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1. Introduction

Multicast sessions are expected to be a common form of traffic in emerging
mobile ad hoc networks (MANETs). However, the recently developed theory
for fair resource allocation in MANETs (Lin & Shroff 2004; Eryilmaz &
Srikant 2005, 2006; Neely et al. 2005; Stolyar 2005, 2006) addresses only the case
of unicast flows. Other than developing appropriate notation, it is somewhat
straightforward to extend the theory to multicast sessions if one assumes that
data are delivered to all the receivers in a multicast group at the same rate.
Such a form of multicast is called single-rate multicast. On the other hand, there
are many video applications that allow layered transmission so that different
receivers can subscribe to different numbers of layers and receive different
qualities of the same video, depending on the congestion level in their respective
neighbourhoods. Moreover, in wireless networks, due to varying signal strengths
at different receivers, it may neither be desirable nor feasible to deliver data at
the same rate to all the receivers in a multicast group. Thus, it is important to
extend the optimization-based theory to handle multi-rate multicast sessions, i.e.
multicast sessions where different receivers are allowed to receive at different
rates. Such an extension is not immediate as in the case of single-rate multicast
and is the main subject of this paper. We note that the multi-rate multicast
problem has been considered in the context of wired networks (Kar et al. 2002;
Deb & Srikant 2004; Srikant 2004; Kar & Tassiulas 2006). However, those
approaches cannot be directly applied to wireless networks.
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For ease of exposition, we first present results for the single-rate multicast
sessions. We then extend the results to multi-rate multicast sessions. The
key idea is to introduce the concept of ‘shadow traffic’ generated by the
receivers and ‘moving back’ to the sources, and the corresponding ‘shadow’
(token) queues. The movement of shadow traffic in the reverse direction then
determines the real traffic generation (at the sources) and its movement through
the network. Scheduling of the shadow traffic in the network is carried out by a
back-pressure-type algorithm (Tassiulas & Ephremides 1992); however, this
is a non-standard back-pressure algorithm. Finally, we prove that our
proposed mechanism to control the real traffic using the shadow traffic is
asymptotically optimal.
2. Single-rate multicast

(a ) Network model

We consider a time-slotted, multi-hop wireless network that is modelled as a
graph GZðN ;LÞ where N is the set of nodes and L is the set of directed links. If
a link ðn;mÞ is in L, then it is possible to send packets from node n to node m up
to a finite capacity cnm and subject to the interference constraints. The
interference constraints are specified in terms of maximal subsets of nodes, which
can be scheduled simultaneously. These maximal subsets can be specified quite
generally as we will see later. Moreover, we assume that when node n sends a
packet to node m, each node k such that ðn; kÞ2L also hears that packet and
can choose to receive it or not. This assumption models the broadcast nature of
the wireless medium. We do not consider fading, but we can easily incorporate
channel variations in wireless networks in our framework.

Let us consider both types of traffic in the network: unicast and multicast.
Unicast traffic is represented by a set of unicast flows; each flow enters the
network at its begin node and exits the network at its end node. Multicast traffic
is represented by a set of multicast sessions; each session has a source node and a
set of destination nodes. We assume that each multicast session has a given
directed multicast tree, where the root of the tree is the source node of the
multicast session and all destination nodes belong to the tree. For now, let us also
assume that all receivers of a single multicast session have to be served at the
same data rate (single-rate multicast). We will address multi-rate multicast later.

Let F be the set of unicast flows and S be the set of multicast sessions.
For each flow f 2F ; let bf ; ef and xf denote the begin node, the end node and

the rate of flow f, respectively. Let D be the set of end nodes for unicast traffic, i.e.
DZfd 2N : dZef for some f 2Fg: For each multicast session s2S; let
TðsÞ be the corresponding multicast tree, rðsÞ be the root of TðsÞ (which is also
the source node of the multicast session) and ~T ðsÞ be the subgraph of TðsÞ
obtained by removing all the leaf nodes. For each node n2 ~T ðsÞnfrðsÞg, let
psðnÞ denote the preceding node (parent node) of n in TðsÞ and CsðnÞ denote the
set of succeeding nodes (children nodes) of n in TðsÞ:

We assume that all sources are continuously backlogged. Each node maintains
a single queue for those unicast flows that have the same destination, and a
separate queue for each multicast session going through it. Let qdn ½t� denote the
Phil. Trans. R. Soc. A (2008)
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length of the queue at node n and containing packets from unicast flows that are
destined to node d at time t. Similarly, let qsn½t� denote the length of the queue
maintained at node n for multicast session s at time t.

Owing to the broadcast nature of the wireless medium, when node n sends out
a packet, every node k such that ðn; kÞ2L also hears it. If that packet is a
unicast one directed to node m, then the other nodes simply ignore it. Otherwise,
if that packet is a multicast packet for multicast session s, then all nodes in CsðnÞ
will receive it. At this point, let us define md

n;m to be the long-term average
transmission rate from node n to node m allocated to destination d 2D and ms

n

to be the long-term average transmission rate from node n to all nodes in CsðnÞ
allocated to multicast session s. Also, let mn denote the service rate at node n, i.e.

mnZ
D X

d2D

X
m:ðn;mÞ2L

md
n;m C

X
s:n2 ~TðsÞ

ms
n:

We now present the objective and various constraints in the optimization
formulation of the resource allocation problem.

—Objective: max
P

f2FUf ðxf ÞC
P

s2S ~Usð~xsÞ where xf and ~xs are the arrival
rates of flow f and session s, respectively, and Uf ð,Þ and ~Usð,Þ are the
associated utility functions for flow f and session s, respectively. All utility
functions are assumed to be non-negative, increasing and concave. For the
single-rate multicast sessions, the utility is defined with respect to the
transmitter and not with respect to each receiver.

—Constraints on the unicast traffic at each node:cd 2D;cn2N ; nsd;

X
f2F

xfIfnZbf ;dZef g C
X

k:ðk;nÞ2L
md
k;n%

X
m:ðn;mÞ2L

md
n;m:

This constraint is simply a flow-conservation constraint at each node.
—Constraints on the multicast traffic at each node:

~xs%ms
rðsÞ; cs2S;

ms
psðnÞ%ms

n; cs2S; cn2 ~TðsÞnfrðsÞg:

—Let GZ g1;.;gjGj� �
denote a collection of vectors in the jN j-dimensional non-

negative real space, representing the possible set of link rates that can be achieved
in a given time slot. The network can choose among one of these vectors in G at
each time instant. For example, if g1 is the chosen set of link rates at a particular
time instant, then g1ðlÞ; the l -th component of this vector, denotes the number of
packets that can be transferred over link l at that time instant. We assume that
zero is always a possible link rate on each link. Also, let ĜZ

D CHfGg denote the
convex hull of the set G. It is well known that by time sharing between different
rate vectors in G, any point in Ĝ can be attained. Then, the long-term service rate
vector m has to satisfy the interference constraint: m2 Ĝ; i.e. there exists a

faigjGjiZ1 such that
PjGj

iZ1 ai%1 and mZ
PjGj

iZ1 aig
i:
Phil. Trans. R. Soc. A (2008)



L. Bui et al.2062
(b ) Optimization problem and Lagrangian decomposition

Putting all the above elements of the model together, we have the following
optimization problem:

max
X
f2F

Uf ðxf ÞC
X
s2S

~Usð~xsÞ; ð2:1Þ

subject to
X
f2F

xfIfnZbf ;dZef gCmd
w;n%md

n;w; cd2D; cn2N ; nsd; ð2:2Þ

~xs%ms
rðsÞ; cs2S; ð2:3Þ

ms
psðnÞ%ms

n; cs2S; cn2 ~TðsÞ n frðsÞg; ð2:4Þ

m2 Ĝ; ð2:5Þ
where

md
w;nZ

O X
k:ðk;nÞ2L

md
k;n;m

d
n;wZ

O X
m:ðn;mÞ2L

md
n;m:

At this point, let us define the capacity region, L; of the network as the set
of flow rates ðx; ~xÞR0 for which there exists a set mR0 that satisfies the
constraints (2.2)–(2.5). Then, the above optimization problem is equivalent to
the problem maxðx;~xÞ2L

P
f2FUf ðxf ÞC

P
s2S ~Usð~xsÞ. Owing to the concavity of

Uf ð,Þ and ~U sð,Þ and the convexity of the capacity region L there exists a
solution to this problem.

We rewrite the problem using Lagrange multipliers

max
X
f2F

Uf ðxf ÞC
X
s2S

~Usð~xsÞK
X
f2F

l
ef
bf
xf C

X
d2D

X
n2N :nsd

ldn Kmd
w;nCmd

n;w

� �
K
X
s2S

lsrðsÞ~xsC
X
s2S

lsrðsÞm
s
rðsÞC

X
s2S

X
n2 ~T ðsÞnfrðsÞg

lsn Kms
psðnÞCms

n

� �
subject to m2 Ĝ;

where l
ef
bf
; ldn; l

s
rðsÞ and lsn are the Lagrange multipliers corresponding to constraint

(2.2)–(2.4), respectively. For notational completeness, let lddZ0; and lsmZ0 if m is
a leaf of TðsÞ: When the vector of l’s is specified, the above Lagrangian form of the
optimization naturally decomposes into the following two problems.The congestion
control problem

max
x;~x

X
f2F

Uf ðxf ÞK
X
f2F

l
ef
bf
xf C

X
s2S

~Usð~xsÞK
X
s2S

lsrðsÞ~xs; ð2:6Þ

and the routing and scheduling problem

max
m

X
d2D

X
n2N

ldn Kmd
w;nCmd

n;w

� �
C
X
s2S

lsms
rðsÞC

X
s2S

X
n2~TðsÞnfrðsÞg

lsn Kms
psðnÞCms

n

� �

Zmax
X
d2D

X
ðn;mÞ2L

md
n;m ldnKldm
� �

C
X
s2S

X
n2~TðsÞ

ms
n lsnK

X
m2CsðnÞ

lsm

0
@

1
A;

subject to m2 Ĝ:

ð2:7Þ
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2063Optimal resource allocation for multicast
The goal is to find a dynamic algorithm to compute the Lagrange multipliers.
We describe such an algorithm in §2c.
(c ) Joint congestion control and scheduling algorithm

(i) Congestion controller

At the beginning of time slot t, each flow, say f, and each session, say s, have
access to the queue length of their first nodes, i.e. q

ef
bf
½t� and qsrðsÞ½t�: Then,

motivated by (2.6), the instantaneous mean data rates xf ½t� of flow f and ~xs½t� of
session s are set as follows:

xf ½t�Z arg max
0%x%M

Uf ðxÞK
q
ef
bf
½t�

K
x

 !
; ð2:8Þ

~xs½t�Z arg max
0%x%M

~UsðxÞK
qsrðsÞ½t�
K

x

� �
; ð2:9Þ

whereM, which is chosen to be large enough, represents the largest possible value
of the incoming rates. The positive constant K will be used to guarantee
convergence of the achieved rates to the fair allocation. In particular, we are
interested in the performance of the system for large K.

Each source has to convert the instantaneous mean data rate determined by the
congestion controller into a packet injection rate.While the instantaneous rate could
be a non-negative real number, the number of packets injected into the network has
to be a non-negative integer that could be determined by some complicated
mechanism that converts rates to packets. Instead of precisely modelling this
conversion, at each time slot t, the number of arrivals for flow f (session s) is assumed
to be a Poisson random variable with mean xf (~xs). This assumption can be easily
relaxed in a number of ways without affecting our main conclusions.
(ii) Back-pressure scheduler

At time slot t, for each node n, we define the unicast differential backlog for
destination node d as wd

n ½t�Zmaxm:ðn;mÞ2L qdn ½t�Kqdm½t�
� �

; and the multicast

differential backlog for session s as ws
n½t�Z qsn½t�K

P
m2CsðnÞq

s
m½t�

� �
: The weight of

node n at time slot t is defined as

wn½t�Zmax max
d2D

wd
n ½t�; max

s:n2~TðsÞ
ws
n½t�

( )
: ð2:10Þ

Then, motivated by (2.7), the service rate vector x½t� is chosen from G so that
it satisfies

x½t�2 arg max
p2G

X
n2N

wn½t�pn: ð2:11Þ

At node n, the commodity (unicast flow or multicast session) whose differential
backlog achieves the maximum in 2.10 will be served at rate xn½t�: That
commodity can be a unicast traffic destined to the destination d over link ðn;mÞ
Phil. Trans. R. Soc. A (2008)
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or a multicast traffic for session s. The rest of the queues at node n are not served
at time slot t. We note that the back-pressure scheduler was originally developed
in Tassiulas & Ephremides (1992) for the case of inelastic flows.
(d ) Performance analysis

In this section, we present a result characterizing the performance of the joint
congestion control and scheduling mechanism described in §2c.

To describe the evolution of the queues in the network, we adopt the following
convention: the arrivals to a queue in a time slot are not available for service
until the next time slot. If packets traverse from one queue to the next, then the
arrivals to the second queue are equal to the number of departures from the first
queue in the previous time slot. Thus, the evolution of queue lengths is governed
by the following rules.

For each n2N and d 2D;

qdn ½tC1�Z qdn ½t �Kxdn;w½t �
� �C

Cndw;n½t �C
X
f2F

af ½t �IfnZbf ;dZef g; ð2:12Þ

and, similarly, for each s2S and n2 ~T ðsÞ;
qsn½tC1�Z qsn½t �Kxsn½t �ð ÞCC ~as½t �IfnZrðsÞg CnspsðnÞ½t �IfnsrðsÞg; ð2:13Þ

where ndw;n½t � is the number of packets for destination d that are routed to node n
from other nodes and nspsðnÞ½t � is the number of packets for session s that arrive at
node n from the preceding node psðnÞ during time instant t. Also, af ½t � and ~as½t �
are the numbers of exogenous arrivals of flow f and session s, respectively. Note
that, in general, ndw;n½t �%xdw;n½t � and nspsðnÞ½t �%xspsðnÞ½t �; where

xdw;nZ
D X

k:ðk;nÞ2L
xdk;n; x

d
n;wZ

D X
m:ðn;mÞ2L

xdn;m:

Hence, xf ½t �ZE½af ½t �� and ~xs½t �ZE½~as½t ��. Then, we have the following proposition
to establish the performance of the algorithm.

Proposition 2.1. Under the joint congestion control and scheduling algorithm
described in §2c, the queues in the network are stable (i.e. the Markov chain of
queue occupancies is positive recurrent), and the source rates satisfy

X
f2F

Uf ð�xf ÞC
X
s2S

~U sð�~xsÞR
X
f2F

Uf x-
f

� �
C
X
s2S

~Us ~x-s
� �

K
B

K
;

where

�xf Z lim
T/N

1

T

XTK1

tZ0

E½xf ½t ��; �~xs Z lim
T/N

1

T

XTK1

tZ0

E½~xs½t ��;

ðx-; ~x-Þ is an optimal solution to (2.1) and B!N is some constant.

Proof. The proof is similar to the proofs in Stolyar (2005), Neely et al. (2005)
and Eryilmaz & Srikant (2006) and, hence, is omitted. &
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Figure 1. An example multi-rate multicast tree. The service rate offered at node 2 (which is m2) is
at least the maximum among rates offered by its succeeding nodes, i.e. m2Rmaxfm3;m4g. Similar
situations occur for nodes 3 and 4.

2065Optimal resource allocation for multicast
Hence, by tuning the parameter K, the algorithm can achieve a network utility
that is arbitrarily close to optimal, while stabilizing the network queues.

We note that the algorithm (2.8)–(2.13) looks very similar to a dual algorithm
to solve the optimization problem (2.1)–(2.5). However, there is a crucial
difference: in (2.12) and (2.13), if one were to implement the dual algorithm from
optimization theory, then ndw;n½t � and nspsðnÞ½t � have to be replaced by xdw;n½t � and
xspsðnÞ½t �; respectively. Thus, one cannot directly appeal to convergence results
from optimization theory even if the arrival processes are assumed to be
deterministic. However, the results in Stolyar (2005), Neely et al. (2005)
and Eryilmaz & Srikant (2006) account for these differences from the dual
algorithm and are applicable quite generally even with stochastic arrivals and
channel variations.
3. Multi-rate multicast

In this section, we address the multi-rate multicast problem. In particular, we
allow the receivers of a multicast session to be served at different rates. Recall
that due to the broadcast assumption, whenever node n sends out a multicast
packet for a multicast session s, all nodes in CsðnÞ will receive it. If a node is
allowed to drop some packets before relaying the remaining packets along
the multicast tree, then multi-rate multicast becomes feasible. To facilitate
multi-rate multicast, each node has to offer the service rate that is at least the
maximum among rates offered by its succeeding nodes (see figure 1 for an
example of a multi-rate multicast tree). This leads to a totally different set of
constraints compared with those in the case of single-rate multicast, as we will
see shortly.

At this point, we have to introduce more notation. For each multicast
session s, let DðsÞ be the set of the destination nodes of s. Also, for each
destination node d 2DðsÞ; let ~xds denote the average rate at which session s’s
traffic reaches d and Ud;sð~xds Þ be the utility function associated with it. Again,
Phil. Trans. R. Soc. A (2008)
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we assume that the utility functions are non-negative, increasing and concave.
The objective of the resource allocation problem is to solve the following
optimization problem:

max
X
f2F

Uf ðxf ÞC
X
s2S

X
d2DðsÞ

~Ud;s ~xds
� �

;

subject to
X
f2F

xfIfnZbf ;dZef gCmd
w;n%md

n;w; cd 2D; cn2N ; nsd; ð3:1Þ

~xds%ms
psðdÞ; cs2S; cd 2DðsÞ; ð3:2Þ

ms
n%ms

psðnÞ; cs2S; cn2 ~TðsÞnfrðsÞg; ð3:3Þ

m2 Ĝ: ð3:4Þ
Note that the constraints on unicast traffic (3.1) and the interference constraint
(3.4) are the same as in the case of single-rate multicast. On the other hand, the
constraints on multicast traffic (3.2) and (3.3) are different, due to the fact that
each node has to offer the service rate that is at least the maximum among rates
offered by its succeeding nodes. These constraints are somewhat problematic and
necessitate a fresh look at solving the utility maximization problem for networks
with the multi-rate multicast flows. To understand the source of difficulty, note
that the constraints indicate that the data rate into a node (ms

psðnÞ) should be

greater than or equal to the data rate exiting that node (ms
n). Clearly, such a

condition would not be desirable for queue-length stability if we were to maintain a
queue at node n with arrival rate ms

psðnÞ and departure rate ms
n: For this reason, we

will introduce a fictitious queue called a shadow queue that operates in the reverse
direction, i.e. it pretends to store packets from multicast destinations to the source.
The above constraints will ensure the stability of the shadow queues. The contents
of the shadow queues will be used as tokens to inject traffic in the forward direction.

Let us define the capacity region, U, of the network as the set of flow rates
ðx; ~xÞR0 for which there exists a set mR0 that satisfies the constraints (3.1)–
(3.4). Similar to the case of single rate, we can rewrite the optimization problem
using Lagrange multipliers and decompose the Lagrangian form into the
following two problems. The congestion control problem

max
x

X
f2F

Uf ðxf ÞK
X
f2F

l
ef
bf
xf C

X
s2S

X
d2DðsÞ

~Ud;sð~xds ÞK
X
s2S

X
d2DðsÞ

lsd~x
d
s ; ð3:5Þ

and the routing and scheduling problem

max
X
d2D

X
ðn;mÞ2L

md
n;m ldnKldm
� �

C
X
s2S

X
n2~TðsÞ

ms
n

X
m2CsðnÞ

lsmKlsn

0
@

1
A;

subject to m2 Ĝ;

ð3:6Þ

where l
ef
bf
, ldn, l

d
s and lsn are the Lagrange multipliers corresponding to constraint

(3.1)–(3.3), respectively. For notational convenience, let lddZ0 and lsrðsÞZ0:

Again, our goal is to design a dynamic algorithm to compute the Lagrange
multipliers.
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(a ) Shadow algorithm for multi-rate multicast

In this section, we present an algorithm to solve the above optimization
problem. Since the service rates of the destinations in a multicast session are
different, we cannot directly apply the congestion control algorithm that adjusts
only the source node’s rate, as in the case of single-rate multicast. Instead, in this
case, the congestion control problem (3.5) suggests that the rate control should
be handled at each receiver of each multicast session. We introduce a shadow
joint congestion control and scheduling algorithm for this purpose. In the shadow
algorithm, one pretends the direction of the traffic is from the multicast receivers
to the source. Each node maintains a shadow queue that contains fictitious
packets as though traffic is moving in the reverse direction, from destinations to
sources of multicast flows. When a packet moves from a shadow queue to the
next, then this packet is interpreted as a token to send a packet in the forward
direction, which is the true direction. If time is slotted, one can easily implement
such a mechanism by using a small fraction at the beginning (or end) of the slot
to exchange shadow queue lengths, which is used for the updates of shadow
queue lengths. The movement of shadow packets is determined by running a
back-pressure algorithm on the shadow queues for the multicast flows and real
queues for the unicast flows.

Note that these concepts of shadow queues and shadow traffic can be used for
both multicast and unicast. However, for a resource allocation point of view, we
do not need to deploy it for unicast (except for the reason of reducing delay,
which we will discuss later in §4b). Therefore, let us just consider the case where
shadow traffic is used only for multicast and real traffic for unicast traffic.

We now describe the shadow joint congestion control and scheduling algorithm.
Suppose that n is a node that belongs to multicast tree TðsÞ of session s and CsðnÞ
is the set of succeeding nodes of n in TðsÞ: The shadow traffic will move from
all nodes inCsðnÞ to node n. Let ~qms denote the shadow queue length for session s at
node m. The source node rðsÞ; which is the destination for shadow traffic, has the
shadow queue length always equal to zero. The shadow algorithm consists of the
following parts.
(i) The congestion control algorithm ( for unicast traffic)

At the beginning of time slot t, each flow f injects traffic into its corresponding
entrance queue q

ef
bf

according to the following data rates:

xf ½t �Z arg max
0%x%M

Uf ðxÞK
q
ef
bf
½t �
K

x

 !
:

(ii) The shadow congestion control algorithm (for multicast traffic)

At the beginning of time slot t, for each session s, each destination node
d 2DðsÞ injects shadow traffic into its corresponding ‘entrance’ shadow queue ~qsd
according to the following data rates:

~xds ½t �Z arg max
0%x%M

Ud;sðxÞK
~qsd ½t �
K

x

� �
:
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As in the case of single-rate multicast, we will denote the number of shadow
packets generated at destination d of session s at time t by ~ads ½t �; where ~ads ½t � is a
Poisson random variable with mean ~xds ½t �:

(iii) The shadow back-pressure scheduling algorithm

The back-pressure algorithm is run jointly for the shadow multicast traffic and
the real unicast traffic. In particular, at time slot t, for each node n, we define the
unicast differential backlog for destination node d as wd

n ½t �Zmaxm:ðn;mÞ2L
qdn ½t �Kqdm½t �
� �

, and the shadow multicast differential backlog for session s as

ws
n½t �Z

P
m2CsðnÞ~q

s
m½t �K~qsn½t �

� �
. The weight of node n at time slot t is defined as

wn½t �Zmax max
d2D

wd
n ½t �; max

s:n2~TðsÞ
ws
n½t �

( )
: ð3:7Þ

Then, the service rate vector x½t � is chosen from G such that

x½t �2 arg max
p2G

X
n2N

wn½t �pn: ð3:8Þ

At node n, the commodity whose differential backlog achieves the maximum in
(3.7) will be served at rate xn½t �: That commodity can be real unicast traffic
destined to destination d over link ðn;mÞ or shadow multicast traffic for session s.
The rest of the queues at node n are not served at time slot t.

Since the maximization in (3.8) may have many solutions, we assume that
those solutions are indexed and scheduler always chooses the least index solution.

Note that the real unicast traffic is served at node n as usual. However, if, for
example, k shadow packets of session s are served at node n in the links between
CsðnÞ and n, then each shadow queue ~qsm of each node m2CsðnÞ is reduced by
minfk; ~qsmg, and shadow queue qsn is increased by minfk;maxm2CsðnÞ~q

s
mg. In other

words, all queues ~qsm, m2CsðnÞ are served simultaneously, but the number of
shadow packets arriving to ~qsn is the maximum of what was served from each
shadow input.

(iv) Transform the shadow multicast traffic to the real multicast traffic

At any time slot, each node will try to send the same amount of real packets as
the number of shadow packets that it virtually received at that time slot.
However, the actual number of packets sent could be fewer because the node may
not have enough real packets to send. Let nsn½t � denote the number of shadow
packets of session s that node n virtually receives at time t and qsn½t � denote the
queue length for session s’s real packets at node n at time t. Then, the actual
number of real packets sent by node n at time t is minfnsn½t �; qsn½t �g:

Similarly, at any time slot, each node will receive the same number of real
packets as the number of shadow packets that it virtually sent at that time slot.
For example, suppose that, in a given slot, k shadow packets of session s are
moved from CsðnÞ to n, but node m ðm2CsðnÞÞ sends only k 0 ðk 0!kÞ shadow
packets to n (this can happen due to the manner in which shadow traffic is served
as described above). Then, node n will send k real packets of flow s to each node
in CsðnÞ in that time slot, but node m only accepts k 0 real packets and drops the
rest kKk 0. Also, when k shadow packets arrive at source node rðsÞ, the source
will inject k ‘new’ real packets to the multicast tree TðsÞ:
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We have that, for a given session s and a given node n2TðsÞ, the update rule
of the shadow queue (~qsn½t �) is as follows:

~qsn½tC1�Z ~qsn½t �KxspsðnÞ½t �
� �C

Cmax ~ans ½t �Ifn2DðsÞg; n
s
n½t �

� �
; ð3:9Þ

where ~ads ½t � is the number of exogenous shadow arrivals of session s at destination
d 2DðsÞ; xsn½t � is the amount of shadow packets that are scheduled to be served
over links between CsðnÞ and n (defined in (3.8)); and nsn½t � is the amount
of shadow packets that are actually served over links between CsðnÞ and n.
Note that

nsn½t �Zmin xsn½t �; max
m2CsðnÞ

~qsm

	 

:

In equation (3.9), the number of packets that the shadow queue ~qsn receives at
time t is max f~ans ½t �Ifn2DðsÞg; n

s
n½t �g since we allow the case when some

destinations are not leaves of the tree. Also, the number of packets that the
shadow queue ~qns sends at time t is min f~qsn½t �; xspsðnÞ½t �g. Therefore, the update
rule for the real queue (qsn½t �) is as follows:

qsn½tC1�Z qsn½t �Kmax ~ans ½t �Ifn2DðsÞg; n
s
n½t �

� �� �C
Cmin ~qsn½t �; xspsðnÞ½t �; q

s
psðnÞ½t �

n o
: ð3:10Þ

Intuitively, the shadow traffic can be viewed as the calculated capacity for the
real traffic.
(b ) Stability and performance

We note that the shadow congestion control and scheduling algorithms
actually mimic the one described in §2c. Therefore, the proof of proposition 2.1
can be used to show that the shadow congestion control and scheduling algorithm
achieves a network utility that is arbitrarily close to the optimal one, and also
stabilizes the real unicast queues and the shadow multicast queues. In particular,
the following proposition can be stated.

Proposition 3.1. Under the shadow congestion control and scheduling
algorithms described in §3a, the source rates satisfyX

f2F
Uf ð�xf ÞC

X
s2S

X
d2DðsÞ

~Ud;s
�~x
d
s

� �
R
X
f2F

Uf x-f
� �

C
X
s2S

X
d2DðsÞ

~Usð~x-ds ÞK B

K
;

where

�xf Z lim
T/N

1

T

XTK1

tZ0

E½xf ½t ��; �~x
d
s Z lim

T/N

1

T

XTK1

tZ0

E ~xds ½t �
� �

and B!N is some constant. Also, all real unicast queues and shadow multicast
queues are stable (i.e. the Markov chain of queue occupancies is positive
recurrent).

Proof. The proof of this proposition is similar to the proof of proposition 2.1. &
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Now we address the queue-length stability of the real queues. Recall that at
any time slot, each node will send (or receive) at most as many real packets as
what it virtually received (or sent) at that time slot. Further, if a node receives
more real packets than what it virtually sent, it will drop the excess amount.
Thus, it is important to understand whether this packet-dropping mechanism
can stabilize the real queues.

Let us introduce some more notations. Consider a multicast tree TðsÞ with the
root rðsÞ: For any node n2TðsÞ; let AsðnÞ be the set of nodes in the path from n
to rðsÞ including n. Also, let l sn be the level of node n in TðsÞ; i.e. l snZ jAsðnÞjK1
where jSj denotes the cardinality of set S.

For each s2S and n2TðsÞ; let us define that as
n½t � and hsn½t � are the actual

numbers of real packets arriving to and departing from the real queue qsn at time
t, respectively. Similarly, let ~as

n½t � and ~hsn½t � be the actual numbers of shadow
packets arriving to and departing from the shadow queue ~qsn at time t,
respectively. Comparing with (3.9), we have

~as
n½t �Zmax ~ans ½t �Ifn2DðsÞg; n

s
n½t �

� �
;

~hsn½t �Zmin ~qsn½t �; xspsðnÞ½t �
n o

:

Also, the update rule (3.10) becomes

qsn½tC1�Z qsn½t �K~as
n½t �ð ÞCCmin ~hsn½t �; qspsðnÞ½t �

n o
:

In other words, the shadow packets are the available tokens for sending real
packets. Note that the tokens are instantaneous permits to send packets. If the
tokens are not used within the same time slot that they are generated, then they
are lost. These tokens cannot be stored by the receiving node for future use. This
is different from the usual sense in which tokens are interpreted in
communication networks.

To prove the stability of the real queues, we consider a modified system as
follows: instead of sending up to the number of available tokens, each node sends
a slightly smaller number of real packets. More precisely, suppose that node n
received kO0 shadow packets in a time slot, then it will try to send k real packets
(or all the packets in the queue if the queue length is smaller than k) with
probability ð1Ke=kÞ; or simply drop k packets from its queue with probability
e=k: Thus, the traffic is thinned as it proceeds along a multicast tree.

Note that as e goes to zero, this modified system will emulate the original
system. Next, we will prove the stability of the modified system.

Proposition 3.2. For the modified system, the Markov chain ðq½t �; ~q½t �Þ is
positive recurrent and

Eðkðq½N�; ~q½N�ÞkÞ!N; ð3:11Þ
where the time N indicates the stationary regime. Further,

E ~as
n½N�ð ÞKl sne%E hsn½N�ð Þ%E ~as

n½N�ð Þ; ð3:12Þ
where e is the parameter of the modified system that was described before the
statement of the proposition.

Proof. It is easy to see that ðq½t �; ~q½t �Þ forms a Markov chain that is irreducible
and aperiodic.
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Recall that for the shadow queue of any node n2TðsÞ of session s2S; we have

~qsn½t �Z ~qsn½0�C
XtK1

kZ0

~as
n½k�K

XtK1

kZ0

~hsn½k�; ctO0:

Since ~qsn is positive recurrent, by the ergodic theorem (Norris 1998),

lim
T/N

1

N

XNK1

kZ0

~hsn½k�ZE ~hsn½N�½ � almost surely

lim
N/N

1

N

XNK1

kZ0

~as
n½k�ZE ~as

n½N�½ � almost surely

where the time N indicates stationary regime. Further, the stability of the shadow
queues implies

E ~hsn½N�½ �ZE ~as
n½N�½ �: ð3:13Þ

Now, let the modified real queueing system be

qsn½tC1�Z qsn½t �Kâs
n½t �ð ÞCC ĥsn½t �;

where âs
n and ĥsn are the ‘service’ and arrival processes, respectively, for each real

queue. By construction, we have that for every t,

âs
n½t �Z ~as

n½t �; ð3:14Þ

E ĥsn½t �j~hsn½t �½ �% ~hsn½t �Ke0; when ~hsn½t �O0; ð3:15Þ

where e0O0 is a constant depending on e and e0/0 as long as e/0. These
estimates, along with (3.13), show that each real queue will have a negative average
drift, as long as it is large enough. This allows us to establish the positive
recurrence, as well as (3.11) (we omit details). The estimate (3.12) follows from the
fact that at any time, the maximum possible expected number of real packets that
can be dropped by any given node due to thinning is e. &

The above proposition shows that the rate at which real packets reach each
destination is close to the token generation rate at that destination. Note that the
above proposition is also valid if ‘thinning’ is done only at the source and not at
every intermediate node. In this case, one can show that the arrival rate is less
than that of the available service rate at each queue by an induction argument
starting at the source of each multicast tree.
(c ) The finite-buffer case

In §3b, we showed the stability of the multicast congestion control algorithm
by thinning the traffic slightly and transmitting at a rate slightly smaller than
the token generation rate. In this section, we consider the case of a network with
finite-buffer queues. For such a network, stability is not an issue. However, we
still have to prove that the rate at which real packets reach each destination is
close to the solution obtained from the network utility maximization problem, at
least when the buffer size at each queue is large. For simplicity, we will assume
that the shadow algorithm is used by all flows, unicast or multicast.
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Suppose that each queue has a maximum queue length H!N; i.e. packets
that arrive when the queue length reaches H will be dropped. The real packet
transmission scheme for this system is as follows: when a node receives a certain
number of tokens for a flow, the node transmits as many real packets as the
number of tokens received if that many real packets are available in that flow’s
queue; else it transmits all the real packets in the queue. In particular, no
thinning is used as in the case of the infinite-buffer queue. We will use a coupling
argument to relate this finite-buffer model to the infinite-buffer model considered
earlier to establish our result.

Let us consider the following queueing systems. All of them are coupled,
i.e. their evolution processes are constructed on the same probability space in a
natural manner.

SYSTEM 1 (S1). The infinite-buffer system considered in §3b with thinning
parameter e.

—From proposition 3.2, we know thatE½kðq½N�; ~q½N�Þk�!N: Let us call this fact 1.
—From proposition 3.2, we also know that, for any receiver, the real received rate is

close to its token injection rate which is close to the optimal solution (fact 2).

SYSTEM 2 (S2). The queueing dynamics of this system are the same as those
of S1 with two modifications. At any time t, after completion of all arrivals and
departures that occur in the transition from time tK1 to time t, any packet in
any queue that has H or more packets ahead of it in the queue is coloured red.
We will also give high priority to uncoloured packets in our queueing network. In
other words, when a new uncoloured packet arrives at a queue, this packet is
inserted in front of all the coloured packets. (If after completion of all arrivals
and departures, this packet will have H or more packets in front of it, it will be
coloured.) Note that this does not alter the total queue length at any queue, it
only ensures that coloured packets will be served last in a queue. It follows from
fact 1 that, in the stationary regime, the fraction of coloured packets can be made
arbitrarily small by making H large (fact 3). (More precisely, the average rate at
which packets are being coloured in the network will be small.) It then follows
from facts 2 and 3 that, when H is sufficiently large, in S2 the received rate of
uncoloured real packets at any receiver is close to its token injection rate, which
in turn is close to the optimal solution (fact 4).

SYSTEM 3 (S3 ). This queueing system is similar to S2, but the real traffic is
not thinned, i.e. we let e be equal to zero. Instead, those packets which would
have been ‘thinned out’ at a source or any intermediate node are also coloured
red. As in S2, the priority scheme for this queueing system gives the highest
priority to uncoloured packets—they are always in front of the coloured packets
in any queue. Note that this queueing system may be unstable, but its stability
does not matter to us. Clearly, fact 4 holds for S3 as well as for S2: when H is
large enough, the received rate of uncoloured real packets at any receiver is close
to its token injection rate which is close to the optimal solution (fact 5).

SYSTEM4 (S4). Same as S3, except that any packet in any queue which is above
thresholdHwill be dropped. In other words, S4 is the true systemwith finite buffers.

Theorem 3.3. The processes of uncoloured packets in S4 and S3 (and S2) are
identical, i.e. the queue lengths at any node at any time are equal in both systems.
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Proof. The proof follows from the construction. &

Corollary 3.4. In the system with finite buffers, when the buffer length H is
sufficiently large, the real received rate at any receiver is close to its token
injection rate. By proposition 3.1, if K is large, then the token injection rate is
close to the optimal solution.
4. Extensions

(a ) Energy constraint and minimum arrival rate constraint

We note that our approach can be extended to scenarios when there are other
constraints on the network. The required modifications to handle additional
constraints are not different from that in the case of unicast flows and so we only
briefly comment on them below.

Consider a network where each node may have an average power constraint.
Suppose that when node n transmits at an instantaneous rate xn½t � in time slot t,
it consumes an amount of energy equal to gnðxn½t �Þ per time slot, where gn
depends upon the PHY layer characteristics. Suppose that the battery power of
node n is constrained to be less that Pn, i.e. the long-term time average of gnðxÞ
has to be less than or equal to Pn: The Lagrange multiplier for this constraint can
be viewed as a fictitious queue: ‘packets’ arrive at this fictitious queue during
each transmission from the node, with the number of arriving packets equal to
the energy consumed during the transmission. Packets are drained from this
queue at rate Pn. Thus, if the fictitious queue is stable, then it means that the
average energy per unit time consumed by the node is less than or equal to the
average power constraint. The idea of using fictitious queues to impose energy
constraints is by Neely (2005) and Stolyar (2005, 2006). The fictitious energy
queues should also be further incorporated into the back-pressure algorithm for
resource allocation as specified in Stolyar (2005, 2006).

Another constraint that arises in applications such as video is a minimum
arrival rate constraint: the flow rate x may be required to be greater than or
equal to some minimum level xmin. Then, we can introduce another fictitious
queue for that flow. This fictitious queue has an arrival rate xmin and a service
rate x. In other words, at each time slot, there is a constant arrival rate to this
queue equal to xmin; whenever x packets are sent by the flow, we remove the same
number of x packets from this queue. These fictitious queues can then be
stabilized by adding them to our framework.

(b ) Delay reduction using the shadow algorithm

One can see that the shadow traffic acts like the capacity for the real traffic. In
other words, the shadow algorithm creates ‘pipes’ for the real traffic. Since the
capacity information is available, we can effectively reduce the delay of real
traffic by letting each flow send traffic at a rate less than its available capacity as
in the thinning algorithm in §3b. By increasing e, one can decrease the rate of real
traffic significantly below the available capacity, thus providing a trade-off
between throughput and delay. This idea can also be used to reduce the delay for
unicast traffic as well.
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(c ) Implementation issues

The disadvantage of the back-pressure algorithm is the implementation complex-
ity. However, approximations of the back-pressure algorithm, by modifying the
802.11 protocol, have been proposed and implemented by Akyol et al. (in press).
5. Conclusion

We study the resource allocation problem for multicast sessions in multi-hop
wireless networks. First, we extend the results from the existing theory for
unicast flows to also consider the single-rate multicast sessions. However, such an
extension is not straightforward in the case of multi-rate multicast. Therefore, we
introduce the concept of shadow queues and propose a shadow algorithm that
can achieve the optimal solution for multi-rate multicast. It turns out that our
approach can also be used to exercise some degree of control over QoS (packet
delays) delivered to the users of the network.

This research was supported by the DARPA CBMANET project, NSF grants CCF 06-34891, CNS
07-21286 and a Vodafone Fellowship.
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