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We consider the model where N queues (users) are served in discrete time by a generalized switch. The switch state is
random, and it determines the set of possible service rate choices (scheduling decisions) in each time slot. This model
is primarily motivated by the problem of scheduling transmissions of N data users in a shared time-varying wireless
environment, but also includes other applications such as input-queued cross-bar switches and parallel flexible server
systems.
The objective is to find a scheduling strategy maximizing a concave utility function H�u1� � � � � uN �, where uns are

long-term average service rates (data throughputs) of the users, assuming users always have data to be served.
We prove asymptotic optimality of the gradient scheduling algorithm (which generalizes the well-known proportional

fair algorithm) for our model, which, in particular, allows for simultaneous service of multiple users and for discrete sets
of scheduling decisions. Analysis of the transient dynamics of user throughputs is the key part of this work.
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1. Introduction
We consider the model of Stolyar (2004), where N queues
(users) are served in discrete time by a generalized switch.
The switch state is a random ergodic process, and it deter-
mines the set of possible service rate choices (scheduling
decisions) in each time slot. This model is motivated pri-
marily by the problem of scheduling transmissions of N
data users over a shared time-varying wireless environment,
which naturally arises, for example, in modern wireless
data technologies such as HDR (CDMA2000 1xEV-DO)
(Bender et al. 2000, Jalali et al. 2000). It also includes
as special cases other models and applications such as
input-queued cross-bar switches (McKeown et al. 1996,
Mekkittikul and McKeown 1996), a discrete time version of
the parallel server system (Harrison 1998, Williams 2000),
and a parallel-processing system (Gans and van Ryzin
1998). (Models of this type have long history, going back
to the work of Tassiulas and Ephremides 1992, 1993. See
Stolyar 2004 for a further review of the model history and
applications.)
In this paper, we consider the “saturated system” in which

each user has infinite amount of data to be served (trans-
mitted), and we are concerned with optimizing the vector
of average service rates (throughputs) u = �u1� � � � � uN � to
maximize some concave utility function H�u�. In the wire-
less data scheduling context, this problem was first con-
sidered by Tse (2004) (see also Viswanath et al. 2003), in
which the utility function

∑
log�un�, and the corresponding

proportional fair (PF) scheduling algorithm (defined below)
were introduced for the model in which (as in HDR) one
user can be served (transmit data) at a time.
The gradient algorithm (defined below) is a natural gen-

eralization of the PF algorithm in that it applies to any
concave utility function and to the systems where multiple
users can be served at a time. The goal of this paper is
to formally prove (asymptotic) optimality of the gradient
algorithm for our rather general model, which in particular
allows for (a) simultaneous service of multiple users and
(b) the set of scheduling decisions to be discrete (as is the
case in HDR and other wireless data technologies).
To describe our main results and connections to previ-

ous work, let us first describe the model in more detail.
(The formal description will be given in §3.) Queues (users)
n = 1� � � � �N , are served by a switch in discrete time
t = 0�1�2� � � � � Switch state m= �m�t�� t = 0�1�2� � � �� is
a random ergodic process. In each state m, the switch can
choose a scheduling decision k from a set K�m�. Each
decision k has the associated service rate vector 
m�k�=
�
m

1 �k�� � � � �

m
N �k��. This vector represents the amount of

data of each user which will be served (transmitted) in one
“time slot” if decision k is chosen. (We emphasize the fact
that our model allows for features (a) and (b), specified
earlier.)
As mentioned earlier, we consider the situation when

each user always has data to be served, and we are
interested in optimizing the average service rates u =
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�u1� � � � � uN �. Namely, we seek to find a scheduling algo-
rithm that produces u solving the problem

max H�u�� (1)

subject to u ∈ V � (2)

where H�u� is a strictly concave smooth utility function,
and set V above is the system rate region, i.e., the set of all
feasible long-term service rate vectors. It is easily observed
that (under some natural nonrestrictive assumptions) V is
a convex closed bounded set, and consequently, the solu-
tion u∗ to the problem (1)–(2) exists and is unique. (As
we comment later in the paper, the assumption of strict
concavity of utility function H is not essential. See §12.)
The gradient algorithm is defined as follows. If at time t

the switch is in state m, the algorithm chooses a (possibly
nonunique) decision

k�t� ∈ argmax
k

�H�X�t�� ·
m�k��

maximizing the scalar product with the gradient ofH�X�t��,
where the vector X�t� is updated as follows:

X�t+ 1�= �1−��X�t�+�
m�k��

with arbitrary initial value X�0� and with � > 0 being a
fixed (small) parameter. (We see from this definition that,
roughly, vector X�t� represents exponentially smoothed
average service rates.)
The PF algorithm is the gradient algorithm with utility

function H�u�=∑
log�un�. Also, very often the PF algo-

rithm is considered for the “one-at-a-time” case, when ser-
vice rate vectors 
m�k� can have no more than one nonzero
component. In other words, in each time slot, only one user
can be picked for service; and if user n is picked, it is
served at the rate 
m

n , depending on the switch state m. In
this case the PF algorithm is particularly simple (Tse 2004,
Jalali et al. 2000)—in each time slot t it serves the user n
for which 
m

n /Xn�t� is maximal.
In this paper, we prove the following property for our

model.

Property 1. (Asymptotic Optimality of the Gradient
Algorithm). Let u� denote the vector of expected average
service rates in a system with fixed parameter �> 0. Then,
as �→ 0, u� → u∗.

The rates u� are defined in terms of averages over
finite time intervals. Formal definitions and corresponding
results, Theorem 1 and Corollary 1, are presented in §7.
The results show that the convergence in Property 1 holds
in a strong sense.
Establishing Property 1 naturally involves the analysis

of the (limiting, continuous time) trajectories of the pro-
cess X�t/��, with small fixed �> 0. Such trajectories x=

�x�t�� t � 0�, which we call fluid sample paths (FSPs), sat-
isfy, in particular, the differential inclusion

x′�t�= v�t�− x�t�� v�t� ∈ argmax
v∈V

��H�x�t��� · v� (3)

As the key element of proving Property 1, we prove the
following attraction property of FSPs.

Property 2. (Attraction Property). The convergence

x�t�→ u∗� t→


holds for any FSP x, with any initial state x�0�. (In fact, we
prove uniform convergence on the initial states x�0� from
a bounded set. See Theorem 4 for precise formulation.)

The problem of asymptotic optimality of the gradient
algorithm was studied in the recent papers by Kushner and
Whiting (2002) and Agrawal and Subramanian (2002). In
particular, in those papers the differential inclusion (3) was
derived and the attraction Property 2 was proved, for some-
what different models and under certain constraints, which
we now discuss in more detail.
In both Kushner and Whiting (2002) and Agrawal and

Subramanian (2002) it is required that the argmax in (3)
is a single point v, depending on x�t� continuously. This
makes (3) a differential equation of the form

x′�t�= f �x�t��� (4)

with continuous f �·�. In essence, this is the condition that
rate region V is strictly convex. Such a condition does not
hold, for example, if the set of all possible scheduling deci-
sions is finite—a situation typical in many applications,
including HDR (Bender et al. 2000, Jalali et al. 2000).
The proof of convergence Property 2 in Kushner and

Whiting (2002) relies in an essential way on a further
assumption that the dynamics described by (4) is cooper-
ative. This roughly means that the vector function f �u�
is such that if we decrease all components of vector u
except one, say ui, then fi�u� will also decrease. This is
another condition on the shape of V . It holds in the one-at-
a-time case (when the service rate vectors 
m�k� can have
at most one nonzero component). However, it does not hold
in many important cases when multiple users can be served
simultaneously in one time slot, as in Viswanathan et al.
(2003) (or in cross-bar switch models).
In Agrawal and Subramanian (2002), Property 2 is

proved under the additional assumption that the initial state
x�0� ∈ V . (In this case H�x�t�� is a natural Lyapunov
function, which is no longer the case if x�0� is outside
of V .) This assumption is restrictive for the following two
(related) reasons. First, such a form of Property 2 does
not imply the asymptotic optimality Property 1. Second, in
applications and especially wireless applications, the sta-
tionarity of the switch (channel) state process is only an
approximation—the “stationary” distribution of this process
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is subject to both slow and sudden changes (for example,
due to arrival and departure of users). Therefore, the ability
of an algorithm to bring system to the optimal state from
any initial state is in fact required for algorithm robustness
in real applications.
Our proof of Property 2 follows a “geometric” approach

(inherited from Stolyar 2004), which does not rely on the
cooperative dynamics assumption or on the condition that
rate region is strictly convex, or on the utility function H
as the sole Lyapunov function. As a result, we are able to
establish Property 2, and consequently the asymptotic opti-
mality Property 1, in the desired generality, which allows
in particular for features (a) and (b) of the model.
We also note that the proofs of Property 2 in Kushner

and Whiting (2002) and Agrawal and Subramanian (2002)
exclude the utility functions of the type

∑
log�un�, which

take value −
 when some un = 0. Due to the wide use of
such (somewhat less “benign”) utility functions in applica-
tions, we include them in our results. To do this, for such
utility functions we prove and use additional properties of
FSPs, beyond the basic differential inclusion (3).
To summarize, the main contributions of this paper are

as follows:
The key attraction property (Property 2) of FSPs under

the gradient algorithm is proved for arbitrary initial state,
and moreover, uniformly on the initial states from a
bounded subset;
Property 2 is proved under very general (but common in

applications) assumptions on the model and utility function;
The asymptotic optimality (Property 1) of the gradient

algorithm is proved, based on the Property 2.
Kushner and Whiting (2002) and Agrawal and

Subramanian (2002) also consider versions of the gradi-
ent algorithm, such that the parameter � is not fixed but
rather is a decreasing vanishing function of time t. (A sim-
ilar parameter update procedure was also used in earlier
work (Liu et al. 2001, 2003) for the algorithms considered
there.) Such versions of the algorithm are asymptotically
optimal in the sense that long-term average throughputs
converge to the exact optimal values u∗, as time t → 
.
However, the smaller the initial value ��0�, the greater
the convergence time. The algorithm with fixed � (which
we study in this paper) is different in that it brings user
throughputs into a (small) neighborhood of u∗. However,
as we show, the convergence is within the time of the
order of O�1/��, uniformly on essentially any initial state.
(This is because, in applications, usually there exists some
a priori known upper bound a on the maximum possi-
ble service rate of any user at any time. As a result, as
long as all Xn�0�� a, the components of X�t� will always
stay bounded by a.) This means that the algorithm is able
to adjust to the “environment” changes without resetting
the algorithm parameters. Such robustness of the algorithm
with fixed � is very desirable in applications (as already
mentioned earlier).

The rest of this paper is organized as follows. In §2,
we introduce basic notations and conventions used in this
paper. We introduce the formal model in §3, and in §4
define the system rate region V . The optimization prob-
lem for the average user rates is formulated in §5, and the
gradient scheduling algorithm is defined in §6. The asymp-
totic optimality results (Theorem 1, Corollary 1, and The-
orem 2), which formalize and strengthen Property 1, are
presented in §7. Section 8 contains formal definition of
FSPs, formulations of their basic properties, and the pro-
cess level convergence result (Theorem 3). The main result
on uniform attraction of FSPs (Theorem 4), which formal-
izes Property 2, is formulated and proved in §9. Section 10
contains proofs of the basic properties of FSPs (formulated
in §8). In §11, we prove Theorems 1, 2, and 3. Finally, §12
contains concluding remarks, in particular, a discussion of
our model assumptions and techniques.

2. Notation
We will use standard notations R and R+ for the sets of real
and real nonnegative numbers, respectively. Correspond-
ing N -times product spaces are denoted RN and RN

+ . The
space RN is viewed as a standard vector space, with ele-
ments x ∈RN being row vectors x = �x1� � � � � xN �. The
scalar product of x� y ∈RN is

x · y �=
N∑
n=1

xnyn�

and the norm of x is

�x� �=√
x · x�

Sometimes we use notation

��x� y�
�= �x− y�

for the distance between vectors x and y, and notation

��x�V �
�= inf
y∈V

��x� y�

for the distance between vector x and a set V ⊆RN .
Suppose that x is an N -dimensional vector with nonneg-

ative components xn, and V is a finite closed subset of RN .
Then,

argmax
v∈V

x · v

denotes the subset of vectors v ∈ V with the maximum value
of x · v. We do not exclude the case when xn = +
 for
some n. For this case we use the convention that the product
�+
� c is equal to −
, 0, and +
, if c is negative, zero,
and positive, respectively. Thus, if xn = +
 and V ⊆ RN

+ ,
then any u ∈ V with un > 0 belongs to argmaxv∈V x · v.
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For a scalar function h�t� of a real variable t, we use the
following notations for the lower and upper right derivative
number:

d+
dt

h�t�= lim inf
dt↓0

h�t+dt�−h�t�

dt
�

d+

dt
h�t�= lim sup

dt↓0

h�t+dt�−h�t�

dt
�

The abbreviation u.o.c. means uniform on compact sets
convergence of functions.

3. The Model
We consider the following queueing system. (This system
is same as in Stolyar 2004, where it is called generalized
switch.) There is a finite set N = "1�2� � � � �N # of queues
(and corresponding “customer types”) served by a switch.
(We will use the same symbol N for both the set and its
cardinality.) In this paper, we assume that queues always
have sufficient “supply” of customers to serve.
The system operates in discrete time t = 0�1�2� � � � � By

convention, we will identify an (integer) time t with the unit
time interval �t� t + 1�, which will sometimes be referred
to as the time slot t.
The switch has a finite set of switch states M . In each

time slot, the switch is in one of the states m ∈ M , and
the sequence of states m�t�, t = 0�1�2� � � � , forms an irre-
ducible (finite) Markov chain with stationary distribution
"%m� m ∈M#,

%m > 0 ∀m ∈M�
∑
m∈M

%m = 1�

When the switch is in state m ∈ M , a finite number
of scheduling decisions can be made, which form a finite
set K�m�; if a decision k ∈K�m� is chosen at time t, then
the “amount” 
m

n �k�� 0 of “customers” of type n ∈N are
served and depart the system at time t+ 1. We will denote
by 
m�k�

�= �
m
1 �k�� � � � �


m
N �k�� ∈ RN

+ the corresponding
vector of service rates, and make a nondegeneracy assump-
tion that for any type n ∈ N , there exists at least one state
m ∈M and a decision k ∈K�m� such that 
m

n �k� > 0. (The
values of 
m

n �k� are real numbers, not necessarily integers.
For exposition purposes, we sometimes refer to 
m

n �k� as
“number of customers.”)
We denote by 
̄ the maximum of the values of 
m

n �k�
over all possible triples �n�m�k�, and by 
> 0 the smallest
strictly positive value of 
m

n �k� over all �n�m�k�.

4. System Rate Region
In this section, we define the system rate region V ⊆ RN

+ .
Elements v ∈ V represent all possible vectors of long-term
average service rates, which can be provided by the system
to the set of queues.
Suppose, for each of the switch states m ∈M , a prob-

ability distribution &m = �&mk� k ∈ K�m�� is fixed, which

means that &mk � 0 for all k ∈K�m�, and
∑

k &mk = 1. For
such a set of distributions &

�= �&m� m ∈M�, consider the
following vector:

v�&�= ∑
m∈M

%m

∑
k∈K�m�

&mk

m�k��

If we interpret &mk as the long-term average fraction of
time slots when scheduling decision k ∈ K�m� is chosen
among the slots when the switch state is m, then v�&� is
the corresponding vector of long-term average service rates.
(The static service split (SSS) scheduling rule from Stolyar
2004, parameterized by &, can serve as an example of a
rule that provides average service rate vector equal to v�&�;
when switch is in state m, the SSS rule chooses one of the
scheduling decisions k ∈K�m� randomly, according to the
distribution &m.)
The system rate region V is defined as the set of all

(average service rate) vectors v�&� corresponding to all
possible &. Obviously, V is a closed bounded convex set
in RN

+ , as a linear image of the closed bounded convex set
of possible values of &. Rate region V may turn out to be
degenerate (i.e., have dimension less than N ).
For future reference, note that the following equality

holds for any fixed vector ' ∈RN :

max
v∈V

' · v= ∑
m∈M

%m max
k∈K�m�

' ·
m�k�� (5)

5. Optimization Problem for the
Rate Allocation

Consider the following optimization problem:

max H�u� (6)

subject to u ∈ V � (7)

where H�u� is a strictly concave utility function. We will
consider two types of utility functions, defined as follows.

Type (I) Utility Function. H�u� is a continuous strictly
concave function on RN

+ . Moreover, H�u� is continuously
differentiable, i.e., the gradient �H is finite and continuous
everywhere in RN

+ .

Type (II) Utility Function. H�u�=∑
n Hn�un�, where

each Hn�un� is a strictly concave continuously differen-
tiable function, defined for all un > 0, and such that
Hn�un� ↓ −
 as un ↓ 0. (The definition implies H ′

n�un� ↑
+
 as un ↓ 0. We adopt the conventions that Hn�0�=−

and H ′

n�0�=+
.)
Remark 1. The assumption of strict concavity of utility
function H is not essential for the main results of this paper.
See §12 for a more detailed comment.

Type (I) utility functions are more “benign.” The exam-
ples of interest include H�u�=∑

n log�cn+un� or H�u�=∑
n cnun, or a “mixture” of the two (with some log and
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some linear components), with cn > 0 being fixed con-
stants. (As noted above, strict concavity of H is not essen-
tial.) The system dynamics under the gradient algorithm
with a type (I) utility function is rather simple. Type (II)
functions have additive form, but the components are not
bounded and have infinite derivative at 0, which somewhat
complicates analysis. The PF utility function

∑
n log�un�,

widely used in applications, is of type (II). This is one of
the reasons why we do not want to exclude such utility
functions from our analysis.

Proposition 1. Suppose that the utility function H is of
either type (I) or type (II). Then, solution u∗ to problem
(6)–(7) exists and is unique.

Proof. The proof is trivial for type (I) utility function H ,
because V is a bounded convex compact set and H is
strictly concave. For type (II) utility function H , its domain
needs to be first restricted to a compact set V ∩ �(�
�N ,
with ( > 0 small enough so that the supremum of H is
certainly attained within this set. �

Remark 2. Our definition of the utility function does not
require that H is nondecreasing in each argument, so the
optimal point u∗ is not necessarily a point on the outer
(“north-east”) boundary of V . However, in many applica-
tions of interest this would be the case.

6. Gradient Scheduling Algorithm
Now consider the random process describing behavior of
the system under the following scheduling algorithm which
is called the gradient algorithm.

Gradient Algorithm

If at time t switch is in state m, choose a scheduling
decision

k�t� ∈ argmax
k∈K�m�

��H�X�t��� ·
m�k��

where X�t�= �X1�t�� � � � �XN �t�� is the vector of the aver-
age service rate estimates, which is updated as follows:

X�t+ 1�= �1−��X�t�+�
m�t��k�t���

with � > 0 being a (small) parameter. The initial vector
X�0� ∈RN

+ is arbitrary.

Let us denote

S�t�
�= �X�t��m�t���

Our assumptions imply that S = "S�t�� t = 0�1� � � �# is a
discrete time Markov chain with the state space RN

+ ×M .

7. Asymptotic Optimality of the
Gradient Algorithm

This section presents the results showing that, as � ↓ 0,
the average user service rates converge to the optimal solu-
tion u∗ of problem (6)–(7). Moreover, this convergence is
uniform (in the sense specified in Theorem 1).
First, we need to define the asymptotic regime. From

this point on in the paper, we consider a sequence of pro-
cesses S�, indexed by the value of parameter �, with � ↓ 0
along a sequence �= "�j� j = 1�2� � � �# such that �j > 0
for all j . The initial state S��0�= �X��0��m��0�� is fixed
for each � ∈�. (Here and below, the processes and vari-
ables pertaining to a fixed parameter � will be supplied the
upper index �. Expression � ↓ 0 means that � converges
to 0 along the sequence �, unless otherwise specified.)
The probability law of the Markov chain m��·� describ-

ing the switch state process is the same for each �.
Let us denote by U��l1� l2� the vector of average service
rates in the interval �l1� l2�. Namely, for a pair of integers
1� l1 � l2,

U��l1� l2�
�= 1
l2− l1+ 1

l2∑
j=l1

D��j��

where D��l�= 
m�l−1��k�l− 1�� is the vector of numbers
of customers that were served in slot l−1 (with k�l−1� ∈
K�m�l− 1�� being the scheduling decision chosen in slot
l− 1).
Theorem 1. Let A be a bounded subset of RN

+ . Then, for
any / > 0 there exist T > 0 and T ∗ > 0 (both depending
on / and A), such that

lim
�↓0

sup
X��0�∈A� l1>T /�� l2−l1>T ∗/�

�EU��l1� l2�− u∗�< /� (8)

Corollary 1. Suppose that for each � we consider a sta-
tionary version of the process S�, in which case ED��1�=
EU��l1� l2� ( for any integer 1� l1 � l2) is simply the aver-
age service rate vector. Then,

lim
�↓0

ED��1�= u∗� (9)

Proof. The proof of Theorem 1 is presented in §11. It is
obtained using the following uniform convergence in prob-
ability result for X�.

Theorem 2. Let A be a bounded subset of RN
+ . Then, for

any / > 0 there exists T > 0 (depending on / and A) such
that

lim
�↓0

sup
X��0�∈A� t>T /�

P"�X��t�− u∗�> /#= 0� (10)

Proof. Presented in §11.
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8. Fluid Scaled Processes and Fluid
Sample Paths

Consider the sequence of systems introduced in the pre-
vious section, with parameter � ↓ 0. In this section, for
each � we consider the random processes (describing
system evolution) under fluid scaling and study asymp-
totic behavior of the sequence of fluid-scaled processes
as � ↓ 0.
In the rest of this section, we will specify the processes

describing system evolution, formally define fluid-scaled
processes, and introduce the notion of FSPs, which are,
roughly speaking, possible limits of realizations of fluid-
scaled processes. The section is concluded by the pro-
cess level convergence result, Theorem 3, which (roughly)
shows that fluid-scaled processes converge to processes
with realizations being FSPs.

8.1. Fluid Scaled Processes

Let us extend the definition of X��t� to continuous time
t ∈ R+ by adopting the convention that X��t� is constant
within each time slot �l� l + 1�. For each �, let us define
some additional random functions, associated with the sys-
tem evolution. We define them for continuous time t ∈ R+
as well, although they (just as X��t�) are constant within
each time slot �l� l+ 1�. Let

�F �
n �t�

�=
�t�∑
l=1

D�
n �l�

denote the number of type n customers that were served
by time t � 0 (i.e., in the interval �0� t�), where D�

n �l� =

m�l−1�
n �k�l−1�� is the number of type n customers served
in slot l− 1, and k�l− 1� ∈K�m�l− 1�� is the scheduling
decision chosen in slot l − 1. Denote by G�

m�t� the total
number of time slots by (and including) time t − 1, when
the server was in state m; and by �G�

mk�t� the number of
time slots by (and including) time t − 1, when the server
state was m and the scheduling decision k ∈ K�m� was
chosen.
Obviously, for any n ∈ N , m ∈ M , and k ∈ K�m�, we

have

�F �
n �0�= 0� G�

m�0�= 0� �G�
mk�0�= 0�

and we have the following relations:

G�
m�t�=

∑
k∈K�m�

�G�
mk�t�� t � 0�

�F �
n �t�=

∑
m∈M

∑
k∈K�m�


m
n �k� �G�

mk�t�� t � 0�

Recall that for any n ∈N and all integer l� 1,

X�
n �l�= �D�

n �l�+ �1−��X�
n �l− 1�� (11)

We define the process Z�, describing system evolu-
tion, as

Z� = �X�� �F ��G�� �G���

where

X� = �X��t�= �X
�
1 �t�� � � � �X

�
N �t��� t � 0��

�F � = � �F ��t�= � �F �
1 �t�� � � � � �F �

N �t��� t � 0��

G� = ��G�
m�t�� m ∈M�� t � 0��

�G� = �� �G�
mk�t�� m ∈M� k ∈K�m��� t � 0��

For each �, consider the following process z�, which is a
fluid-scaled version of process Z�:

z� = �x�� f̂ �� g�� ĝ���

where x� is obtained by time scaling only

x��t�
�=X��t/���

and the other components by time and space scaling

f̂ ��t�
�= � �F ��t/��� g��t�

�= �G��t/���

ĝ��t�
�= � �G��t/���

Note that the component functions of z� are piecewise con-
stant with a “time slot” of the length �.
Recall that the probability law of the Markov chain m��·�

describing the switch state process is the same for each �,
and therefore for any m ∈M and any fixed 0� t1 � t2 <
,
we have the law of large numbers:

g�m�t2�− g�m�t1�→%m�t2− t1� in probability� (12)

8.2. Fluid Sample Paths Under the
Gradient Algorithm

We now define FSPs, which are fixed trajectories arising
as possible limits of sequences (on �) of z� realizations,
given the realizations of g� satisfy the functional law of
large numbers (see (13) below).

Definition. A fixed set of functions z = �x� f̂ � g� ĝ� we
will call a FSP if there exists a sequence �0 of positive
values of � such that � ↓ 0, and a sequence of sample paths
(of the corresponding processes) "z�# such that (as � ↓ 0
along sequence �0)

z� → z u�o�c��

and in addition

�x�0��<
�

�g�m�t�� t � 0�→ �%mt� t � 0� u�o�c� ∀m ∈M� (13)
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Remark. A sequence �0 whose existence is required in
the above definition may be completely unrelated to the
sequence � we introduced earlier.

If x= �x�t�� t � 0� is a component of at least one FSP, this
function x in itself we will often call an FSP.
The following two lemmas describe some properties of

FSPs. We note that these properties may not characterize
the family of FSPs completely. However, they are the only
ones we will need in the rest of the paper.

Lemma 1. For any FSP z, all its component functions are
Lipschitz continuous in �0�
�, with the Lipschitz constant
C + �x�0��, where C > 0 is a fixed constant depending
only on the system parameters. In addition, the functions
gm�·�, ĝmk�·�, and f̂ �·� are nondecreasing, and satisfy the
following relations:

gm�t�=%mt� t � 0� m ∈M� (14)

gm�t�=
∑

k∈K�m�
ĝmk�t�� t � 0� m ∈M� (15)

f̂ �t�= ∑
m∈M

∑
k∈K�m�


m�k�ĝmk�t�� t � 0� (16)

Proof. The proof is in §10.

Because all component functions of an FSP are
Lipschitz, they are absolutely continuous; therefore almost
all points t ∈ R+ (with respect to Lebesgue measure) are
such that all component functions of z have proper deriva-
tives (that is, both right and left derivatives exist and are
equal). We will call such points regular.

Lemma 2. The family of FSPs z satisfies the following
additional properties:
(i) For almost all t � 0 (with respect to Lebesgue mea-

sure), we have

x′�t�= v�t�− x�t�� (17)

where

v�t�
�= �d/dt�f̂ �t�= ∑

m∈M

∑
k∈K�m�

ĝ′mk�t�

m�k� (18)

satisfies the condition

v�t� ∈ argmax
v∈V

��H�x�t��� · v� (19)

(ii) “Boundary condition.” Suppose that the utility func-
tion H is of type (II). Suppose, for some t � 0 and some
subset B ⊆ N , xi�t�= 0 if i ∈ B and xi�t� > 0 if i ∈ N\B.
Then,

d+
dt

∑
i∈B

xi�t�� c > 0�

where c > 0 is a fixed constant depending only on the sys-
tem parameters.

(iii) “Compactness.” If a sequence of FSPs z�j� → z
u.o.c. as j →
, then this z is also an FSP. Moreover, if
a sequence x�j� → x u.o.c. as j →
, where x�j� are com-
ponents of some FSPs z�j�, then x is a component of some
FSP z.

Proof. The proof is in §10.

Property (i) in the above lemma says that any FSP x is
a solution to the differential inclusion

x′�t�= v�t�− x�t�� v�t� ∈ argmax
v∈V

��H�x�t��� · v� (20)

This is the only FSP property needed to prove our main
results for type (I) utility functions. To deal with type (II)
utility functions, we will use properties (ii) and (iii) as well.

8.3. Process Level Convergence

We will view random processes x� as processes with real-
izations in the Skorohod space DRN �0�
� of functions
with domain �0�
�, taking values in RN , which are right-
continuous and have left limits. The Skorohod topology and
corresponding Borel <-algebra on DRN �0�
� are defined
in the usual way. (See Ethier and Kurtz 1986 for the
definition.)

Theorem 3. Consider the sequence of processes "x�# with
� ↓ 0 such that x��0�→ x�0�, where x�0� ∈ RN

+ is a fixed
vector. Then, the sequence "x�# is relatively compact and
any weak limit of this sequence (i.e., a process obtained as
a weak limit of a subsequence of "x�#) is a process with
sample paths being FSPs with probability 1.

Theorem 3 is analogous to the corresponding process
convergence results in Kushner and Whiting (2002) and
Agrawal and Subramanian (2002). Note, however, that The-
orem 3 is stronger in the sense that it claims that the limit-
ing process is concentrated on the family of FSPs, which is
“narrower” than simply the family of solutions of the dif-
ferential inclusion (20). This subtlety is important because
we use this theorem in conjunction with Theorem 4, which
holds for the FSPs but (in the case of Type (II) utility func-
tion) may or may not hold for a wider class of solutions
of (20). This also affects the proof.

Proof. The proof is in §11.

9. Uniform Attraction of Fluid
Sample Paths

The following FSP uniform attraction theorem is the key
result of this paper.

Theorem 4. Suppose that H is a utility function of either
type (I) or type (II). Then, the family of FSPs x has the
following property: For any bounded subset A⊂RN

+ ,

x�t�→ u∗� t→
� (21)

uniformly on x�0� ∈A.
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Note that Theorem 4 can be viewed as a “deterministic
analog” of Theorem 2. In fact, as we will see, the proof
of Theorem 2 easily follows from Theorem 4 along with
Theorem 3.

Proof. The proof of Theorem 4 is the subject of the rest
of this section. Throughout this proof, without loss of gen-
erality, we assume that the set A is closed, and therefore
compact.

9.1. Uniform Convergence to the Set V

Lemma 3 formalizes a simple, but nevertheless important,
general observation that if derivative x′�t� is always a vec-
tor from x�t� to an arbitrary point within a convex set V ,
then the distance from x�t� to V can only decrease. Note
that in the differential inclusion (22) in Lemma 3 it is
required only that v�t� ∈ V . (There is no condition v�t� ∈
argmax��H�x�t��� · v.)
Lemma 3. Suppose that V is a convex bounded closed sub-
set of RN . Suppose that a vector function �x�t�� t � 0�,
taking values in RN , is Lipschitz continuous, satisfying the
following differential inclusion for almost all t � 0:

x′�t�= v�t�− x�t�� v�t� ∈ V � (22)

Then, the distance ��x�t��V � between x�t� and the set V is
a Lipschitz continuous nonincreasing function, and more-
over, for almost all t � 0,

d

dt
��x�t��V ��−��x�t��V �� (23)

which implies that

��x�t��V �� ��x�0��V �e−t �

As we see, under the conditions of this lemma, the func-
tions satisfying (22) converge to set V uniformly on the
initial states from a bounded set. For ease of reference we
record this fact as Corollary 2 below.
For / � 0, let us denote by V/, the /-thickening of a

subset V ⊆RN , namely

V/
�= "y ∈RN � ��y�V �� /#�

Corollary 2. Let arbitrary bounded set A ⊂ RN and
arbitrary / > 0 be fixed. Then, there exists T1 = T1�/�A�
such that for any �x�t�� t � 0� satisfying the conditions of
Lemma 3 and x�0� ∈A,
x�t� ∈ V/ ∀ t � T1�

Proof of Lemma 3. Lipschitz continuity of ��x�t��V � fol-
lows from the fact that x�t� is Lipschitz continuous. To
prove the rest of the statement, it suffices to show that (23)
holds for t = >, where > > 0 is a regular point such that
��x�>��V � > 0. Consider the point ? which is the (unique)
point of V closest to x�>�, i.e., ��x�>�� ?� = ��x�>��V �

Figure 1. Proof of Lemma 3.

v1

v2

V ξ

v(θ) x(θ)

y(t)

α

α1
α2

(see Figure 1). Consider the vectors

@1 = ?− x�>�� @2 = v�>�− ?�

and

@= v�>�− x�>�= @1+@2�

Consider the auxiliary linear function

y�t�= ?+@2�t− >�� t � >�

and note that y�t� ∈ V for all sufficiently small increments
�t− >�� 0. Then, we can write

d+

dt
��x�t��V ��

d

dt
��x�t�� y�t��

=−�@1� =−��x�>��V �� �

9.2. Proof of Theorem 4 for Type (I)
Utility Function

From the FSP properties described in Lemma 2, this proof
uses only property (i), i.e., the differential inclusion (20).
The key idea of this proof is that as long as x�t� is out-

side of a A-neighborhood OA�u
∗� of point u∗, but is close

enough to V (which is guaranteed by Lemma 3, after some
initial uniformly bounded time), then H�x�t�� <H�u∗�. As
a result, the derivative �d/dt�H�x�t�� must be strictly pos-
itive. This is because

d

dt
H�x�t��= ��H�x�t��� · �v�t�− x�t��

� ��H�x�t��� · �u∗ − x�t��

(where the inequality follows from (20)), and the right-
hand side is strictly positive by concavity of H and
inequality H�x�t�� < H�u∗�. Additional estimates show
that �d/dt�H�x�t�� is not only positive but is also bounded
away from 0 (for x�t� satisfying the above conditions). The
detailed proof is as follows.
Let us fix arbitrary A > 0. Then, fix / > 0 small enough

so that h∗ < H�u∗�, where h∗ is the maximum of H�y�
over the subset UA�/

�= V/\OA�u
∗�. Using concavity and
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smoothness of H , it is easy to verify that at any point
y ∈UA�/, the directional derivative of H in the direction of
point u∗ is at least �H�u∗�−h∗�/A, namely

��H�y�� · �u∗ − x��
H�u∗�−h∗

A
�u∗ − y�

�H�u∗�−h∗� (24)

By Corollary 2 (from Lemma 3), there exists T1 such that
x�t� ∈ V/ for all t � T1. Then, for any regular point t � T1
such that x ∈UA�/ we have

d

dt
H�x�t��= ��H�x�t��� · �v�t�− x�t��

� ��H�x�t��� · �u∗ − x�t���H�u∗�−h∗�

Because H�u∗�−h∗ > 0, we see that there exists a constant
T2 � T1 such that (uniformly on x�0� ∈A)
t2 =min"t � T1 � x�t� ∈ �OA�u

∗�#� T2�

i.e., x�t� must “hit” the closed neighborhood �OA�u
∗� no

later than at time T2.
For all t � t2, we must have H�x�t�� � h∗, where h∗

is the minimum of H�x� over x ∈ V/ ∩ �OA�u
∗�. (This is

because for t � T1, H�x�t�� cannot decrease outside of
�OA�u

∗�.) Because our A > 0 could be chosen arbitrarily
small, we observe that (uniformly on x�0� ∈A)
lim inf
t→
 H�x�t��=H�u∗�� (25)

Finally, there exists T3 � T2 such that (uniformly on
x�0� ∈A) for all t � T3,

x�t� ∈ V/ ∩ �OA�u
∗��

because otherwise (25) would not hold. �

9.3. Proof of Theorem 4 for Type (II)
Utility Function

This proof uses all three FSP properties (i)–(iii) established
in Lemma 2.
The key idea of the proof is the same as that for type (I)

utility function. However, a complication here is that before
we can use this idea, we need to establish that, after some
finite time, x�t� will not only stay close to V but will also
stay away from the boundary of the orthant RN

+ . This “addi-
tional work” is done below in Lemmas 4 through 7, and
this is where properties (ii)–(iii) of Lemma 2 are used.
As in the proof for type (I) utility function, let us fix

arbitrary A > 0, and then fix / > 0 small enough so that
h∗ < H�u∗�, where h∗ is the maximum of H�x� over the
subset UA�/

�= V/\OA�u
∗�. By Corollary 2 (from Lemma 3),

there exists T ′
1 such that x�t� ∈ V/ for all t � T ′

1 . (The above
statement and other statements in this proof hold uniformly
on x�0� ∈A, unless specified otherwise.)

The rest of the proof consists of the following sequence
of steps.

Lemma 4. At any regular point t > 0, we have xi�t� > 0
for all i.

Proof. Suppose not. Consider the subset B⊆N of types i
such that xi�t�= 0. Because t is a regular point, we must
have x′i�t� = 0. (Otherwise xi�·� would be negative just
before or just after time t.) Consequently,

∑
i∈B x′i�t� = 0.

This, however, contradicts Lemma 2(ii). �

Lemma 5. For all t > T ′
1 , we have xi�t� > 0 for all i.

Proof. We can choose a regular point t′ > T ′
1 , arbitrar-

ily close to T ′
1 . We have H�x�t′�� > −
 because all

xi�t
′� > 0. Similar to the way it is established in the proof

for type (I) utility function, we see that H�x�t�� has a
strictly positive derivative at any regular point t ∈ �T ′

1�
�
such that H�x�t�� >−
 and x�t� ∈UA�/. This implies that
H�x�t�� >−
 for all t � t′1. �

Lemma 6. For any T1 > T ′
1 , there exists (1 > 0 such that

we have xi�T1�� (1 for all i.

Proof. Suppose not. Then, there exists a sequence of FSPs
(with initial states within the compact set A) converging
u.o.c. to a function x = �x�t�� t � 0� such that for at least
one i, xi�T1�= 0. By Lemma 2(iii), this function x is also
an FSP with x�0� ∈A. This contradicts Lemma 5. �

Lemma 7. For any T1 > T ′
1 , there exists ( > 0 such that we

have xi�t�� ( for all i and all t � T1.

Proof. Let us fix arbitrary T1 > T ′
1 and choose a small

(1 > 0 such that the statement of Lemma 6 holds. Without
loss of generality, we can assume that (1 is small enough
so that

H�(1� � � � �(1� <min
x∈ �OA

H�x��

Then, again using the fact that H�x�t�� has a strictly pos-
itive derivative at any regular point t ∈ �T ′

1�
� such that
H�x�t�� >−
 and x�t� ∈UA�/, it is easy to see that

H�x�t���H�(1� � � � �(1� ∀ t � T1�

This easily implies that all xi�t� must stay separated from 0
in �T1�
�. �

Thus, we have proved that there exists T1 > 0 such
that for all t � T1, x�t� ∈ V/�(

�= V/ ∩ "xi � (�∀ i#. Note
that H�x� is bounded on V/�(. Given this fact, the rest of
the proof is virtually identical to the proof for the type (I)
utility function. (Namely, the choice of constants T2 and T3,
and the proofs of the corresponding properties repeat those
in the proof for type (I) utility function verbatim.)
The proof of Theorem 4 for the type (II) function H is

complete.
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10. Proofs of Lemmas 1 and 2
Proof of Lemma 1. Consider a fixed FSP z and a se-
quence of paths z� “defining it.” For each �, Z� is the
“unscaled” path from which z� is obtained.
To prove the Lipschitz property of the components of z,

let us recall the X�
n �·� update equation (11):

X�
n �l�= �D�

n �l�+ �1−��X�
n �l− 1�� (26)

Applying this equation iteratively for l = 1�2� � � � , we
obtain

X�
n �l�= �X�

n �l�+ �1−��lX�
n �0�� (27)

where

�X�
n �l�

�=
l−1∑
j=0

��1−��jD�
n �l− j�� (28)

We see that for any l� 1,

�X�
n �l�� 
̄= max

n�m�k

m
n �k�� (29)

because �X�
n �l� is simply the weighted sum of the val-

ues of D�
n �0�� � � � �D

�
n �l� (with positive weights summing

up to at most 1), and each of those values is of course
bounded above by 
̄. We can notice (for future reference)
that expressions (27)–(29) imply that

X�
n �l��max"
̄�X

�
n �0�# ∀ l� 0� (30)

Let us rewrite (26) as follows:

X�
n �l�−X�

n �l− 1�= �D�
n �l�−�X�

n �l− 1�� (31)

We see that

�X�
n �l�−X�

n �l− 1��� ��D�
n �l�+ �X�

n �l− 1�+X�
n �0��

� ��2
̄+X�
n �0��� (32)

All other components of the process Z� are nondecreasing,
and we trivially have for all integer l� 1 (and any n, m, k),

�F �
n �l�− �F �

n �l− 1�� 
̄�

G�
m�l�−G�

m�l− 1�� 1�
�G�
mk�l�− �G�

mk�l− 1�� 1�
These relations along with (32) imply that all components
of an FSP z are Lipschitz in �0�
� with the specified
Lipschitz constant, if we choose C large enough.
The facts that the functions gm�·�, ĝmk�·�, and f̂ �·�

are nondecreasing, and relations (14)–(16) as well, follow
directly from the definitions involved. �

Proof of Lemma 2. As in the proof of Lemma 1, consider
a fixed FSP z and a sequence of paths z� “defining it,”
along with their “unscaled” versions Z�.

To prove properties (i) and (ii), let us first derive the
basic integral equation for x�·� (Equation (35) below).
The derivation of this equation is essentially same as in
Kushner and Whiting (2002) and Agrawal and Subrama-
nian (2002); we present it for completeness. Let us sum up
Equations (31) for l= 1� � � � � j . We obtain

X�
n �j�−X�

n �0�= �
j∑

l=1
D�

n �l�−
j∑

l=1
�X�

n �l− 1�� (33)

Switching to scaled processes, for all integer j � 0 we have

x�n ��j�− x�n �0�= f̂ �
n ��j�−

∫ �j

0
x�n �?�d?� (34)

Using the fact that all limiting functions xn and f̂n are Lip-
schitz continuous and we have u.o.c. convergence z� → z,
we finally obtain the desired integral equation

xn�t�− xn�0�= f̂n�t�−
∫ t

0
xn�?�d?� t ∈R+� (35)

Because both x�·� and f̂ �·� are Lipschitz continuous, Equa-
tion (17) holds for every regular point t > 0.
Now, let us prove property (ii). (After that we will

prove (19), i.e., the rest of property (i).) Suppose that
B⊂N . (The proof for the case B = N is similar and in
fact simpler than that for B ⊂ N .) Because x�·� is contin-
uous, H ′

n�x�t��=+
 for n ∈ B and H ′
n�x�t�� is finite for

n ∈ B⊂N , we see that in a small neighborhood of time t,
the derivatives H ′

n�x�?�� for n ∈ B are large compared to
those for n ∈ B ⊂ N . More precisely, the following obser-
vation is true:

Observation 1. There exist sufficiently small fixed B> 0
and a constant ( > 1 (both depending on the values xn�t�
for n ∈N\B) such that for any ? ∈ �t−B� t+B�, any i ∈ B,
and any n ∈N\B,
H ′

i �xi�?�� > 0

and

H ′
i �xi�?��

�H ′
n�xn�?���

� (
N
̄



�

(Recall that 
 denotes the smallest strictly positive value
of 
m

n �k� over all n�m�k.)

This means that if we consider the “unscaled” paths Z�,
then for all sufficiently small � and any (positive integer)
time slot l within interval �t/�� t/�+ B/��, we have the
following property.

Observation 2. If for the state m = m�l − 1� the subset
of decisions k ∈K�m� such that 
m

i �k� > 0 for at least one
user i ∈ B is nonempty, then a decision from this subset
will be chosen in slot l− 1; as a result
∑
i∈B

D
�
i �l��
�



Stolyar: Asymptotic Optimality of the Gradient Scheduling Algorithm
22 Operations Research 53(1), pp. 12–25, © 2005 INFORMS

Let us pick a state m such that 
m
i �k� > 0 for at least one

pair of k ∈K�m� and i ∈ B. (Such a state m exists.) By the
definition of a FSP, we have the uniform convergence (13)
for each m ∈ M . Then, using Observation 2 (and recall-
ing the definition of components f̂n of an FSP), we obtain
estimate

∑
i∈B

f̂i�t+B�−∑
i∈B

f̂i�t��%mB
> 0�

which implies (because it holds for any small B> 0)

d+
dt

∑
i∈B

f̂i�t��%m
> 0� (36)

However, from the integral equation (35), continuity
of x�·�, and the fact that xi�t�= 0 for all i ∈ B, we see that
d+
dt

∑
i∈B

xi�t�=
d+
dt

∑
i∈B

f̂i�t��

This (along with (36)) proves

d+
dt

∑
i∈B

xi�t��%m
> 0�

Because there is only a finite number of subsets B ⊆ N ,
property (ii) has been proved.
Let us prove (19). Consider a fixed regular point t > 0. It

will suffice to prove that (19) holds for this t. We first note
that in the case of a type (II) utility function, we must have
xn�t� > 0 for all n ∈ N . Otherwise (because t is regular),
we would have x′n�t�= 0 for any n with xn�t�= 0, which
is impossible due to property (ii). Thus, for either utility
function type, the gradient �H�x�t�� is finite, and therefore
�H�y� is bounded (and continuous) in a neighborhood of
point y = x�t�. Given this, the rest of the proof of (19) is
analogous to the proof of Lemma 5(ii) in Stolyar (2004).
Namely, because x��?� is close to x�t� when �?− t� and �
are small, the following observation is true.

Observation 3. For any / > 0, there exists a sufficiently
small B> 0, such that for all “unscaled” paths Z� with suf-
ficiently small �, we have the following property. For any
(positive integer) time slot l within interval �t/�� �t+B�/��,

��H�X��l− 1�� ·D��l�− am�l−1��� /�

where we use the notation

am
�= max
k∈K�m�

�H�x�t�� ·
m�k�� m ∈M�

From this observation, we have
∣∣∣∣∣

∑
t/��l��t+B�/�

�H�X��l−1��·D��l�− ∑
t/��l��t+B�/�

am�l−1�

∣∣∣∣∣
�/B/�+O�1��

where O�1� denotes a term with absolute value bounded
above by C as �→ 0, with C > 0 being a fixed constant.
From the last display, multiplied by �, it is easy to obtain
the following estimate for the fluid-scaled paths:

∣∣∣∣∣
∫ t+B

t
�H�x��?�� ·df̂ ��?�− ∑

m∈M

∫ t+B

t
amdg

�
m�?�

∣∣∣∣∣
� /B+�O�1��

Taking the limit on �→ 0 and using (5), we obtain

∣∣∣∣∣
∫ t+B

t
�H�x�?�� ·df̂ �?�− ∑

m∈M
am%mB

∣∣∣∣∣
=
∣∣∣∣
∫ t+B

t
�H�x�?�� ·df̂ �?�−

[
max
v∈V

�H�x�t�� · v
]
B

∣∣∣∣� /B�

Because B can be chosen arbitrarily small (for a given
fixed /), v�t�= f̂ ′�t�, and �H�x�?�� is continuous at ? = t,
we have
∣∣∣�H�x�t�� · v�t�−max

v∈V
�H�x�t�� · v

∣∣∣� /�

Finally, because / can be chosen arbitrarily small,
�H�x�t�� · v�t� = maxv∈V �H�x�t�� · v, which completes
the proof of (19) and with it the proof of property (i).
The compactness property (iii) of the family of FSPs

is analogous to the compactness properties described in
Lemmas 5.1–5.3 in Stolyar (1995). It follows directly from
the construction of an FSP as a limit. Namely, for each
FSP z�j�, consider a defining sequence z�j���, �→ 0, such
that z�j��� → z�j� u.o.c. For each j , consider z�j���j , which
is within distance /j > 0 from z�j� in the uniform metric in
the interval �0� j�, where /j ↓ 0. Then, it is easy to see that
the sequence z�j���j defines FSP z. The second claim of (iii)
follows from the first one. Indeed, from any sequence of
FSPs z�j� such that x�j� → x u.o.c., we can always choose
a subsequence along which z�j� → z = �x� f̂ � g� ĝ� u.o.c.,
implying that this z is an FSP. �

11. Proofs of Theorems 1–3

Proof of Theorem 3. It suffices to prove a more general
fact that any weak limit of the sequence of processes z� is a
process z concentrated on FSPs with probability 1. (In this
case all processes are in the Skorohod space DRL�0�
�,
where L is the total number of scalar component functions
of z�.)
Each sequence "g�m# satisfies the law of large numbers,

namely,

g�m�t2�− g�m�t1�→%m�t2− t1�

in probability ∀0� t1 � t2� (37)
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and the sequence "z�# is “asymptotically Lipschitz”,
namely,

P"�z��t2�− z��t1���C∗�t2− t1�+ /∗#→ 1

∀0� t1 � t2� /
∗ > 0�

for some fixed C∗ > 0.
Using the above two facts, the proof is completely anal-

ogous to the proof of Theorem 7.1 in Stolyar (1995).
We note that, alternatively, the proof can also be obtained

more directly using Skorohod representation (see Ethier
and Kurtz 1986). Namely, asymptotic Lipschitz property
implies that the sequence "z�# is relatively compact. Then,
any converging subsequence can be constructed on a proba-
bility space such that the convergence is with probability 1.
Then, because property (37) holds, property (13) holds with
probability 1. This, by the definition of an FSP, implies that
z� converges to an FSP with probability 1. �

Proof of Theorem 2. First, let us choose a > 0 to be
fixed and large enough so that a> 
̄, V ⊆ �0� a�N , and A⊆
�0� a�N . Then, without loss of generality, it will suffice to
prove the theorem for the set A rechosen to be A= �0� a�N .
For a given / > 0 and A > 0, by Theorem 4, we can

choose T > 0 (depending on A and /), so that for any FSP
with x�0� ∈A, we have

sup
t∈�T � T+A�

�x�T �− u∗�� //2�

Using this, Theorem 3, and the continuous mapping theo-
rem (see Billingsley 1968), it is easy to obtain

lim
�↓0

sup
x��0�∈A

P

{
sup

t∈�T � T+A�
�x��t�− u∗�> /

}
= 0� (38)

Note, however, that (by (30)) x�n �t� remains bounded by
the maximum of 
̄ and x�n �0� for all t. This means that
x��t� ∈A for all t and all �. Applying (38) to the processes
restarted at times D � 0, we can rewrite (38) in a stronger
form:

lim
�↓0

sup
x��0�∈A

sup
D�0

P

{
sup

t∈�D+T � D+T+A�
�x��t�− u∗�> /

}
= 0�

which implies the desired result. �

Proof of Theorem 1. Both U��l1� l2� and X
��l2� are dif-

ferently computed averages of the values of D��l�: The for-
mer one is the average over l1 � l� l2 with equal weights
1/�l2− l1+1�, and the latter one is (roughly) the average of
D��l2− j� with “exponential” weights ��1−��j . We know
from Theorem 2 that EX��l� is close to u∗ for large l, and
therefore, when l1 is large,

1
l2− l1+ 1

∑
l1�l�l2

EX��l� (39)

is close to u∗, uniformly on l2 � l1. In this proof, we show
that when both l1 and l2 − l1 are sufficiently large, the
expected value EU��l1� l2� is close to (39).
Let us choose a> 0 the same way as in the proof of The-

orem 2. So, without loss of generality, we can assume that
A= �0� a�N . Then, again as observed in the proof of Theo-
rem 2, for all l� 0 and all �, X��l� ∈A, and consequently
�X��l��� b

�=√
Na.

Let us fix (small) / > 0. Theorem 2 along with the fact
that the values of X��l� are uniformly bounded implies that
we can choose T > 0 such that for all sufficiently small �,
uniformly on l� T /�, we have

�EX��l�− u∗�< /� (40)

Without loss of generality, we can always choose T to be
large enough so that e−T is arbitrarily small. We note that∑
j�T /�

��1−��j = e−T +O����

where (here and below) O��� denotes a term with absolute
value bounded above by C� as �→ 0, with C > 0 being a
fixed constant.
In what follows, l1, l2 are functions of �, such that l1 �

T /�, l2− l1 � T ′/�, and T ′ > T . Also, we will use a sim-
plified notation d�p�

�=ED��p�. Then, we can write

Q
�= 1
l2− l1+ 1

∑
l1�l�l2

EX��l� (41)

= 1
T ′/�

l2∑
l=l1

l−1∑
j=0

��1−��jd�l− j�+O��� (42)

=Q1+Q2+Q3+O����

where Q1, Q2, and Q3 break down the summation in (42),
into the summations over
l2∑
l=l1

∑
0�j<l−l1

�
∑

l1�l<l1+T /�

∑
l−l1�j�l−1

�

∑
l1+T /��l�l2

∑
l−l1�j�l−1

�

respectively. Because we have �d�p�� � b, we obtain the
following estimates:

�Q2�� bT /T ′ +O����

�Q3�� be−T �T ′ − T �/T ′ +O����

For Q1, by changing summation indexes from �l� j� to �p=
l− j� j�, we can write

Q1 =
1

T ′/�

l2∑
p=l1

l2−p∑
j=0

��1−��jd�p�

= 1
T ′/�

l2∑
p=l1


∑
j=0

��1−��jd�p�−Q4−Q5

=EU��l1� l2�+O���−Q4−Q5�
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where

Q4 =
1

T ′/�

∑
l1�p<l2−T /�

∑
j>l2−p

��1−��j d�p��

Q5 =
1

T ′/�

∑
l2−T /��p�l2

∑
j>l2−p

��1−��j d�p��

�Q4�� be−T �T ′ − T �/T ′ +O����

�Q5�� bT /T ′ +O����

We see that

�Q−EU��l1� l2��� �Q2�+�Q3�+�Q4�+�Q5�+O���

� 2be−T �T ′ − T �/T ′ + 2bT /T ′ +O����

Thus, if we fix T large enough so that e−T is small,
and then choose T ∗ such that T /T ∗ is small, then we
have �Q−EU��l1� l2��� / for all sufficiently small �,
uniformly on T ′ > T ∗. Because we also know that
�Q− u∗�� /, the result follows. �

12. Concluding Remarks
In this section we discuss our model assumptions and tech-
niques, and their possible generalizations and extensions.
To facilitate the discussion, let us first observe that the anal-
ysis in this paper can be roughly divided into the following
logical steps.

Step 1. Proving the process level convergence (Theo-
rem 3), namely, the fact that any sequence of scaled pro-
cesses "x�# has subsequences converging to a process with
sample paths being FSPs.

Step 2. Establishing basic properties of FSPs (Lemmas 1
and 2), most importantly the differential inclusion (20) but
also properties (ii) and (iii) of Lemma 2.

Step 3. Proving the FSP uniform attraction property
(Theorem 4), based on the FSP properties established in
Step 2. This is the key step.

Step 4. Establishing gradient algorithm asymptotic opti-
mality (Theorem 1, Corollary 1, and Theorem 2), using the
results of Steps 1 and 3. These results are our primary goal.
We now proceed with the discussion.

Smooth Nonstrictly Concave Utility Functions. The
assumption of strict concavity of utility function H is not
essential for the results of this paper. If H is just con-
cave, the set of optimal solutions to problem (6)–(7) is a
convex compact set ū∗. All our results and proofs hold vir-
tually verbatim, with u∗ replaced by ū∗ and the distances
�·−u∗� to u∗ being replaced by the distances ��·� ū∗� to the
set ū∗, as for example in (8) and (10). The convergences (9)
and (21) are generalized as lim��ED��1�� ū∗�= 0 and
��x�t�� ū∗�→ 0, respectively. We make the strict concavity
assumption to simplify the exposition.

More General Type (II) Utility Functions. All our
results hold as is for more general type (II) functions,
where some of the components Hn are allowed to be (more
“benign”) finite and continuously differentiable everywhere
on R+, including 0. Extensions of the analysis to this case
are transparent.

Generality of the FSP Uniform Attraction Proof.
Our Step 3, the proof of the FSP uniform attraction prop-
erty, is quite general. (In particular, it is strictly more gen-
eral than the corresponding attraction results in Kushner
and Whiting 2002, Agrawal and Subramanian 2002.) For
a type (I) utility function (the case considered in Kushner
and Whiting 2002 and Agrawal and Subramanian 2002)
our proof uses only the differential inclusion (20) and the
assumption that rate region V is a convex compact set.
(We do not need any further assumptions on V , such as
a smoothness or “cooperativeness” Kushner and Whiting
2002 condition.) In addition, we prove the uniform attrac-
tion for a type (II) utility function as well. This latter proof,
however, uses FSP property Lemma 2(ii), which is in turn
derived (in Step 2) using in part the “discrete structure” of
our model, which we address next.

Discrete Structure of the Model. Our model assumes
that the sets of switch states M and scheduling decisions
K�m� in each state m are finite. For such a “discrete struc-
ture” of the model, which is very common in applications,
the rate region V is in fact a polyhedron (because the set
of possible values of & is a polyhedron and V is its linear
image). Such nonsmooth rate regions V are not allowed by
the results of Kushner and Whiting (2002) and Agrawal
and Subramanian (2002), because they cause FSPs to be
generally nonsmooth.

Discussion of the Results’ Extensions for Different
Models. The models in Kushner and Whiting (2002) and
Agrawal and Subramanian (2002), although very close, are
not within the framework of our model. (Neither is our
model within the framework of those references, as dis-
cused above.) However, our asymptotic optimality results
(Step 4) allow extensions to other models. As an example,
consider the model of Agrawal and Subramanian (2002),
where state process m is general stationary ergodic and
service rate sets corresponding to each m are uniformly
bounded compact sets (plus some other conditions), and
the utility function is of type (I). The process level con-
vergence (Step 1) and (20) for the FSPs (Step 2) are
proved in Agrawal and Subramanian (2002). Then, as dis-
cussed above, our Theorem 4 (Step 3) applies. Examina-
tion of our proofs (in Step 4) of Theorem 1, Corollary 1,
and Theorem 2 shows that neither the discrete structure
nor Markov assumption (only stationarity!) are used there.
Consequently, Theorem 1, Corollary 1, and Theorem 2
hold for the model of Agrawal and Subramanian (2002).
These asymptotic optimality properties do not follow from
the results in Agrawal and Subramanian (2002), because
their proof requires that FSPs are attracted to the optimal
point u∗ from any initial state.
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Discussion of Nonsmooth Utility Functions. Al-
though our Step 3 can be generalized to the case of a
general concave utility function H , the gradient algorithm
asymptotic optimality results (of Step 4) do not necessarily
hold for such utility functions. To be more specific, sup-
pose that H�u� is a concave function, finite for all u ∈RN

+ ,
with finite directional derivatives

H

Hw
H�u�

�= d+
d?

H�u+w?�

for all u ∈RN
+ and w ∈RN , such that un = 0 implies wn � 0.

(Such directional derivatives are well defined due to the
concavity of H .) Consider the following differential inclu-
sion, which generalizes (20):

x′�t�= v�t�− x�t��

v�t� ∈ argmax
v∈V

H

H�v− x�t��
H�x�t���

(43)

Then, it is easy to check that our Theorem 4 and its proof
still hold for the family of solutions of (43). Now, consider
the corresponding generalization of the gradient algorithm,
namely the algorithm choosing a decision

k ∈ argmax
k∈K�m�

H

H�
m�k�−X�t��
H�X�t���

It is not hard to construct examples (with, say, H�u� =
minn un) such that FSPs for this algorithm do not satisfy
inclusion (43). (Step 2 “does not work.”) As a consequence,
the asymptotic optimality of the gradient algorithm (The-
orem 1, Corollary 1, and Theorem 2) does not necessarily
hold for general concave utility functions.
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