑

�∈R(n)

[C�(X (�)(t)) + C ′
�(X (�)(t))

× (b(�)(t) − X (�)(t))] − dn

]+
, (61)

where, to simplify notation, we write bn(t) to mean bn(ki (t))
with the appropriate i (such that n ∈ Ni ), and denote

b(�)(t)
.=

∑
s∈R−1(�)

bs(t),

Q(�)(t)
.=

∑
s∈R−1(�)

Qs(t),

X (�)(t)
.=

∑
s∈R−1(�)

Xs(t).

Note that (60) implies

X (�)(t + 1) = βb(�)(t) + (1 − β)X (�)(t). (62)

Remark. We ignored the fact that each utility function C�(z)

is defined only for 0 ≤ z < c�, and not for all real z. This
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“difficulty” is not essential. First, given the setting of this

example, C�(z) does not need to be defined for negative z at

all. Second, we can always replace C� with a continuously

differentiable function coinciding with it in [0, z∗] and say

linear in [z∗, ∞). If we choose z∗ < c� to be sufficiently close

to c�, so that C�(z∗) is large enough, the optimal solutions of

the original and modified problems are the same.

7.2.2 Distributed implementation

The idea of a “distributed” implementation of the algorithm

is suggested by the form of expressions (59)–(62). Let us

rewrite them as follows:

ki (t) ∈ arg max
ki ∈Ki (mi (t))

∑
n∈Ni

bn(ki )[H ′
n(Xn(t)) − βW1,n(t)], (63)

Xn(t + 1) = βbn(t) + (1 − β)Xn(t), (64)

Qn(t + 1) = [
Qn(t) + W2,n(t) − dn

]+
, (65)

W1,n(t)
.=

∑
�∈R(n)

W (�)
1 (t), (66)

W2,n(t)
.=

∑
�∈R(n)

W (�)
2 (t), (67)

X (�)(t + 1) = βb(�)(t) + (1 − β)X (�)(t), (68)

W (�)
1 (t)

.= Q(�)(t)C ′
�

(
X (�)(t)

)
, (69)

W (�)
2 (t)

.= C�

(
X (�)(t)

) + C ′
�

(
X (�)(t)

)(
b(�)(t) − X (�)(t)

)
.

(70)

Then a distributed algorithm is as follows. Each access point i
“maintains” variables Xn , Qn , W1,n and W2,n for “its” sources

n. Each link � maintains variables X (�), b(�) and Q(�), which

in turn determine W (�)
1 and W (�)

2 . Clearly, for each source n,

the access point can update Xn by simply observing traffic

it transmits. However, the updates of Qn and W1,n depend

on the values of W (�)
1 and W (�)

2 on the links � ∈ R(n) along

the route of flow n. Similarly, while each link � can up-

date X (�) and b(�) by simply observing the aggregate amount

of traffic passing through the link, the updates of Q(�) re-

quire the knowledge of Qn for the flows feeding this link. A

“light-weight” mechanism for such an information exchange

between traffic sources and links can be, for example, as fol-

lows. Periodically, say every τ slots, τ ≥ 1, the access point

i sends a small high priority (“signaling”) message along the

route of each of its flows n. The message along flow n route

contains the current value of Qn , and also “data fields” W1,n

and W2,n initialized to 0. When a signaling message of flow

n passes through link �, the link, first, uses the value of Qn to

update its Q(�) and, second, increments fields W1,n and W2,n

by the current values of W (�)
1 and W (�)

2 , respectively. When

a signaling message reaches destination, it is sent back to

the source. When an access point i receives back a signaling

message for flow n, it takes the value of the field W1,n as the

new value of this variable, and it uses the field W2,n to update

Qn .

We will not provide further specifics or describe numerous

possible modifications of the mechanism described above,

because we believe they can be filled in by an interested

reader. We only note that the delays in updating variables,

depending in particular on the “update frequency” 1/τ , do
not “destroy” the asymptotic optimality of the algorithm, as
long as such delays are bounded—it is easy to see that the

dynamic system obtained by rescaling and taking the limit

as β → 0 is exactly the same as the dynamic system under

the original (delay free) algorithm (63)–(70).

We do want to emphasize the “distributed nature” of the

above algorithm. Indeed, traffic sources and access points

need not know the form of congestion cost functions along

the flow routes, or in fact the exact routes themselves. Access

points schedule wireless transmissions dynamically, based

on the current state of the radio channel to its users (along with

their corresponding variables Xn , W1,n , and utility functions

Hn). Wireline network links do not need to know the utility

functions of the flows, or congestion cost functions on the

other links. In fact, if the network design can assure that,

within each window of τ slots, each link receives exactly

one signaling message per each flow passing through the

link, the link does not need to maintain the list of flows it

currently serves; otherwise, the link can maintain some form

of such a list.

Appendix: Auxiliary elementary facts

The following Proposition 1 is Lemma 20 in [15]. Note that in

the differential inclusion (71) it is only required thatv(t) ∈ V .

(There are no other conditions on v(t).)

Proposition 1. Suppose V is a convex compact subset of
a finite-dimensional space RN . Suppose a vector-function
(x(t), t ≥ 0), taking values in RN , is absolutely continuous,
satisfying the following differential inclusion for almost all
t ≥ 0:

x ′(t) = v(t) − x(t), v(t) ∈ V . (71)

Then

(i) Both x(t) and the distance ρ(x(t), V ) are Lipschitz
continuous in [0, ∞);

Springer
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(ii) The distance ρ(x(t), V ) is non-increasing, and more-
over, for almost all t ≥ 0,

d

dt
ρ(x(t), V ) ≤ −ρ(x(t), V ) , (72)

which implies that

ρ(x(t), V ) ≤ ρ(x(0), V )e−t .

(iii) The entire trajectory (x(t), t ≥ 0) is contained within
the convex hull of V ∪ {x(0)}.

The following elementary fact is the Proposition 1 of [15].

Proposition 2. Suppose H (v) is a continuously differen-
tiable concave function with convex open domain Ṽ ⊆ RN ,
N ≥ 1, and let L be the line segment connecting two points
v(1), v(2) ∈ Ṽ . If H (v) has the same value along segment L,
then ∇ H (v(1)) = ∇ H (v(2)). (Consequently, if H (v) is linear
along L, then ∇ H (v) is the same for all v ∈ L).
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