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High Data Rate (HDR) technology has recently been proposed as an overlay to CDMA
as a means of providing packet data service to mobile users. In this paper, we study various
scheduling algorithms for a mixture of real-time and non-real-time data over HDR/CDMA
and compare their performance. We study the performance with respect to packet delays
and also average throughput, where we use a token based mechanism to give minimum
throughput guarantees. We find that a rule which we call the exponential rule performs
well with regard to both these criteria. (In a companion paper, we show that this rule
is throughput-optimal, i.e., it makes the queues stable if it is feasible to do so with any
other scheduling rule.) Our main conclusion is that intelligent scheduling algorithms in
conjunction with token based rate control provide an efficient framework for supporting
a mixture of real-time and non-real-time data applications in a single carrier.

1. INTRODUCTION

There has been rapid growth of wireless telephony in the past few years. In conjunction
with the explosive growth of the Internet, this has led to an increasing demand for wireless
data services. In response to this demand, various mechanisms have been proposed to
support data traffic over wireless telephony services. One of the proposed schemes to
provide high-speed downstream data access over CDMA is High Date Rate (HDR, see
[2]).

In this paper, we wish to address the following problems, namely,

(i) How can multiple real-time data users be supported simultaneously with good qual-
ity of service (QoS) for all users, namely, with packet delays not exceeding given
thresholds with high probability.
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(ii) How can a mizture of real-time and non-real-time users be supported simultaneously
with real-time users receiving their desired QoS and non-real-time users receiving
the maximum possible throughput without compromising the QoS requirements of
real-time users.

Wireless scheduling has two peculiarities which distinguish it from conventional wireline
scheduling. These are

(i) The channel here is not perfect and is subject to errors. This causes bursts of errors
to occur during which packets cannot be successfully transmitted on link. The
implication of this is that good scheduling algorithms need to be channel quality
(state) dependent.

(ii) Channel state varies randomly in time on both slow and fast time scale.

(a) Fast channel variations (due to fast fading) are such that states of different
channels can asynchronously switch from “good” to “bad” within a few milliseconds
and vice-versa. A good scheduling algorithm should take advantage of this by giving
some preference to a user whose channel is currently good.

(b) Slow channel variation means that the average channel state condition de-
pends on user location and interference level. Therefore some users inherently de-
mand more air-interface resources than others, even if their data rate requirement
is the same.

The study in this paper compares various wireless scheduling algorithms which explicitly
use the above information. Our model and the form of QoS for real-time users are essen-
tially same as those in [1], where the Modified Largest Weighted Delay First (M-LWDF)
rule was proposed and studied. The most important contribution of this paper is the
detailed study of the Exponential rule and the gains achieved by the use of this algorithm.
(In [12], we also formally show that the exponential rule is throughput-optimal, in the sense
that it makes the queues stable if it is feasible to do so with any other scheduling rule.)
We also study means by which users can be guaranteed a minimum throughput, namely
employing virtual token queues for this purpose. Guaranteed minimum throughput is a
QoS notion appropriate for non-real-time users.

1.1. Related Work

In [16], optimal scheduling for a wireless system consisting on N queues and a single
server is studied. The arrival process to each queue are assumed to be and i.i.d. Bernoulli
processes. The channel perceived by each queue is also assumed to be an i.i.d. Bernoulli
process. The authors show that the policy which minimizes the total number of packets
in the system in a stochastic ordering sense is the one which serves the longest queue.
However, if the channels are correlated (as is the case in Rayleigh fading channels), then
it is clear that a channel state independent policy like this one will perform badly.

In [13], the authors study the problem of scheduling multiple real-time streams with
deadlines, over a shared channel. The channel is considered to be ON-OFF. It is observed
that a channel state dependent version of the earliest deadline date (EDD) policy is
not always optimal in the sense of minimizing the number of packets lost due to deadline



expiry. However, for most values of the channel parameters that are of practical interest, it
is shown that the modified-EDD is optimal. Recent work in [18] study a dynamic program
approach to downlink scheduling, where for various amounts of channel information, the
authors characterize policies which maximize a discounted cost using a dynamic program.

The authors in [3] study the effect of the wireless link on the performance of trans-
port protocols such as TCP for various scheduling protocols using a simulation-based
approach. They conclude that a channel-state dependent scheduler can lead to significant
improvement in channel utilization for typical wireless LAN configurations. This idea is
further explored in [7] in the context of fair queueing.

The rest of this paper is as follows. In Section 2, we describe the system model and
discuss the simulation parameters. We then describe various scheduling algorithms (in
Section 2.1) under consideration and the performance metrics (in Section 2.3) that are
used. Finally, in Section 3, we present the simulation results and discuss them.

2. DESCRIPTION OF THE MODEL

A very attractive feature of HDR is that it enables the use of efficient scheduling
algorithms. In this section, we describe the CDMA-HDR system model, and describe
various algorithms used for scheduling data flows. Two measures of the merit of these
algorithms are packet delay distributions and throughput. We discuss these measures
and describe a means of ensuring quality of service (QoS) guarantees in conjunction with
these measures.

We study a single cell CDMA system with HDR (see [2]). HDR is a downlink packet-
data service which occupies a single carrier of a CDMA system. Transmissions for different
users are time multiplexed, i.e., data is transmitted to one user at a time at the full power
available at the base-station. The cell serves N mobile users, each receiving a data flow?.
The base-station contains N queues, each corresponding to a different data flow, and an
associated scheduler. The scheduling decisions are made once every “time-slot”, which is
as in HDR, 1.667 m sec.

As mentioned before, all users share a common channel. However, the quality (i.e., the
fading level) of the channel seen by different users is different, and changes asynchronously
in time. The channel model in our simulation is as follows. Using typical HDR and cell
parameters, and using a conservative analysis as in [2], we can derive the average fade
level distribution for a typical mobile in a cell. Using this distribution, we pick 14 users,
and find the corresponding average data rate to each user as in Table 1. Each entry
corresponds to the mean data rate received by the corresponding user if the base-station
dedicated all transmission time to that user. Then, we assume that the channels are
Rayleigh fading with the mean being that chosen above. We next note that HDR does
not support arbitrary transmission rates. In our simulations, we assume that the actual
set of available rates is 2°*9.6 kbps, ¢ = 0,1,2,...3. The actual transmission rate is
chosen to be the largest available rate such that ﬁ—g is satisfied. We denote the actual
maximum rate that the channel can support over a slot as the state of the channel at
that slot. Finally, in our simulations, we assume that the speed of the mobiles are 6 mph.

2This means that the packets of each flow must be delivered in order.
3The exact rate set in HDR is given in [2].



Table 1
Mean throughput supported by the Rayleigh fading channels.
| User Number | “Mean” Rate (f; in kbps) |

1 398.72
2 397.14
3 397.14
4 384.91
3 360.88
6 342.00
7 276.01
8 241.43
9 232.18
10 220.60
11 191.24
12 154.27
13 150.72
14 137.80

This corresponds to a doppler frequency of 8 Hz, roughly characterizing how “fast” the
variations of the channel quality are.

The scheduler makes a decision to serve a particular queue at the beginning of every
time slot. This decision could depend on packet delays and channel states. We assume
that the scheduler has (current or delayed) channel state information and also the head
of line (HOL) packet delays. Once a decision has been made, the chosen queue is serviced
in the slot at the rate corresponding to the state of its channel.

In the simulations, we assume that N = 14. Each of these users require an average rate
of 28.8 kbps. This corresponds to the typical rate required for streaming audio over the
Internet. The arrival processes to each of the queues are Bernoulli processes with a mean
rate of 28.8kbps, with a packet size being 128 bytes (corresponding to a HDR packet).
Real-time users like streaming audio will indeed generate a smooth traffic, and hence, a
Bernoulli model seems reasonable for such traffic. On the other hand, in our study, a
non-real-time or a very bursty traffic is modeled by its “worst case”, an infinite amount
of data to send.

2.1. Scheduling Algorithms

The scheduling algorithms under consideration are the FIFO rule, maximum rate rule
(MAX-RATE), the modified largest weighted delay first rule (M-LWDF), the proportion-
ally fair rule (PROP-FAIR), and the exponential rule (EXP).
Let us define

1;(t) to be the state of the channel of user i at time t, i.e., the actual rate supported
by the channel. This rate is constant over one slot.

[1; to be the rate corresponding to the mean fading level of user 7 as in Table 1.



W;(t) to be the amount of time the HOL packet of user i has spent at the base-
station.

The FIFO discipline schedules the user whose HOL packet has spent the longest time
at the base-station. Formally, we schedule at time ¢, the user

j = argmaxW;(t)
2

This policy is oblivious to the channel state, and as can be expected, performs very
poorly. In the results presented in Section 3, we do not include the performance of this
policy because for typical loads supported by other policies, this policy renders the system
unstable.

The maximum rate rule schedules the user whose channel can support the largest data
rate over the next slot, i.e.,

j = argmaxpu;(t)
(2

This clearly requires channel state information. We study the case where the exact channel
state is known and also the case when only delayed channel state information is available.

The modified largest weighted delay first (M-LWDF) rule has been proposed in [1]. For
any arbitrary set of 7; > 0, the rule is given by

Jj = argmax~y; p;(t) Wi(t)

It has been proven in [1] that this rule is throughput optimal. (A policy is said to be
throughput-optimal if it satisfies the property that it renders the queues at the base-
station stable if any other rule can do so. In other words, it has the largest stable
admission region.) It was also demonstrated by simulation that a “good” choice of ~; is
given by v; = %, where a; > 0,7 =1,..., N, are suitable weights, which characterize the
desired QoS. This rule tries to balance the weighted delays of packets and also tries to
utilize the channels in a good manner.

The proportionally fair rule (PROP-FAIR) has been proposed for HDR (see [17,8]).
As the name suggests, this rule attempts a “proportionally fair” allocation of rates to
different users. We consider a version of this rule, given by
J = argmax ,u,__(t) (1)

L 3
Remark. The above rule (1) is not the “true” proportionally fair rule as in [17,8]. The
true proportionally fair rule is given by

,Uz~ (t) 2)
Hi

where fi; is the mean rate actually given to user i, and measured over a certain (relatively
long) “sliding window” (see [17,8]). In the case when all users have infinite amount of
data to send to (and all users have the same model of channel variations but with different
average levels, as in our simulations), the rules (1) and (2) are approximately equivalent.
We choose the version (1) for our simulations, because in the case of data flows arriving

J = argmax
(2



at finite rates, for some users we have fi; = A; (i.e. the entire flow “goes through”) no
matter how good their average channel condition is; as a result, for those users, fi; is not
a good measure of the actual “amount of the air interface resource” allocated to them.

We note that the PROP-FAIR rule (any version!) does not account for delays of packets
and can result in poor delay performance (see Section 2.3). Further, it can be easily shown
that this rule is not throughput-optimal.

Study of the ezponential rule, briefly introduced as a heuristics in [1], is in the center
of this work, so it is discussed in more detail in the next Section.

2.2. The Exponential Rule
Let us fix any set of positive constants 7; > 0 and a; > 0, ¢ = 1,2,... N. Then, the
exponential rule is given by

X LT
where aW = % > aiWi(t).

2.2.1. Intuition

For “reasonable” values of y; and a; (this issue is discussed in Section 2.2.3), this policy
tries to equalize the weighted delays a;W;(t) of all the queues when their differences are
large. As we can see, if one of the queues would have a larger (weighted) delay than
the others by more than order VaW , then the exponent term becomes very large and
overrides channel considerations (as long as its channel can support a non-zero rate),
hence leading to that queue getting priority. (We note that the aW term in the exponent
can be dropped without changing the rule as it is common for all queues. This is present
only to emphasize the motivation for this rule.) On the other hand, for small weighted
delay differences (i.e., less than order VaW ), the exponential term is close to 1 and the
policy becomes the proportionally fair rule. Hence, this policy gracefully adapts from a
proportionally fair one to one which balances delays. The factor 1 in the denominator of
the rule is present simply to prevent the exponent from blowing up when the weighted
delays are small. We discuss the merits of this rule in greater detail in Section 3.

2.2.2. Throughput-Optimality

In our companion paper [12], we prove that the exponential rule is throughput optimal.
(We remind, this means that it renders the queues at the base station stable if any other
rule can do so.) The assumptions on the channel and arrival processes are quite general.
We assume that the aggregate channel process (including states of all individual channels),
is Markovian with a finite number of states. Note that the individual channels need not
be independent. The aggregate input process is assumed to be an ergodic (discrete time)
Markov chain.

The proof of the throughput-optimality uses fluid limit technique [10,5,4,14,6], along
with a separation of time-scales argument. We refer reader to [12] for the details.

2.2.3. Choice of Parameters
As in M-LWDF, the choice of +; is given by v; = % The values of a;,4 = 1... N,
determine the tradeoff between reducing weighted delays and being proportionally fair



when delays are small. The QoS requirement would be of the form
Pr (WI > Tl) < 5,

where W; is delay encountered by a typical packet of user 7, T; is the maximum delay that
user i can tolerate (measured in slots) and ¢; is the largest probability with which the
system is allowed to violate the delay requirement. For the system we are interested in, a
typical requirement would be a violation probability of 10~2 corresponding to a maximum
delay of the order of a second. As play-out buffers for streaming audio over the Internet
are sufficiently large, the above values are a reasonable requirement.

A rule of thumb for choosing a; which works in practise is a; = _1%,(5"). This rule is
suggested by large deviation optimality results of [15]. We note that ‘the performance
of the rule is robust with respect to moderate changes of 7T; and ¢§;. Simulation results
exploring this aspect are available in [11].

2.3. Performance Metrics

In this section, we discuss the performance metrics we employ to evaluate the scheduling
algorithms. These are the delay criterion and the average throughput. One or the other
is more important depending on the type of the traffic.

For real-time traffic, a good measure of performance is the delays packets incur at the
base-station. We assume for simplicity that all users need the same delay QoS, i.e., they
all have the same 7; and ;. A good scheduling algorithm should keep all delays below
T; with high probability, which is achieved roughly when the delays are kept close for
all users. In the setup we study, the worst user (the mobile with the worst channel)
has the average channel quality much worse than the best one. From Table 1, the best
user can support a mean rate of 398.72 kbps (if it would be the only user of the cell)
while the worst one supports only 137.8 kbps. However, we want to support 14 users
simultaneously, each with a mean rate 28.8 kbps, leading to a total rate of 403.2 kbps.
A naive scheduling algorithm which does not depend on the channel state will find it
impossible to achieve this objective. However, a smart algorithm which favors users with
relatively good channels would hopefully be able to achieve this objective.

If a system with real-time users only is stable, then clearly, the long term throughput
is simply the arrival rate. As we remarked earlier, the M-LWDF and the EXP rule are
optimal in this regard, i.e., they can support the largest set of available rates. The proofs
of this can be seen in [1,12]. Finally, we comment that scheduling algorithms which keep
the delays of all the users about the same and keep them all reasonably small are superior
to those which may have better delay tails for one of the users but have very bad delays
for other users.

Another important measure is the long term throughput available to each of the queues.
For non-real time data, this is the main measure of interest. We would like to give
minimum throughput guarantees to these users.

Suppose we have a mixture of coexisting real-time and non-real-time users in the cell.
In this case, we want to serve all the real-time users with low flow delays and provide
minimum rate guarantees to non-real-time users. Moreover, we want leftover capacity to
be allocated to non-real-time users in a proportionally fair manner. We show that this
can be accomplished using token based versions of our scheduling schemes.



2.4. Token Queues for Minimum Throughput Guarantees

The M-LWDF and EXP rules, as they described above, make scheduling decisions based
on the actual packet delays (in addition to the channel conditions). If providing a certain
minimum throughput to a flow is a goal, those rules can be modified as follows. Suppose,
associated with each user, there is a wirtual token queue into which tokens arrive at a
constant rate r;, the desired throughput of user i. (Le., a counter representing the token
queue is incremented by 7;At at regular time points, At time units apart.) Let us define
Vi(t) to be the delay of the head of line token in the user i token queue. Note that we
do not need to actually maintain the token delays. As the arrival rates of tokens are
constant, V;(t) = Q;'—@, where Q;(t) is token queue length (a counter value) at time ¢.

Then, we use the M-LWDF and EXP rules with W;(¢) being replaced by V;(t). After
the service of a (real) queue, the number of tokens in the corresponding token queue is
reduced by the actual amount of data transmitted. (“Pathological” cases are treated as
follows. If a user is scheduled, and does not have enough packets to send, the token queue
is depleted by the amount as if it had enough data to send. If user should be scheduled,
but has no data to send, its token queue is depleted by the corresponding amount, and
scheduler chooses the “second best” queue to serve, and so on. If a token queue is shorter
than the number of tokens that needs to be removed, it is set to 0.) To increase the
algorithm’s robustness, for real-time users, we will set the token rates to be slightly larger
(by 2%) than the desired throughput.

A token queue is similar to a leaky bucket regulator followed by a real queue based
scheduler. However, there are some differences. With a good scheduling algorithm, a
token queue mechanism can allow a user to utilize more than the required minimum rate
if all the token queues are small. Such an effect is possible with leaky bucket regulators
if the regulator marks packets as high and low priority and the scheduling algorithm
operates on the high priority queue lengths and packet delays. However, this could lead
to out sequence delivery for the low priority packets. This would not be so with the token
queue mechanism.

3. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulation results for the system described in the previous
section. As described earlier, we consider a CDMA/HDR cell with 14 users. The chan-
nels are Rayleigh fading, which have been implemented using Jakes’s implementation of
Clarke’s fading model.

3.1. Real Queue based Scheduling

In Figure 1, we plot the delay distribution tails for the best and worst users(i.e., users 1
and 14 in Table 1). The arrival process to each queue is a Bernoulli process with a mean
rate of 28.8 kbps. We assume that the scheduler has knowledge of the current state of the
channel. We observe that for the best user, the MAX-RATE rule provides the best delay
distribution tails. However, for the worst user, the queue becomes unstable, leading to
Pr(W; > d) =1 for all d > 0. This can be understood from the fact that at each slot, this
algorithm schedules the queue whose channel can support the maximum rate. Therefore,
most of the time, this leads to the user corresponding to the better channel utilizing a
slot whenever it has packets. However, this greedy scheme leads to suboptimal utilization
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Figure 1. Real queue based scheduling. Data rate: 28.8 kbps per user. Delay tails of the
best and worst users are plotted. The scheduler has exact channel knowledge.

of the system? leading to instability for users with poorer channels.

As can be observed from these plots, the exponential rule leads to the best perfor-
mance, keeping the delays of the best and worst users close, as well as providing the best
performance among all the stable algorithms. On the other hand, as mentioned earlier,
the PROP-FAIR rule does not lead good delay performance, with the performance being
an order of magnitude worse than the EXP rule at the desired QoS. Qualitatively similar
results hold true even when only delayed channel information is available to the scheduler
(see [11]).

3.2. Token Queues Based Scheduling for a Mixture of Real-Time and Non-
Real-Time Users

We next study the case when we have both real-time and non-real-time users. A non-
real-time user is modeled as a user sending at rate much greater than 28.8 kbps. Token
queues are used to guarantee a minimum throughput of 28.8 kbps to all users, real-time
as well as non-real-time. In this section, we do not study the MAX RATE algorithm.
This is because even with real-time users only, the algorithm made queues unstable as
seen from Figure 1.

In Figures 2 and 3, we study the throughput and delays for a system consisting of 14
users. User 1 is a non-real-time user, sending packets at a rate of 288 kbps. The queue
corresponding to user 1 is back-logged all the time, hence, the delays of the best and worst
real-time users are plotted, i.e., users 2 and 14 respectively.

We note that all three algorithms achieve the desired minimum throughput. However,
the EXP and the PROP FAIR rules allocate a larger rate than M-LWDF for the non-
real-time user, without compromising the stability of real-time users’ queues. Meanwhile,
the QoS of the real-time users (delay performance) is much better for the EXP rule as

Tt follows from the analysis in [1] that this scheme is not throughput-optimal.
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Figure 3. Token Queue based scheduling. Data rate: 28.8 kbps per user. User 1 has
infinite backlog. The delay distribution tails of users 2 and 14 are plotted.

compared to the other rules. This observation can be explained by the fact that when
token queues are small, the EXP rule is basically the same as the PROP FAIR rule.
However, when delays start becoming unbalanced, the exponential term balances the
delays. Further simulation results for other systems (see [11]) also bear out our previous
observations. These results indicate that we can indeed support 14 users with the required
rates and hence, as discussed in Section 2.3, supporting more than any single users’ average

channel throughput!



4. CONCLUSIONS

In this paper, we have compared various scheduling algorithms to support a mixture of
real-time and non-real-time data in CDMA/HDR. We defined two performance metrics,
namely, packet delays and guaranteed throughput. Throughput guarantees were imple-
mented using a token queue mechanism. With respect to either these measures we found
that the EXP rule performs the best among the algorithms considered. We also investi-
gated the robustness of the EXP rule to the choice of its parameters. Our results show
that an intelligent scheduling algorithm, in conjunction with a token queue mechanism
allows us to support a mixture of real-time and non-real-time data over HDR with high
efficiency.
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