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Abstract

We model a server that allocates varying amounts of bandwidth to \customers"

during service. Customers could be computer jobs with demands for storage bandwidth

or they could be calls with demands for transmission bandwidth on a network link.

Service times are constants, each normalized to 1 time unit, and the system operates in

discrete time, with packing (scheduling) decisions made only at integer times. Demands

for bandwidths are for fractions of the total available and are limited to the discrete
set f1=k; 2=k; : : : ; 1g where k is a given parameter. More than one customer can be

served at a time, but the total bandwidth allocated to the customers in service must

be at most the total available. Customers arrive in k 
ows and join a queue. The jth

ow has rate �j and contains just those customers with bandwidth demands j=k.

We study the performance of the two packing algorithms First Fit and Best Fit,

both allocating bandwidth by a greedy rule, the �rst scanning the queue in arrival

order and the second scanning the queue in decreasing order of bandwidth demand.

We determine necessary and su�cient conditions for stability of the system under the

two packing rules. The average total bandwidth demand of the arrivals in a time slot

must be less than 1 for stability under any packing rule, i.e., the condition

� :=
X
i

�i(i=k) < 1

must hold. We prove that if the arrival rates �1; : : : ; �k�1 are symmetric, i.e., �i = �k�i
for all i; 1 � i � k � 1, then � < 1 is also su�cient for stability under both rules.

Our Best Fit result strengthens an earlier result con�ned to Poisson 
ows and equal

rates �1 = � � � = �k�1; and does so using a far simper proof. Our First Fit result

is completely new. The work here extends earlier results on bandwidth packing in

multimedia communication systems, on storage allocation in computer systems, and

on message transmission along slotted communication channels.

It is not surprising that � < 1 is su�cient under Best Fit, since in a congested

system, Best Fit tends to serve two complementary (matched) customers in each time

slot, with bandwidth demands being i=k and (k � i)=k for some i; 1 � i � k � 1. It
is not so obvious, however, that � < 1 is also su�cient under First Fit. Interestingly,

when the system becomes congested, First Fit exhibits a "self-organizing" property

whereby an ordering of the queue by time of arrival becomes approximately the same

as an ordering by decreasing bandwidth demand.

� Part of the work of this author was completed while he was with AT&T Labs{Research, Murray Hill,
NJ 07974 (now located in Florham Park, NJ 07932).
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1 Introduction

We study a queueing model of storage and transmission bandwidth allocation in computer
and communication systems. To de�ne the model, we use the terminology of queueing sys-
tems; later, we will map this terminology into that of the applications. In our queueing
model, customers are allocated available bandwidth according to their demands, each cus-
tomer holding its allocation while it is being served, then releasing its allocation when it
departs from the system. More than one customer can be served at a time, but the total
bandwidth allocated to customers in service at any time must be less than the total available.
Bandwidth demands are discretized and speci�ed in fractions; for some given integer k > 0,
a demand can be any multiple of 1=k up to k=k = 1. The discretization loses no generality
in practice and expands the potential applications, as we shall see below.

Customers arrive in k 
ows to a single queue, the ith 
ow having rate �i and just those
customers with bandwidth demands i=k. Each customer service time is a constant, which
we take to be the unit of time. In addition, the system operates in discrete time; packing
decisions are made, and customer services begin, only at integer times. Unit time intervals
beginning at integer times will also be called time slots. Note that our model is a stochastic
version of one dimensional bin packing [5], where a bin corresponds to the total bandwidth
available over a time slot. We study the performance of both the First Fit and Best Fit pack-
ing rules. At service completions, both rules scan the queue and pack customer bandwidth
demands by a greedy rule: the demand being considered is packed if and only if it is for at
most the bandwidth still remaining from the demands already packed for customers to be
served in the next time slot. The di�erence between the two policies is that First-Fit scans
the queue in arrival order, while Best Fit scans the queue in decreasing order of bandwidth
demand.

Our analysis addresses stability problems: determine necessary and su�cient conditions on
the arrival rates �i such that the system is stable under First Fit and Best Fit, i.e., the
underlying Markov queueing processes are ergodic. We prove that if the bandwidth-demand
rates �1; : : : ; �k�1 are symmetric, i.e., �i = �k�i; 1 � i � k � 1, then under a very general
class of arrival processes,

� :=
kX
i=1

�i(i=k) < 1

is necessary and su�cient for stability for both First Fit and Best Fit. Since � is the average
total bandwidth demand in each time unit, � < 1 is clearly a necessary condition, so our
proofs focus entirely on showing that the condition is su�cient.

In what follows we will take �k = 0. It would be trivial for us to generalize our results to the
case �k > 0, but we have chosen not to do so as it creates a lack of symmetry and clutters
the analysis.

Models similar to ours were studied in [3], where applications to multimedia communications
were emphasized. The term `bandwidth packing' was introduced in [3] as a name for the
class of problems of interest here. In the applications, bandwidth on a network link is being
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allocated to several competing demands in varying amounts such as those needed for video,
audio, and data transmission. It was proved in [3] that � < 1 was su�cient for the stability of
Best Fit when the input 
ows were specialized to the Poisson process and when the demand
distribution was uniform with all �i's equal. The stability question for First Fit was left
as an open problem. The analysis in [3] applied the classical potential (Lyapunov) function
approach. Our approach uses the relatively recent 
uid-limit techniques described in Section
2. As a consequence, our proofs are more compact and more easily adapted to general arrival
processes.

In another important application, the available bandwidth refers to the storage (memory)
bandwidth of a multiprocessor system, a model studied in [9]. Customers are jobs using
varying amounts of storage while running on a computer. The model in [9] di�ers from ours
in requiring a strict FIFO service discipline. This is a substantial simpli�cation of our model,
but the analysis in [9] leads to further results, including formulas invariant measures. Our
work solves the stability problem in this application for much more e�cient packing rules.

Our work also contributes new results to the analysis of an equivalent model of slotted com-
munication systems [6]. In this new interpretation, customers are messages and bandwidth
demands are message durations (fractions of a time slot); the available bandwidth in a time
unit of our model becomes a unit-duration slot in which subsets of messages are packed and
transmitted. With arriving messages modeled by a discretized Markov process, the analysis
in [6] focuses on the Next Fit algorithm: When a message arrives and �nds no messages
waiting, it is packed (will be sent) in the next time slot. If a message arrives and �nds other
waiting messages, it is packed in the latest time slot already allocated at least one message, if
it �ts in the remaining unallocated time of that slot; otherwise, the message is packed in the
next, as yet unused, time slot (and hence eventually transmitted one time unit later). Our
analysis extends the earlier work to the much more e�cient First Fit and Best Fit packing
algorithms. For example, with equal arrival rates �1 = � � � = �k�1, the message-rate capacity
under Next Fit is only 3=2, whereas it is 2 under First Fit and Best Fit.

As a �nal application, one that takes us away from the bandwidth interpretation, we mention
classical k-server queues. Our model generalizes these queues by allowing customers to
require more than one server during their service. In the terminology of our model, a
bandwidth demand of i=k is simply a request for i servers.

The next section formalizes our probability model and introduces the 
uid-limit approach
to our stability problems. Our main results appear in Sections 3 and 4 as theorems
giving necessary and su�cient conditions for stability under the First Fit and Best Fit rules,
respectively. In Section 5 we present a moment convergence result, which complements the
stability results for both First Fit and Best Fit.

While our main results are in the stochastic analysis of algorithms, our methods also yield
useful results in the asymptotic average-case analysis of algorithms. In the average-case
(or �xed-input) model, a �xed number n of customers with i.i.d. bandwidth demands is
given, and the objective is the large-n behavior of the expected total bandwidth wasted
while serving the n demands. Section 6 applies the 
uid-limit approach to the average-case
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model by giving a simple proof that, under First Fit and symmetric bandwidth-demand
distributions, the expected total wasted bandwidth is o(n), so the expected number of time
slots needed to serve the n customers exceeds the expected sum of bandwidth demands (n=2)
by a o(n) term.

Section 7 concludes the paper with a discussion of open problems and the sensitivity of the
analysis to various model assumptions.

2 Preliminaries

Under First Fit, a state of the queue is denoted by an element of the set of all �nitely
terminated sequences on f1; : : : ; k � 1g. The length of the sequence is the queue length,
and the ith element of the sequence gives the bandwidth demand of the customer that was
ith to arrive among the customers currently waiting. Under Best Fit, the arrival order is
not needed; the state just needs, for each i = 1; : : : ; k � 1 the number of customers waiting
with bandwidth demands i=k. Hereafter, a type-i demand is one for a fraction i=k of the
bandwidth; type-i customers are those with type-i demands.

We assume that the aggregate arrival process of the k � 1 customer types can be described
by a �nite number of independent, discrete-time regenerative processes with �nite-mean
regeneration cycles. Our proofs rely on two consequences of this assumption: The underlying
queueing process, which we denote by X = (X(t); t = 1; 2; : : :), is a countable Markov
chain, and the functional strong law of large numbers holds for the input process. To
avoid trivial complications, we also assume that X is irreducible and aperiodic. These
assumptions allow for virtually any process having a regenerative structure, e.g., discrete-
time versions of Markov modulated Poisson processes, the processes generated by on-o�
sources, etc. However, to avoid complicated notation, in the rest of the paper we view the
k � 1 input 
ows as independent with the ith being an i.i.d. sequence of integer-valued
random variables which give the numbers of type-i arrivals in [t�1; t] and have a �nite mean
�i, the same for all t = 1; 2; : : :. With this simpli�cation, the underlying process X becomes
the queue-content process.

In what follows, the norm kX(t)k denotes the number of customers waiting at time t. Let
X(n) denote a process X with an initial condition such that kX(n)(0)k = n. In the analysis
to follow, all variables associated with a process X(n) will be supplied with the upper index
(n).

The following theorem is a corollary of a more general result of Malyshev and Menshikov
[10].

Theorem 1 Suppose there exists an integer T > 0 such that for any sequence of processes
X(n), we have

lim
n!1

E[
1

n
kX(n)(nT )k] = 0 (1)
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Then X is ergodic.

It was shown by Rybko and Stolyar [11] that an ergodicity condition of the form (1) naturally
leads to a 
uid-limit approach to the stability problem of queueing systems. This approach
was further developed by Dai [7], Chen [2], Stolyar [12], and Dai and Meyn [8]. As the form
of (1) suggests, the approach studies a 
uid process x(t) obtained as a limit of the sequence
of scaled processes 1

n
X(n)(nt); t � 0; at the heart of the approach in its standard form is a

proof that x(t) starting from any initial state with norm kx(0)k = 1 reaches 0 in �nite time
T and stays there. (In most cases of interest, including ours, weaker conditions are su�cient,
e.g., it is enough to verify that inft�0 kx(t)k < 1, as shown in [12].) In our setting we need
to de�ne what the scaling 1

n
X(n)(nt) means. In order for this scaling to make sense, we will

need an alternative de�nition of the queueing process.

To this end, we �rst adopt the convention X(t) = X(btc); t � 0, which allows us to view
X as a continuous-time process de�ned for all t � 0, but with new arrivals and services
still beginning only at integer times t = 0; 1; 2; : : :. Next, we de�ne the following random
functions associated with the process X(n)(t): F

(n)
i (t) is the total number of type-i customers

that arrived by time t � 0, including the customers present at time 0; and F̂
(n)
i (t) is the

number of type-i customers that were served by time t � 0. Obviously, F̂
(n)
i (0) = 0 for

all i. As in [11] and [12], we \encode" the initial state of the system; in particular, we

extend the de�nition of F
(n)
i (t) to the negative interval t 2 [�n; 0) by assuming that the

customers present in the system in its initial state X(n)(0) arrived in the past at time instants
�(n � 1);�(n � 2); : : : ; 0, exactly one customer at each time instant. In the case of First
Fit, we require the order of these arrivals to be the same as in the state at time 0. By this
convention F (n)

i (�n) = 0 for all i and n, and
Pk�1

i=1 F
(n)
i (0) = n.

It is clear that the process X(n) = (X(n)(t); t � 0) is a projection of the process S(n) =
(F (n); F̂ (n)), where

F (n) = (F
(n)
i (t); t � �n; i = 1; 2; : : : ; k � 1)

and
F̂ (n) = (F̂

(n)
i (t); t � 0; i = 1; 2; : : : ; k � 1);

i.e., a sample path of S(n) uniquely de�nes a sample path of X(n).

Now consider the scaled process s(n) = (f (n); f̂ (n)), where

f (n) = (f
(n)
i (t) =

1

n
F

(n)
i (nt); t � �1; i = 1; 2; : : : ; k � 1)

and

f̂ (n) = (f̂
(n)
i (t) =

1

n
F̂

(n)
i (nt); t � 0; i = 1; 2; : : : ; k � 1)

The following lemma establishes convergence to a 
uid process and is a variant of Theorem
4.1 in [7].
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Lemma 1 The following statements hold with probability 1. For any sequence of processes
X(n), there exists a subsequence X(m); fmg � fng, such that for each i; 1 � i � k � 1,

(f
(m)
i (t); t � �1)! (fi(t); t � �1) u:o:c: (2)

(f̂
(m)
i (t); t � 0)! (f̂i(t); t � 0) u:o:c: (3)

where the functions fi; f̂i; are non-negative non-decreasing Lipschitz-continuous in the given
time intervals, and u.o.c. means that convergence is uniform on compact sets as n ! 1.
The limiting set of functions

s = (f; f̂) = f(fi(t); t � �1); (f̂i(t); t � 0); i = 1; 2; : : : ; k � 1g
also satis�es

k�1X
i=1

fi(0) = 1 (4)

and for all i; 1 � i � k � 1,
fi(�1) = 0; f̂i(0) = 0; (5)

fi(t)� fi(0) = �it; t � 0; (6)

f̂i(t) � fi(t); t � 0 ; (7)

for any 0 � t1 � t2,
k�1X
i=1

i

k
(f̂i(t2)� f̂i(t1)) � 1 : (8)

Proof. It follows from the strong law of large numbers that, with probability 1 for every i,

(f
(n)
i (t)� f

(n)
i (0); t � 0)! (�it; t � 0) u:o:c:

Also, for every n and i, the functions (f
(n)
i (t);�1 � t � 0) and (f̂

(n)
i (t); t � 0) can increase

by at most k(1=n) in any interval of length 1=n. This implies (2) and (3). We get (6) as a
byproduct. Equations (4) and (5) follow from the construction representing the initial state.
Equation (7) follows immediately from de�nitions, and the conservation law (8) from the
trivial observation that the total bandwidth of customers served in one time slot is limited
to 1.

3 First Fit

To prove that � < 1 is su�cient for stability under First Fit, we need two lemmas.

Lemma 2 For any �xed T1 > 1, the following holds with probability 1. A limiting set
of functions s = (f; f̂) de�ned in Lemma 1 has the following additional property: For all
i; 1 � i � k � 1,

f̂i(T1) > fi(0): (9)
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Proof. Consider the sequence of sample paths of the scaled process s(n) converging to the
set of functions s de�ned in Lemma 1. For any �xed � > 0 and � > 0, we have for all
su�ciently large n,

k�1X
i=1

f
(n)
i (�) < 1 + (

k�1X
i=1

�i)(1 + �)�:

Since as long as the queue is non-empty at least one customer is served in every time slot,
we conclude that

f̂
(n)
i (�+ 1 + (

k�1X
i=1

�i)(1 + �)�) � f
(n)
i (�);

which implies (9) via a simple passage to the limit n!1, and by the fact that � and � can
be arbitrarily small.

For a set s of functions as de�ned in Lemma 1, let us de�ne

�i(t) = inff� � �1j fi(�) > f̂i(t)g (10)

and let
�(t) = min

1�i�k�1
�i(t): (11)

The proof of the First Fit stability result centers on the analysis of the times �i(t); because
of their useful properties, one being a simple relation to the 
uid limit of the queue-length
processes kX(n)(t)k. For this reason, we give below an informal interpretation of these times

de�ned in terms of the unscaled processes S(n) = f(F (n)
i ; F̂

(n)
i )g. According to (10), �i(t)

is the earliest time by which the number of type-i arrivals exceeds the number of type-i
departures by time t. Under suitable conditions to be covered in the lemma below, �i(t) can
be expressed as the inverse of fi evaluated at f̂i(t), i.e.,

�i(t) = f�1i (f̂i(t)); (12)

as illustrated in Figure 1. We remark that �i(t) need not be a smooth function. For example,
the initial state can be contrived so that fi(t) is 
at in some subinterval of [�1; 0], thus
creating a discontinuity in �i(t). On the other hand, as proved later, �i(t) has to be Lipschitz-
continuous in the interval 1 < t < 1. Under First Fit, the queue of type-i customers at
time t consists of just those type-i customers that arrived during [�i(t); t]. Then �i(t) = t is
a type-i empty-queue condition. Recalling our discussion of Theorem 1, we want to show
that �(t) tends towards t, i.e., � 0(t) > 1; and absorbs in the empty-queue condition �(t) = t.
These and related properties of the �i(t) are formalized in the following result.

Lemma 3 Let T1 > 1 be �xed. There exist �xed constants T2 and T , T1 � T2 � T < 1
such that with probability 1, a limiting set of functions s = (f; f̂) de�ned in Lemma 1 has
the following additional properties:

(i) We have
�i(T1) > 0 for all i; 1 � i � k � 1: (13)
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�1 �i(t) t

f̂i(t)

1

fi(t)

Figure 1: The functions �i(t), f̂i(t), and fi(t) with fi(t) = �it+ fi(0) for t � 0.

(ii) In the interval t � T1, every function �i(t); 1 � i � k � 1, is non-decreasing Lipschitz-
continuous, and therefore so is �(t).

(iii) At any regular point t � T1, i.e., a point where all the derivatives of each of the functions
fi; f̂i; �i; and � exist for all i, 1 � i � k � 1, we have

� 0i(t) = f̂ 0i(t)=�i (14)

�(t) < t ) � 0(t) � 1=
k�1X
i=1

�i (15)

(�i(t) < �j(t) ^ i < j) ) � 0j(t) = 0: (16)

(iv) For all t � T2;
i < j ) �i(t) � �j(t): (17)

(v) If the input 
ows are symmetric, i.e., if �i = �k�i for every i, then we have at any regular
point t � T2,

�(t) < t ) � 0(t) � 1=� > 1 (18)

(vi) For symmetric input 
ows, for all t � T;

�(t) = t; (19)

which is equivalent to the assertion that, for all t � T;

f̂i(t) = fi(t) for all i; 1 � i � k � 1: (20)
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Proof Property (i) follows from Lemmas 1 and 2. When t � T1 > 1, the e�ects of the initial
state have dissipated and we know that �i is positive (by property (i)), fi(t) = fi(0) + �it,
and f̂i(t) is nondecreasing Lipschitz-continuous (by Lemma 1). It follows easily that �i(t) is
nondecreasing Lipschitz-continuous for t � T1, which proves property (ii).

For property (iii), we �rst di�erentiate (12) at regular points t and substitute f 0i(t) = �i; this
gives (14). To prove (15), de�ne

M(t) := fi j �i(t) = �(t)g;

so that, since t is a regular point, we can write for all i 2M(t),

�i(t) = �(t); � 0i(t) = � 0(t); f̂ 0i(t)=�i = � 0(t): (21)

For the unscaled sample path, it is easy to see that for any su�ciently small � > 0 and all
su�ciently large n, at least one customer of a type i 2M(t) will be served in each time slot
of the time interval [nt; n(t + �)]. This means that

P
i2M(t) f̂

0
i(t) � 1; which together with

(21) implies � 0(t) � 1=
Pk�1

i=1 �i, thus proving (15).

To prove (16) and complete the proof of property (iii), consider an unscaled sample path at
time nt. If �i(t) < �j(t), then for small � > 0 and all su�ciently large n, there are at least
�i[�j(t) � �i(t)](1 � �)n type-i customers in the queue ahead of any type-j customer. This
means that, if i < j, there exists a small � > 0 such that no type-j customers will be served
in the interval [nt; n(t + �)]. This in turn implies that f̂

(n)
j (t + �) = f̂

(n)
j (t) for all n large

enough, and therefore that (16) holds.

Property (iv) follows from (15) and (16) in property (iii). The constant T2 can be chosen to
be

T2 = T1 +
maxi �i(T1)� �(T1)

1=
Pk�1

i=1 �i
:

To prove property (v), we note �rst that, by property (iv), the set M(t) for t � T2 has the
form M(t) = fk � 1; k � 2; : : : ; rg with r � k � 1. Then we can rewrite (21) as

�(t) = �k�1(t) = : : : = �r(t) < �r�1(t) (22)

� 0(t) = � 0k�1(t) = : : : = � 0r(t) > 0 (23)

f̂ 0k�1(t)=�k�1 = � � � = f̂ 0r(t)=�r = � 0(t); (24)

for some r � k � 1. Here, we need to show that, if �(t) < t, then

� 0(t) � 1=� (25)

Let us assume that k is odd; the proof of (25) for k even is very similar and left to the reader.
First, we make an observation similar to the one we made in the proof of (16). Consider
the unscaled sample path at time nt. Equation (22) implies that, for any small � > 0 and
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all su�ciently large n, there are at least �i(�r�1(t) � �(t))(1 � �)n customers of each type
i = k � 1; k � 2; : : : ; r in the queue ahead of any customer of type j = r � 1; : : : ; 1. This
means that there exists a small � > 0 such that in the interval [nt; n(t + �)] the customers
of types r � 1; : : : ; 1 have lower priority than customers of types k � 1; k � 2; : : : ; r. More
precisely, no customer of type j < r will be packed in a time slot as long as a customer of
type i � r can be packed into that time slot instead. Therefore, as far as the behavior of
the functions f̂

(n)
i ; i � r, in the interval [t; t + �] is concerned, we can ignore the customers

of types j < r.

In the remainder of the proof of property (v), we �x � with the above observation in mind; we
con�ne ourselves to the behavior of scaled processes in the interval [t; t+�], and the behavior
of the corresponding unscaled processes in the interval [nt; n(t+ �)], with n su�ciently large.

Let p = (k � 1)=2, and note that the symmetry condition �i = �k�i; 1 � i � p; implies

� :=
k�1X
i=1

�i
i

k
=

pX
i=1

"
�i
i

k
+ �k�i

k � i

k

#

=
pX
i=1

�i =
k�1X
i=p+1

�i: (26)

If r � p+ 1, then

� 0(t) =
1Pk�1

i=r �i
� 1Pk�1

i=p+1 �i
=

1

�
: (27)

To see this, note that exactly one customer of some type i � r will be served in each time
slot. For, since 2r � k + 1, two such customers have demands exceeding the total available
bandwidth. This immediately implies that

k�1X
i=r

f̂ 0i(t) = 1

which means that � 0(t)
Pk�1

i=r �i = 1, and hence that (27) holds.

To �nish the proof of property (v), it remains to dispose of the case r � p. We will show
that � 0(t) = 1=�. First, we observe that � 0(t) � 1=�. This is because, by an argument similar
to the one used for the case r � p+ 1 above, we have

k�1X
i=p+1

f̂ 0i(t) � 1

and so

� 0(t) � 1Pk�1
i=p+1 �i

=
1

�
:

Now assume that strict inequality holds,

� 0(t) < 1=�: (28)
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We will prove that this implies that f̂ 0r(t) � 1=�, which is a contradiction, since f̂ 0r(t) = � 0(t)
by de�nition of r.

If (28) were to hold, then for any � > 0, any su�ciently small �; 0 < � < �; (with � depending
on �), and all su�ciently large n (depending on � and �), the following three observations
would hold for an unscaled sample path in the interval [nt; n(t + �)]:

(a) The number of time slots not serving any customers of types k� 1; : : : ; k� r + 1, which
do not �t together with type-r customers, is at least2

41� (� 0(t) + �)
k�1X

i=k�r+1

�i

3
5 �n:

(b) Consider a time slot described in (a). If this slot does not serve any customers of types
p; p� 1; : : : ; r + 1, then it must serve at least one type-r customer.

(c) The total number of served customers of types i = p; : : : ; r + 1 does not exceed

[� 0(t) + �]

0
@ pX
i=r+1

�i

1
A �n:

Since the number of slots occupied by customers of types p; p � 1; : : : ; r + 1 is at most the
number of such customers, observations (a)-(c) imply that the limiting type-r service rate
has the lower bound

f̂ 0r(t) �
2
41� (� 0(t) + �)

k�1X
i=k�r+1

�i

3
5� [� 0(t) + �]

pX
i=r+1

�i

Since � > 0 can be arbitrarily small, we get

f̂ 0r(t) � 1� � 0(t)

2
4 k�1X
i=k�r+1

�i +
pX

i=r+1

�i

3
5 :

By the symmetry condition,
Pk�1

i=k�r+1 �i =
Pr�1

i=1 �i, so

f̂ 0r(t) � 1� � 0(t)
pX

i=1

�i + � 0(t)�r

= 1� � 0(t)�+ � 0(t)�r

> � 0(t)�r;

the desired contradiction. Thus, (28) can not hold, we can conclude that � 0(t) = 1=�, and
property (v) is proved.

It follows from property (v) that

infftj �(t) = tg � T2 +
T2 � �(T2)

1=�� 1
� T2 +

T2
1=�� 1

11



Let us choose the constant T to be

T = T2 +
T2

1=�� 1
:

Since we know that d
dt
(t � �(t)) � 1 � 1=� < 0 at any regular point t � T2 such that

t � �(t) > 0, we conclude that �(t) = t for all t � T . This proves property (vi) and hence
the lemma.

Theorem 2 Suppose the input 
ow intensities are symmetric, and � < 1. Then under First
Fit X is ergodic.

Proof The proof is a slight modi�cation of the proof of Theorem 4.2 in [7]. In particular,
Lemmas 1 and 3 imply that there exists a T > 0, which can be chosen to be an integer,
such that for any sequence of processes fX(n)g we have

lim
n!1

1

n
kX(n)(nT )k = lim

n!1

k�1X
i=1

(f
(n)
i (T )� f̂

(n)
i (T )) = 0; (29)

with probability 1. The uniform integrability of the sequence fX(n)g can be proved in ways
similar to those in [11] and [7]. Uniform integrability and the convergence in (29) imply that

lim
n!1

E[
1

n
kX(n)(nT )k] = 0:

Then the condition in (1) of Theorem 1 holds, and we are done.

We can also make strong statements about convergence properties and the existence of
moments. These apply to Best Fit as well, so we defer these results to Section 5.

4 Best Fit Discipline

In this section, we prove that the analog of Theorem 2 for Best Fit also holds. We use the
same general 
uid-limit approach, but the arguments will be simpler. We again need Lemma
1, but we will create a new version of Lemma 3, a simpler version in that there will be no
need to deal with the times �i(t) or the encoding of the initial state; instead of analyzing
t � �i(t), we will analyze the di�erence qi(t) := fi(t) � f̂i(t), proving that it reaches zero in
�nite time and stays there.

Theorem 3 Suppose the input 
ow intensities are symmetric, and � < 1. Then under Best
Fit X is ergodic.

12



Proof: We need only prove Lemma 4 below; with Lemma 4 replacing Lemmas 2 and 3,
the proof of Theorem 2 will apply to Best Fit.

Lemma 4 Suppose that the input 
ows are symmetric. Then there exist constants 0 = Tk <
Tk�1 < : : : < T1 = T <1 such that, with probability 1, a limiting set of functions s de�ned
in Lemma 1 has the following additional property for every i = 1; 2; : : : ; k�1: At any regular
point t � Ti+1,

f̂i(t) < fi(t) ) f̂ 0i(t) � �i + (1� �); (30)

and for any t � Ti,
f̂i(t) = fi(t) and therefore f̂ 0i(t) = �i: (31)

Thus, for all t � T , and for all i; 1 � i � k � 1,

f̂i(t) = fi(t) (32)

Proof All the conventions introduced in the proof of Lemma 3 are still in force. Thus,
s(n); n = 1; 2; : : : is the sequence of sample paths of the scaled process s(n) which converges
to s. And when we refer to the unscaled sample path, we mean the corresponding sample
path of the process S(n). We consider only the case when k is odd; the proof for even k is
analogous.) De�ne p := (k � 1)=2, as before, and recall that qi(t) := fi(t) � f̂i(t), so that
(30) and (31) become

qi(t) > 0) q0i(t) � �(1� �) (33)

and
qi(t) = 0 for every t � Ti: (34)

We need a couple of key observations, the �rst following from the fact that, the higher the
bandwidth demand, the higher the packing priority under Best Fit.

(a) For any �xed r, the service of customers of types k�1; k�2; : : : ; r is completely una�ected
by the service of customers of types j < r.

(b) The condition qi(t) > 0 for the limiting set of functions implies that, for a su�ciently
small, �xed � > 0, and all n su�ciently large, the corresponding unscaled sample path is
such that in the interval [tn; (t + �)n]:

(b1) there are always type-i customers available for service;

(b2) if i � p, then every time slot serving a type-(k � i) customer must serve a type-i
customer; every time slot not serving a type-i customer, or a type-(k� i) or larger customer
must serve one or more customers of types p; p� 1; : : : ; i + 1.

The proof is by induction on i decreasing from k� 1 to 1. If i = k� 1, it follows easily from
observations (a) and (b1) that at any regular point t � 0 = Tk, the condition qk�1(t) > 0
implies that f̂ 0k�1(t) = 1 � �k�1 + (1� �), and hence that (33) holds.

13



Notice that qk�1(0) � 1, so if we choose

Tk�1 = Tk + 1=(1� �); (35)

then (34) follows from (33). This establishes the basis of the induction.

For the induction step, suppose (33) and (34) hold for i = k � 1; k � 2; : : : ; r + 1. We will
now prove that (33) and (34) also hold for i = r.

Consider a regular point t � Tr+1. If r � p + 1, then the condition qr(t) > 0 must imply

f̂ 0r(t) = 1�
k�1X
i=r+1

�i > �r + (1� �); (36)

which gives q0r � �(1� �). To see this note that, in an unscaled sample path, one and only
one customer of types k�1; k�2; : : : ; r can be served in a time slot. Thus, (36) follows from
observations (a) and (b1) and the inductive hypothesis, which asserts that the customers of
each of the types i = k � 1; : : : ; r + 1 are served at exactly the corresponding rate �i for all
t > Ti. (We omit routine �; �-technicalities similar to those used in the proof of Lemma 3.)

If r � p, then by applying observations (a) and (b2), we get

f̂ 0r(t) � 1�
k�1X

i=k�r+1

�i �
pX

i=r+1

�i

= 1�
r�1X
i=1

�i �
pX

i=r+1

�i � �r + �r = �r + (1� �)

so q0r � �(1� �) again holds.

Now if we observe that qr(Tr+1) � 1 + �rTr+1, and set, in analogy with (35),

Tr = (1 + �rTr+1)=(1� �);

then we see that (34) follows from (33). The inductive step and hence the proof of Lemma
4 and Theorem 3 is complete.

5 Moment Convergence

It is shown in [8] that condition (1) implies not only stability, but also very strong moment-
existence and convergence properties. For example, Theorem 4 below follows directly from
(1) and Theorem 6.2 in [8] (which can easily be adjusted for our discrete-time case).
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Theorem 4 Suppose the �i are symmetric, � < 1 holds, and the input processes are i.i.d.
sequences with �nite (p+1)-st moments (p � 1 is an integer). Let X(1) have the stationary
distribution of the Markov chain X under either First Fit or Best Fit. Then

EkX(1)kp <1
and for any initial state X(0),

lim
t!1

EkX(t)kp = EkX(1)kp

6 Connection to Average-Case Analysis

Our First Fit stability analysis is closely related to the average-case analysis of First Fit
bin packing under discrete distributions [4]. We can recast the average-case model into our
setting as follows. Suppose the initial state consists of a queue of n customers with customer
types being a sequence of independent samples from a given distribution on f1; : : : ; k � 1g;
and assume there are no new arrivals. A formula for the expected total wasted bandwidth
in the packing of n customers is the objective of the average-case analysis. The problem
is di�cult, so virtually all of the results to-date describe large-n asymptotic behavior. In
particular, it has been shown that for certain customer-type distributions, the expected total
wasted bandwidth is o(n). This section demonstrates how the First Fit average-case result
can easily be obtained from the properties of the 
uid limit of a stochastic system like the
one considered in previous sections. Further results of this type are discussed in the next
section.

Consider an in�nite sequence of i.i.d. customer types �1; �2; : : :, taking values in the set
f1; : : : ; k�1g, with the distribution f�i; i = 1; : : : ; k�1g, Pi �i = 1. The reason for adopting
our arrival rate notation for the customer-type distribution in an average-case model will be
clear when the theorem below links up the average-case and stochastic analysis. De�ne a
sequence of systems (just like those analyzed in previous sections) indexed by n = 1; 2; : : :.
The nth system has an initial state consisting of customers of types �1; : : : ; �n waiting in
queue in the order listed. Suppose there are no new arrivals after time 0. Note that in this
setting the initial state is random.

For the nth system, de�ne U (n) to be the time slot in which the last customer of the initial
state is served under First Fit, and de�ne

W (n) = U (n) �
nX
i=1

�i=k ;

W (n) is the total bandwidth (or server capacity) wasted by the First Fit packing process.

Theorem 5 Under First Fit and a symmetric distribution f�ig
�i = �k�1; 1 � i � k � 1;
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the following holds with probability 1:

lim
n!1

W (n)=n = 0 ; (37)

lim
n!1

U (n)=n = 1=2 : (38)

Remark. Since the random variables W (n)=n and U (n)=n are bounded above uniformly in
n, the probability 1 convergence implies convergence of mean values.

Proof First, it is clear that the properties (37) and (38) are equivalent, since

lim
n!1

1

n

nX
i=1

�i
k
=

1

2
;

with probability 1. Also, W (n) � 0 obviously holds, and therefore

lim inf
n!1

U (n)=n � 1=2;

so it will su�ce to show that
lim sup
n!1

U (n)=n � 1=2 : (39)

For every index n, consider a modi�ed system in which new arrivals after time 0 do occur;
the input (say Poisson) 
ow of type i arrivals has intensity �i. By the de�nition of First Fit,
such a modi�cation can not change the random variables W (n) and U (n), because it has no
e�ect on the service of initial customers. The primary reason for considering the modi�ed
system is to comply with the formulations of the results in previous sections, to ease the
`reuse' of those results.

We observe that our sequence of processes, with index n, satis�es the conditions of Lemmas
1 and 3, except for the fact that the initial state is now random. But since the initial states
are drawn from a sequence of i.i.d. random variables, the functional strong law of large
numbers applies to the sequence of initial states. We can conclude that: Except for property
(13), Lemma 1 and Lemma 3 are valid for our sequence of modi�ed processes. Moreover,
they are valid with T1 = T2 = 0 and a limiting set of functions (a 
uid process) s such that

fi(t) = �i(t� (�1)); � 1 � t � 0; 8i (40)

Indeed, it follows that
fi(t) = �i(t� (�1)); t � �1; 8i (41)

and hence that �i(0) = �1 for any i. The only property of the constant T1 required in earlier
proofs was that each function fi(�) be strictly linear with slope �i in the interval [�i(T1);1);
with T1 = 0, we still have this property. The only property of the constant T2 required in
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the earlier proofs was that T2 � T1 and �k�1(T2) � : : : � �1(T2). Again, with T2 = 0, we still
have this property.

Applying the results of Lemma 1 and Lemma 3, we get � 0(t) � 1=� = 2 at any regular point
t � 0. In fact, from the conservation law (8), we see that equality must hold: � 0(t) = 1=� = 2,
at any regular point t � 0. Then the following must also hold:

�(t) = �k�1(t) = : : : = �1(t) = �1 + 2t; t � 0; (42)

because an inequality �(t) < �i(t) for any �xed t and i would contradict property (8).

We are now in position to prove (39). Let us �x a small � > 0. It follows from (42) that any
limiting set of functions s is such that, for all i,

f̂i((1� �)=2) = �i(1� �) < �i = fi(0):

This means that, with probability 1 for any i, the sequence of scaled processes f̂
(n)
i (�) is such

that for all n, except perhaps for values in some �nite set,

�i(1� 2�) � f̂
(n)
i ((1� �)=2) < f

(n)
i (0) < �i(1 + �) :

This in turn means that, in the unscaled systems:

(a) in the �rst b(n=2)(1 � �)c time slots, no server bandwidth was wasted and only initial
customers were served;

(b) U (n) � (n=2)(1� �) + nk � 3� .
Therefore, with probability 1, lim supn!1 U (n)=n � (1� �)=2 + 3k� :

Since � > 0 can be chosen arbitrarily small, we get (39), which concludes the proof.

7 Discussion

Our proofs of Theorems 2 and 3 verify that, for arrival processes within the broad framework
given in Section 2, the stability of the system under consideration depends essentially on
the input 
ow intensities and is insensitive to the precise probabilistic structure of the input

ows.

Other special cases of interest to which the result of Theorem 2 is easily extended, are sets
of divisible bandwidth demands. If h=k and j=k; j > h are any two demands in a divisible
subset of f1=k; 2=k; : : : ; 1g, then h divides j and j in turn divides k. The special case
f1=2a; 1=2a�1; : : : ; 1=2; 1g for some positive integer a is of interest in computer applications.
We leave to the interested reader an easy adaptation of the 
uid approach to a proof that
� < 1 is su�cient for stability under First Fit and Best Fit independent of the relative sizes
of the arrival rates.
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In heavy congestion, First Fit typically matches demands i=k with their complements (k �
i)=k, thus wasting no bandwidth and allowing � < 1 to be su�cient as well as necessary
for stability. For this matching to occur, the queue must reorder itself dynamically into
decreasing order by size. In an attempt to �nd other examples where First Fit has a similar
self-organizing property, consider any distribution that yields perfect packings respecting
the arrival rates, i.e., examples for which there are integers n; n1; : : : ; nk�1 such that, for
some �; 0 < � < 1, we have �i = �ni=n; 1 � i � k � 1; and we can pack n1 type-1
customers, n2 type-2 customers, . . . ,and nk�1 type-(k� 1) customers into n time units with
no available bandwidth left over. It is easy to de�ne an algorithm that suitably restricts
the demand-type con�gurations allowed in each time unit so as to guarantee that � < 1 is
su�cient for stability. (What makes this algorithmic technique impractical, of course, is that
it requires advance knowledge of the arrival rates.) Typically, however, it is not possible to
make the same stability claim about First Fit. As a simple example, take k = 7 and let the
only nonzero arrival rates be �2 = 2�3. A greedy algorithm that, whenever possible, packs
2 type-2 customers and 1 type-3 customer in a time slot will be stable as long as � < 1.
However, it can be shown that, during periods of congestion under First Fit, a positive
fraction of the time slots will be packed with 2 type-3 customers or 3 type-2 customers,
wasting 1/7 of the bandwidth in each case. A formal proof that First Fit is unstable for
values of � in an interval [1� �; 1]; � > 0 is sketched in the appendix.

Examples like those above suggest that the class of bandwidth-demand distributions for
which � < 1 is su�cient for stability under First Fit or Best Fit is likely to be relatively
small. More de�nitive statements of this kind present interesting directions for further
research.

We established in Section 6 that the large-n packing process in the average-case model
and the queueing process under heavy congestion in the stochastic model are described by
essentially the same 
uid process. This connection makes the following conjecture quite
plausible. Consider an average-case model with a �xed customer-type distribution fbig;
and a family of stochastic models with this same customer-type distribution; then for each
model in the family �i = bi�; where the total arrival rate � =

P
i � indexes the family of

stochastic models. We conjecture that, for the First Fit algorithm, the expected total wasted
bandwidth is o(n) in the average-case model if and only if � < 1 is su�cient for stability in
the family of stochastic models. Expected total wasted bandwidth is known to be O(

p
nk)

for First Fit packing [4] and customer types independently and uniformly distributed on
f1; : : : ; k � 1g. This result and our Theorem 5 on the more general symmetric distributions
lends support for the conjecture.

Further support is provided by recent results of Albers and Mitzenmacher [1] who showed
that, in the average-case model, the expected wasted bandwidth under First Fit is O(1)
when b1 = � � � = bk�2 = 1=(k� 2). The 
uid approach shows easily that First Fit is stable in
the corresponding stochastic model with intensities �1 = � � � = �k�2 and �k�1 = 0, and with
� < 1. In fact, the proof of Theorem 2 is easily generalized to prove the same result for any
set of intensities satisfying: (i) �1 is arbitrary, (ii) for some given integer m; 2 � m < k=2,
we have the symmetry �i = �k�i for all i; m � i � k �m, and (iii) all other intensities are
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Appendix

Proposition 1 Consider First Fit bandwidth packing with k = 7 and Poisson input 
ows of
only types 2 and 3 customers, with intensities satisfying �2 = 2�3 > 0. There exists a � > 0
such that the system with � > 1� � is unstable.

Proof sketch We consider �rst a simpler, `saturated' version of the system in which new
arrivals are generated if and only if there is room for more customers in the current time slot.
In other words, when packing the current time slot, if the entire queue has been scanned and
2/7 of the time slot is still empty, the queue is immediately extended by new arrivals, with
the numbers of new customers of types 2 and 3 being Poisson distributed with means �2 and
�3. These arrivals are immediately available for further packing. The process is repeated as
necessary until the slot is at most 1/7 empty. The queue state just after each integer time is
a discrete-time countable Markov chain. Its ergodicity is easily veri�ed. It is also easy to see
that the average per-slot rates �2 and �3 at which customers of types 2 and 3 are served are
such that �3 = �2=2 < 1. Also, the Markov chain can be viewed as a regenerative process
with an empty queue being a regeneration state. All moments of the regeneration cycle are
�nite.

Let us now return to our original system with �2 and �3 such that �3 < �3 = �2=2 < 1,
which means �3 < � < 1. This system is unstable. To prove this, we consider an initial state
formed by arrivals without service (packing is suspended) for M time slots, with M large.
When the packing starts, the packing process is indistinguishable from the packing process
in the saturated system, until the time slot when the last initial customer is reached (i.e.,
scanned for the �rst time). It will take approximately �M time slots, with � = �3=�3 > 1;
for the packing process to reach the last initial customer. By that time, the queue is longer
than the initial queue; it is extended by new arrivals during approximately �M time slots.
The packing process will then take approximately �2M slots to reach the end of that queue.
This continues, with the maximum queue length growing without bound. Using routine
large-deviation estimates, it is a simple matter to convert the above observations into a
rigorous argument that, with positive probability, the queue length tends to in�nity (see, for
example, the instability example in [11]).
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